
Crystal Structures 



Crystal = Lattice + Motif 

Motif or basis:  

 an atom or a group of atoms associated with each lattice point 

Crystal = Lattice + Basis 
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 14 BRAVAIS LATTICES + 7 CRYSTAL 
SYSTEMS 

 Only 7 different shapes of unit cell can be 
stacked together to completely fill all space 

without overlapping.  
• This gives  7 crystal systems, into which all crystal structures 

can be classified. These systems & subsystems are: 

1. Cubic System (SC, BCC, FCC) 

2.  Hexagonal System (S) 

3.  Triclinic System (S) 

4.  Monoclinic System (S, Base-C) 

5.  Orthorhombic System (S, Base-C, BC, FC) 

6. Tetragonal System (S, BC) 

7.  Trigonal (Rhombohedral) System  (S)  



Summary: Fourteen Bravais 

Lattices in Three Dimensions 



Fourteen Bravais Lattices … 



Miller indices 

A Miller index is a series of coprime integers that are inversely proportional to 

the intercepts of the crystal face or crystallographic planes with the edges of 

the unit cell.   

 

It describes the orientation of a plane in the 3-D lattice with respect to the 

axes. 

 

The general form of the Miller index is (h, k, l) where h, k, and l are integers 

related to the unit cell along the a, b, c crystal axes. 

 



What is this Direction ????? 

Projections: 

Projections in terms of a,b and c: 

Reduction: 

[brackets]               

x                     y                  z 

a/2 b 0c 

1/2 1 0 

1 2 0 

[120] 



Indices of Planes: Cubic Crystal 

 



examples 



001 Plane  

 



110 Planes 

 



111 Planes 

 



Crystallographic Directions 

1. Vector is repositioned (if necessary) to 

pass through the Unit Cell origin. 

2. Read off line projections (to principal axes 

of U.C.) in terms of unit cell dimensions a, b, 

and c 

3. Adjust to smallest integer values 

4. Enclose in square brackets, no commas 
  

 [uvw] 

ex: 1, 0, ½ =>   2, 0, 1 =>  [ 201 ] 

-1, 1, 1 

families of directions <uvw> 

z 

x 

Algorithm 

where „overbar‟ represents a 

negative index 

[ 111 ] => 

y 



d -spacing 

Example 

The lattice constant for aluminum is 

4.041 angstroms.  What is d220? 
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Theoretical Density, r 

where        n = number of atoms/unit cell 

        A = atomic weight  

        VC = Volume of unit cell = a3 for cubic 

        NA = Avogadro‟s number  

             = 6.023 x 1023 atoms/mol 

Density =  r  = 

VC NA 

n A 
r  = 

Cell   Unit   of    Volume Total 

Cell   Unit   in    Atoms of   Mass 
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Number of atoms per unit cell 



• For a Bravais Lattice,  
Coordinatıon Number  The number of lattice 

points closest to a given point  

(number of nearest-neighbors of each point). 

• Because of lattice periodicity, all lattice points 

have the same number of nearest neighbors or 

coordination number. (Coordination number is 

intrinsic to the lattice.) 

Examples 

1. Simple Cubic (SC) coordination number = 6 

2. Body-Centered Cubic coordination number = 8 

3. Face-Centered Cubic coordination number =  12 

Coordination Number 



Arrangement of lattice points in the unit cell 

 & No. of Lattice points / cell 

Position of lattice points 
Effective number of Lattice 

points / cell 

1 P 8 Corners = 8 x (1/8) = 1 

2 I 

8 Corners  

+  

1 body centre 

= 1 (for corners) + 1 (BC) 

3 F 

8 Corners  

+ 

6 face centres 

= 1 (for corners) + 6 x (1/2) 

= 4 

4 

A/ 

B/ 

C 

8 corners  

+ 

2 centres of opposite faces  

= 1 (for corners) + 2x(1/2) 

= 2 



• For a Bravais Lattice,  

The Atomic Packing Factor (APF)   
 volume of the atoms within the unit cell 

divided by the volume of the unit cell. 

Atomic Packing Factor (Packing Fraction) 

• When calculating the APF, the volume of the atoms 

in the unit cell is calculated AS IF each atom was a 
hard sphere, centered on the lattice point & large 

enough to just touch the nearest-neighbor sphere. 

• Of course, from Quantum Mechanics, we know that 

this is very unrealistic for any atom!!  



    Simple Cubic  Body Centered   Face Centered 

            (SC)   Cubic (BCC)   Cubic  (FCC) 

 

1- CUBIC CRYSTAL SYSTEMS 
3 Common Unit Cells with Cubic Symmetry 

 



3 Common Unit Cells with Cubic 
Symmetry 



• The SC Lattice has one lattice point in its unit 

cell, so it‟s unit cell is a primitive cell. 
• In the unit cell on the left, the atoms at the corners 

are cut because only a portion (in this case 1/8) 

“belongs” to that cell. The rest of the atom “belongs” 

to neighboring cells. 

