Fayoum university
Faculty of science
Chemistry department

physical chemistry Geo.Bot.&Bio/Chem.students 1 st. semester

Model answers

1-Question 1:-

1-ii 2-ii

3-iii

4-iii

5-a

6-iii

7-ii

8-ii

9-t

10-c

2-Question 2:-

a- anodic reaction: $Ti = Ti^{2+} + 2e^{-}$

cathodic reaction: $2Ag^{+} + 2e^{-} = 2Ag$

Net reaction: $Ti + 2Ag^+ = 2Ag + Ti^{2+}$

 $E_a = -1.6 + (0.0591/2) \log 0.01$

 $E_c = 0.79 + (0.0591/2) \log 0.01$

 $emf = E_a - E_c$

b- i-Silver oxide battery:

anodic reaction: $Zn + 2OH \longrightarrow Zn(OH)_2 + 2e^{-}$

cathodic reaction: $Ag_2O + H_2O + 2e \longrightarrow 2Ag + 2OH$

Net reaction: $Ag_2O + H_2O + Zn \longrightarrow Zn(OH)_2 + 2Ag$

ii- Lead storage battery:

anodic reaction: $Pb + SO_4^2 \rightarrow PbSO_4 + 2e^-$

cathodic reaction: $PbO_2+4H^++SO_4^{2-}+2e^- \rightarrow PbSO_4+2H_2O$

Net reaction: $PbO_2+4H^++2SO_4^{2-}+Pb\longrightarrow 2PbSO_4+2H_2O$

c- i-

	Oxygen Electrode	Calomel Electrode
Type	Indicator electrode	Reference electrode
Reaction	$O_2 + 2H_2O + 4e^- = OH^-$	2Hg+2Cl ⁻ =Hg ₂ Cl ₂ +2e ⁻
Nernst equation	$E_{O2/OH}$ =1.23-0.059PH	$E_{Hg/Hg^2Cl^2} = E^{\circ}$ -0.059log a_{cl}
The cell	Pt/O _{2(g)} .P=1atm/OH	Hg/Hg ₂ Cl ₂ /Cl ⁻
composition	O ₂ gas OH OH	Saturated KCI solution Hg_Cl_2 and Hg paste Mercury Fig. 12.15 Calomel electrode

ii-

	Concentration cells	
	With liquid junction	Without liquid junction
Anodic reaction	H ₂ =2H ⁺ +2e ⁻	H ₂ =2H ⁺ +2e ⁻
Cathodic reaction	$2H^++2e^-=H_2$	Cl ₂ +2e ⁻ =2Cl ⁻
Cell reaction	No Net Reaction	$Cl_2 + H_2 = 2H^+ + 2Cl^-$
emf	$= (2RT/f) \times \ln(m1/m2)$	$=E^{\circ}-0.059Log(m)^{2}$
composition	HCl ml HCl m2 m1>m2	Chlorine-Hydrogen cell H ₂ Cl ₂ HCl m=molarity

3-Question 3:-

$$\mathbf{a} - \mathbf{E}_{\text{cell}} = \mathbf{E}^{\circ}_{\text{cell}} - (\mathbf{RT/nF}) \, \mathbf{lnK}_{\sim}$$

$$logK = (n \times E^{\circ}_{cell}/0.0591)$$
 n=2

$$E^{\circ}_{cell} = E_c - E_a = E^{\circ}_{fe3+/fe2+} - E^{\circ}_{Sn4+/Sn2+}$$

b- 1-Rate of discharge (cathodic):-

V1=K1
$$e^{-(\Delta G^{\circ}1-\alpha\eta F)/RT}$$

2-Rate of ionization (anodic):-

V2=
$$k2 e^{-(\Delta G^{\circ}2+(1-\alpha)\eta F)/RT}$$

V1=K1
$$e^{-\Delta G^{\circ}1/RT} e^{-\alpha \eta F/RT}$$

$$V2=K2 e^{-\Delta G^{\circ}2/RT} e^{(1-\alpha)\eta F/RT}$$

$$V2=V^{\circ}2 e^{(1-\alpha)\eta F/RT}$$

-At a reversible process:

$$I_{net}=I_c-I_a$$
 and $I_c=I_a=I_{\circ}$ So $I_{net}=I_{\circ}$

Where I_° is the exchange current.

 $V1\alpha I_c$ and $V2\alpha I_a$ and $V^{\circ}1\alpha I_{\circ}$ and $V^{\circ}2=I_{\circ}$

By substituting in equation 1&2

$$I_c = I_o e^{-\alpha \eta F/RT}$$
 and $I_a = I_o e^{(1-\alpha)\eta F/RT}$

$$I_{net} = I_c - I_a = I_o e^{-\alpha \eta F/RT} - I_o e^{(1-\alpha)\eta F/RT}$$

-The 2^{nd} term is so small compared to the 1^{st} .so it can be neglected.

$$I_{\text{net}} = I_c = I_{\circ} e^{-\alpha \eta F/RT}$$

ln
$$I_{net}$$
=ln I_{\circ} - $\alpha \eta F/RT$

$$\eta$$
= (2.303RT/ α F)log I $_{\circ}$ - (2.303RT/ α F)log I $_{c}$

$$\eta = a - b \log I_c$$

C- 1- <u>Ohmic overpotentialη</u>: results when an oxide film, agaseous film sets aresistance to the passage of the current across it .It is given by IR. Where I is the current strength and R is the resistance of the surface film.

2- Pseudo-ohmic overpotentialn_p: results from that the final tip of the calomel electrode (called luggen capillary tip) is placed at appreciable dictance from the polarized electrode surface. It becomes high at high current density and at low concentration. It is also given by IR where R is the resistance of the solution between the tip and the electrode surface, I is the polarizing current.

3-Concentration overpotential η_c : when there is a difference in the concentration of the solution near the polarizing electrode and the reversible one (calomel electrode). If C_b is the original or bulk concentration, and C_e is the concentration near the electrode. C_e is less than C_b .

 η_c =RT/ZF. Ln C_e / C_b

4-Activation overpotential η_a : some electrode process are associated with aslow step to bring the reaction to the stage.this step is accelerated by change of the electrode potential from the reversible potential.thus this energy is given to activate the slow step.

With my best wishes

Dr.Mohamed Mohamed El-rabiei