Surfaces and Interfaces 55 (2024)105309,

https://doi.org/10.1016/j.surfin.2024.105309

Highly sensitive and room-temperature operable carbon dioxide gas sensor based on spin-coated Sn-doped Co₃O₄ thin films with advanced recovery properties.

Rana Saad, Khaled Abdelkarem, Mohamed Shaban, Adel M. El Sayed, Inas A. Ahmed, Mohamed T. Tammam, Hany Hamdy

Abstract

The urgency to address climate change has highlighted the need for gas sensors capable of monitoring air quality at room temperature (RT) and accurately measuring the concentrations of carbon oxides (CO₂ and CO) in the environment. This study details the development of a highly sensitive CO₂ gas sensor using spin-coated Sn-doped Co₃O₄ thin films, operating at a room temperature of 30°C and a relative humidity (RH%) of 43 %. Extensive characterization employing XRD, SEM, EDX, FTIR, and UV-Vis optical techniques verified the impact of Sn doping on the surface morphology, phase purity, and a notable reduction in the dual-band gap of the thin films. Gas sensing measurements were conducted at RT using varying CO₂ gas concentrations. A sensor response of 796.81 % was obtained for the optimally sensitive film, 10 % Sn-doped Co₃O₄, at a CO₂ concentration of 9990 ppm. Additionally, a range of RH % levels was examined at a constant CO₂ gas concentration of 9990 ppm, revealing an optimal humidity level of 43 % at RT. Further analysis revealed that the 10 % Sn-Co₃O₄ sensor displayed enhanced sensitivity to CO₂, surpassing its response to N₂, H₂, and NH₃ gases. The determined limits of detection and quantification underscore the sensor's precision and reliability in quantifying CO₂ gas concentrations. Our findings demonstrate the excellent potential of Sn-doped Co₃O₄ thin films as highly sensitive CO₂ gas sensors. These films provide a promising solution for detecting elevated CO₂ levels at room temperature, aiding climate change mitigation efforts.

Keywords: Co₃O₄ thin films; CO₂ sensing; Dual bandgap; Sensor response; Selectivity; Room temperature; Relative humidity