Academic year: 1ST year

Program: NATURAL SCIENCE

Date: 24 January 2012

Department: MATHEMATICS

Subject: ALGEBRA------60Marks

Time allowed: 3 Hour Pg.(6)

I..CHOOSE THE CORRECT ANSWERS OF THE FOLLOWING:

1.	
2	MARKS

One o	of the following is group
Α	(Z, +)
В	(N, -)
С	(N, .)
D	(N, /)

2.

2 MARKS

One	of the following is ring
Α	(C, +, .)
В	(C, -, .)
С	(C, .)
D	(C, ., +)

3.

2 MARKS

One	of the following is field
Α	(R, +, .)
В	(Z, -, .)
С	(Z, ., -)
D	(Z, ., +)

4.

2 MARKS

Any	of the following conditions be one of the conditions of a group
Α	commutative
В	distributive
С	associative
D	deleting

1

12. (3MARKS)

Wh	ich function is bijective?
A	$f: R \to R, f(x) = x^3$.
В	$f: R \to R, f(x) = \sin x$.
С	$f: R \to R, f(x) = x^2$.
D	$f: R \to R, f(x) = \cos x$.

13. (3MARKS)

16 60	mposition function (g o f) of two functions $f(x) = 2x+3$ and $g(x) = x^2$ is
A	$(g \circ f)(x) = 2x^2 + 3$
В	$(g \circ f)(x) = (2x + 3)^2$
C	$(g \circ f)(x) = 2x^2 + 3x + 3$
D	$(g \circ f)(x) = 4x^2 + 12$

(II). (4MARKS) By using matrices solve the linear system

$$x + y + z = 2$$

$$2x + y + z = 3$$

$$x - y + z = 4$$

(III) (6marks) put True or false on the following:

- (1) The transpose of a 5×6 matrix has five columns and six rows.
- (2) If A is a 2×3 matrix and B is a 3×2 matrix, then A+B is defined.
 (3) If A is an invertible 3×3 matrix and B is a 3×4 matrix, then A-1B is defined.
- (4) If AB is defined, then BA must also be defined.
 (5) If AX = B for any matrix A, then X = A-1B.
- (6) If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then $A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

(IV) Solve the following questions:

1. (4 marks) Prove that $3+6+9+\cdots+3n=\frac{3n(n+1)}{2}$ for all $n \in \mathbb{N}$ by using mathematical induction.

2. (3marks) Construct the truse table of $(p \land \neg q) \Rightarrow (p \lor q)$

2. (3 marks) Prove That $AX(B \cap C) = (AXB) \cap (AXC)$

3. (5 marks) Find the roots by Cardan,s method of the $x^3 - 9x + 28 = 0$

5

2 MARKS

One	of the following is proper fraction	
A	$\frac{2x^3 + x^2 - x - 3}{x(x-1)(2x+3)}$	
В	$\frac{x^3}{(x+4)(x-1)}$	
С	$\frac{x^4 - 3x^3 - 3}{x^2 - 4}$	
D	$\frac{2+x}{1-x^2}$	

6.

4MARKS

The partial fraction	n of the fraction $\frac{2x-3}{x(x-1)(2x+3)}$ is
A	$\frac{1}{x} - \frac{1}{5(x-1)} - \frac{8}{5(2x+3)}$
В	$\frac{1}{x} + \frac{1}{(x-1)} + \frac{5}{8(2x+3)}$
С	$\frac{1}{x} - \frac{8}{5(x-1)} - \frac{1}{5(2x+3)}$
D	$\frac{1}{x} - \frac{1}{5(x-1)} + \frac{8}{(2x+3)}$

7.

3 MARKS

The	statement $[(p\Leftrightarrow q) \Rightarrow (q \land r)] \lor (q \Leftrightarrow \neg r)$ is false in one case of the	
follo	wing	
A	P is true, q is true and r is true	
В	P is false, q is false and r is false	
С	P is false, q is true and r is true	
D	P is false, q is false and r is true	

2

8.

4 MARKS

The	cube roots of complex number 64i are	
A	$2(\sqrt{3}+i),2(\sqrt{3}-i)$ and 4	
В	$2(\sqrt{3}+i),2(\sqrt{3}-i)$ and 4i	
С	$2(i\sqrt{3}+1), 2(\sqrt{3}-i)$ and -4i	
D	$2(\sqrt{3}+i),2(\sqrt{3}-i)$ and -4i	****

9. (3 MARKS)

in Cardan method t	o solve the equation $x^3 + 6x^2 + 3x + 18 = 0$, the first step is delete the second term to get
A	$x^3 - 9x - 28 = 0$
В	$x^3 - 9x + 28 = 0$
С	$x^3 + 9x + 28 = 0$
D	$x^3 + 9x - 28 = 0$

10.(2MARKS)

The relation "perpendicular to" on the set of all straight lines is:	
A	reflexive.
В	symmetric.
C	transitive.
D	equivalent.

11.

(3MARKS)

The domain of the function $f(x) = \sqrt{4 - x^2}$ is the interval:		
A	(-2,2).	
В	[-2,2).	
C	[-2,2].	
D	(-2,2].	