Academic year: 1st Year Programme: Natural Science

Date: 12/01/2012

Department: Chemistry Subject Title & code: Chem. 1 Time allowed: 3 hour

No. of pages: (2)

Total assessment mark: 55

Q1 A) Redraw the following structures using bond-line formula and predict a systematic name for each one:- (12 points)

$$\begin{array}{cccc} & CH_3 & CH_2CH_3 \\ 1- & C-C-CH_2-CHCH_2CH_3 \\ & CH_3 \end{array}$$

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{4-CH_3C-CH_2CH_2CHCH_3} \\ \operatorname{OH} & \operatorname{OH} \end{array}$$

- B) Write out the structures of isomers of $C_4H_{10}O$ that are alcohols, name them.
 - · Identify them as being primary, secondary or tertiary.
 - Arrange them in relative reactivity order towards HBr

Q2 Answer the following questions (DO NOT write too much) (12 points):-

1-Indicate the most acidic proton \longrightarrow H

- 2- The C=C double bond does not exhibit free rotation (why?) and what consequence of the absence of free rotation?
- 3- Give one addition reaction to alkenes occurs specifically in an anti-fashion.
- 4-What is the reagent that must be used with HBr to convert 1-hexene to 1-bromohexane?
- 5- Mention three chemical reagents that can convert 1-butanol to 1-chlorobutane.
- 6- Acetone reacts with hydrazine (N2H4), either in absence or presence of KOH. What is the product formed in each case and what is the type of reactions occurring.
- 7- Give the structure of the alkane with M.F. C_5H_{12} that on free radical chlorination gives a single monochloride.
- 8- Alkenes could be converted to alcohols, mention (ONLY) three reagents that can perform this job.