

Fayoum University
Faculty of Science
Chemistry Department
First term
January 2012

physical Chemistry
Thermodynamics
Time allowed 3 hours
Total Mark (55)
Bio. And Geo 2nd year student

Answer the following questions:

Question (1)

[15 marks]

- a) Prove that, the efficiency of Carnot engine, the ideal imaginary engine, is limited by the operating temperature of the engine
- b) Two moles of an ideal gas initially at 27° C and one atm are compressed reversibly to half its initial volume. Calculate q, w, ΔE and ΔH when the process is carried on isothermally.

Question (2)

[15 marks]

- a) Define each of the following: Intensive properties –Isochoric process- Hess's law – Standard heat of formation- heat engine – cyclic process- heat capacity
- b) The boiling point of water at 50 atm is 265°C. Compare theoretical efficiencies of a steam engine operating between 55oC and i) boiling point of water at 1 atm
- ii) Boiling point of water at 50 atm

Question (3)

[10 marks]

- a) For an ideal prove that: $C_p = C_V + R$
- b) Calculate the heat of formation of liquid methanol from the following data

$$C_2H_5OH_{(1)}^{\circ} + 3O_{2 (g)} = 2CO_{2 (g)} + 2H_2O_{(1)}$$
 $\Delta H = -326.70 \text{ k. cal } (1)$
 $C_{(s)} + O_{2 (g)} = CO_{2 (g)}$ $\Delta H^{\circ}_{f} = -94.05 \text{ k. cal } (2)$
 $H_{2 (g)} + 1/2 O_{2 (g)} = H_2O_{(1)}$ $\Delta H^{\circ}_{f} = -68.32 \text{ k. cal } (3)$

Question (4)

[15 marks]

a) For an adiabatic reversible ideal gas expansion prove that

$$\mathbf{P}_1 \mathbf{V}_1^{\ \gamma} = \mathbf{P}_2 \mathbf{V}_2^{\ \gamma}$$

b) Calculate ΔS for the reversible isothermal expansion of 2.00 moles of an ideal gas from 10.0 to 12.0 liters at 30°C.