Journal of Energy Storage 95 (2024) 112652,

https://doi.org/10.1016/j.est.2024.112652

Structural, optical analysis, stress-strain, and dielectric properties of selenium oxide/LaFeO₃/blend nanocomposites with tunable properties for optoelectronics and micro-supercapacitors

Tarek I. Alanazi¹, Adel M. El Sayed^{2*}

¹Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia

²Physics Department, Faculty of Science, Fayoum University, El-Fayoum 63514, Egypt

Abstract

This work focuses on developing flexible nanocomposites by introducing two types of ceramic nanofillers into a biopolymeric blend for optoelectronic and energy-storing applications. Selenium oxide (SeO₂) nanoparticles (NPs) and LaFeO₃ NPs were prepared by hydrothermal and solid-state reactions, respectively, and incorporated into the polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) through the solution casting process. Transmission electron microscope and X-ray diffraction tests revealed the creation of hexagonal SeO₂ and orthorhombic LaFeO3 NPs, with average sizes of 17 and 93 nm. The blend's degree of crystallinity was dependent on SeO₂ NPs and LaFeO₃ contents. The infrared absorption spectra revealed the interactions/complexation of the fillers with the blend reactive groups. The scan e-microscope (field emission mode) investigated the films' surface morphology and detected the elements they contain. LaFeO₃/SeO₂ content impacted stress-strain behavior, raised the tensile strength from 64 to 70.9 MPa, and dramatically lowered the strain at break and toughness. UV-vis-NIR measurements exhibited that the transmittance, extinction coefficient, and refractive index can be tuned by SeO₂ and LaFeO₃/SeO₂ content. The direct $(E_{g,d})$ /indirect $(E_{g,id})$ band gaps were reduced from 5.25/4.9 eV to 4.95/4.7 eV. The dielectric parameters (constant, loss, energy density, and conductivity) were significantly increased after loading 5.0 wt% LaFeO₃/SeO₂. The dielectric moduli and Cole-Cole plots were also investigated. The structural modifications and enhancement of the optical features and dielectric parameters make the resulted samples the best candidates for optoelectronic devices and energy-storing applications such as sensors and supercapacitors.

Keywords: SeO₂/LaFeO₃ NPs; PVA/PVP blend; optical parameters; AC conductivity; Energy density.