Coordinatination Number of the SC Lattice = 6. 

a- Simple Cubic (SC) Lattice  

a 

b 
c 

http://www.kings.edu/~chemlab/vrml/simcubun.wrl


Simple Cubic (SC) Lattice 

Atomic Packing Factor  
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• The BCC Lattice has two lattice 

points per unit cell so the BCC 

unit cell is a non-primitive cell.  

• Every BCC lattice point has 8 

nearest- neighbors. So (in the 

hard sphere model) each atom is in 

contact with its  neighbors only 

along the body-diagonal directions. 

• Many  metals (Fe,Li,Na..etc), 

including the alkalis and 

several transition elements 

have the BCC structure. 

b- Body Centered Cubic (BCC) Lattice  



Body Centered Cubic (BCC) Structure 
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0.68  =  
V

V
  =  APF            

3

R 4
  =  a

cell unit

atoms
BCC

2 (0.433a) 

Body Centered Cubic (BCC) Lattice 

Atomic Packing Factor  



Elements That Form Solids 

with the BCC Structure 



• In the FCC Lattice there are atoms at the corners of 

the unit cell and at the center of each face. 

•The FCC unit cell has 4 atoms so it is a non-primitive 

cell. 

•Every FCC Lattice point has 12 nearest-neighbors.  

•Many common metals (Cu,Ni,Pb..etc) crystallize in 

the FCC structure. 

c- Face Centered Cubic (FCC) Lattice  



Face Centered Cubic (FCC) 

Structure 



Closed-packed structures 

(or, what does stacking fruit have to do with solid state physics?) 



FCC:  Conventional Cell With Basis 

• We can also view the FCC lattice in terms 

of a conventional unit cell with a four point 

basis. 

 

• Similarly, we can view the BCC lattice in 

terms of a conventional unit cell with a two 

point basis. 



Simple Crystal Structures 

• There are several crystal structures of 

common interest: sodium chloride, cesium 

chloride, hexagonal close-packed, 

diamond and cubic zinc sulfide.  

• Each of these structures have many 

different realizations. 
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4 (0.353a) 

0.68  =  
V

V
  =  APF            

3

R 4
  =  a

cell unit

atoms
BCC
FCC 

0.74 

Face Centered Cubic (FCC) Lattice 

Atomic Packing Factor  



Elements That Form Solids 

with the FCC Structure 



FCC & BCC: 

Conventional Cells With a 

Basis 
• Alternatively, the FCC Lattice can 

be viewed in terms of a 

Conventional Unit Cell with a 4-
point basis. 

• Similarly, the BCC lattice can be 

viewed in terms of a 

Conventional Unit Cell with a 2- 
point basis. 



Atom Position   Shared Between   Each atom counts: 

           corner        8 cells    1/8 

 face center         2 cells                        1/2 

      body center        1 cell       1 

 edge center         2 cells   1/2 

           Lattice Type         Atoms per Cell 
     P (Primitive)               1  [= 8  1/8] 

     I (Body Centered)               2  [= (8  1/8) + 

(1  1)] 

     F (Face Centered)               4   [= (8  1/8) + (6  

1/2)] 

        C (Side Centered)               2   [= (8  1/8) + 

(2  1/2)] 

 

Comparison of the 3 Cubic Lattice 

Systems 

Unit Cell Contents 
Counting the number of atoms within the unit 

cell 

 

 

 



Example: Atomic Packing 

Factor 



• In a Hexagonal Crystal System, three 

equal coplanar axes intersect at an 

angle of 60°, and another axis is 

perpendicular to the others and of a 

different length. 

2- HEXAGONAL CRYSTAL SYSTEMS 

The atoms are all the same. 



Simple Hexagonal Bravais 

Lattice 



Hexagonal Close Packed (HCP) Lattice 



• This is another structure 

that is common, 

particularly in metals. In 

addition to the two layers 

of atoms which form the 

base and the upper face 

of the hexagon, there is 

also an intervening layer 

of atoms arranged such 

that each of these atoms 

rest over a depression 

between three atoms in 

the base. 

Hexagonal Close Packed 

(HCP) Lattice 

http://www.kings.edu/~chemlab/vrml/hcpun.wrl


The HCP lattice is not a Bravais lattice, because orientation of 

the environment of a point varies from layer to layer along the 

c-axis. 

Hexagonal Close Packed 

(HCP) Lattice 



Bravais Lattice:  

Hexagonal Lattice 

He, Be, Mg, Hf, Re  

(Group II elements) 
ABABAB Type of 

Stacking  

a = b 

Angle between a & b = 120° 

c = 1.633a,  

Basis:  (0,0,0) (2/3a ,1/3a,1/2c) 

Hexagonal Close Packed (HCP) Lattice 





A A 

A A 

A A 

A 

A A A 

A A 

A A A 

A A A 

B B 

B 

B 

B B 

B 

B 

B 

B B 

C C C 

C C 

C 

C 

C C C 

Sequence ABABAB: 
Hexagonal Close 

Packed 

Sequence ABCABCAB: 
Face Centered Cubic  

Close Packed 

Close Packed 

B 

A A 

A A 

A 

A 

A 

A A 

B 

B B 

Sequence AAA: 
Simple Cubic 

Sequence ABAB: 
Body Centered Cubic 

Comments on Close Packing 



Hexagonal Close Packing 



HCP Lattice  
Hexagonal Bravais Lattice with a 2 Atom Basis 



Comments on Close Packing 







ABCABC… →  fcc 

ABABAB… →  hcp 

Close-Packed Structures 



3 - TRICLINIC & 4 – MONOCLINIC 

CRYSTAL SYSTEMS 
• Triclinic crystals have the least symmetry of any 

crystal systems. The three axes are each different 

lengths & none are perpendicular to each other. 

These materials are the most difficult to recognize. 

Triclinic (Simple)  

 a  ß  g  90O 

a  b  c 
 

Monoclinic (Simple)  

a = g = 90o, ß  90o  

a  b c 

Monoclinic 
(Base Centered)  

a = g = 90o, ß  

90o  

a  b  c 

http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html
http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bondd.html
http://www.kings.edu/~chemlab/vrml/naclun.wrl


5 - ORTHORHOMBIC CRYSTAL SYSTEM 

Orthorhombic 
(Simple)  

 a = ß = g = 90o 

 a  b  c 

Orthorhombic 
(Base 

Centered) 

a = ß = g = 90o  

 a  b  c 

Orthorhombic 
(Body 

Centered)  

a = ß = g = 90o  

a  b  c 

Orthorhombic 
(Face 

Centered)  

a = ß = g = 90o  

a  b  c 

http://www.kings.edu/~chemlab/vrml/cesun.wrl
http://www.kings.edu/~chemlab/vrml/hcpun.wrl
http://www.kings.edu/~chemlab/vrml/naclun.wrl
http://www.kings.edu/~chemlab/vrml/cesun.wrl
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6 – TETRAGONAL CRYSTAL SYSTEM 

 Tetragonal 

(P)  
a = ß = g = 90o 

 a = b  c 

 Tetragonal 

(Body 

Centered)  

a = ß = g = 90o  

a = b  c  

http://www.kings.edu/~chemlab/vrml/hcpun.wrl
http://www.kings.edu/~chemlab/vrml/naclun.wrl
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7 - RHOMBOHEDRAL (R) OR TRIGONAL 

CRYSTAL SYSTEM  

 Rhombohedral (R) or 

Trigonal (S)  

a = b = c, a = ß = g  90o 



•  Rare due to low packing density (only Po – Polonium -- 

has this structure) 

•  Close-packed directions are cube edges. 

•  Coordination No. = 6 

 (# nearest neighbors) 

for each atom as seen 

(Courtesy P.M. Anderson) 

Simple Cubic Structure (SC) 



•  APF for a simple cubic structure = 0.52 

APF =  

a 3 

4 

3 
p  (0.5a) 3 1 

atoms 

unit cell 
atom 

volume 

unit cell 

volume 

Atomic Packing Factor (APF) 

APF =  
Volume of atoms in unit cell* 

Volume of unit cell 

*assume hard spheres 

Adapted from Fig. 3.23, 

 Callister 7e.  

close-packed directions 

a 

R=0.5a 

contains (8 x 1/8) =  
            1  atom/unit cell Here: a = Rat*2 

Where Rat is the „handbook‟ 

atomic radius 



•  Coordination # = 8 

Adapted from Fig. 3.2, 

 Callister 7e.  

(Courtesy P.M. Anderson) 

•  Atoms touch each other along cube diagonals within a   
 unit cell. 

--Note:  All atoms are identical; the center atom is shaded 

   differently only for ease of viewing. 

Body Centered Cubic Structure (BCC) 

ex: Cr, W, Fe (a), Tantalum, Molybdenum 

2 atoms/unit cell:  (1 center) + (8 corners x 1/8) 



Atomic Packing Factor:  BCC 

a 

APF =  

4 

3 
p  (  3 a/4 ) 3 2 

atoms 

unit cell atom 

volume 

a 3 

unit cell 

volume 

length = 4R = 

Close-packed directions: 

3 a 

•  APF for a body-centered cubic structure = 0.68 

a 
R 

Adapted from  

Fig. 3.2(a), Callister 7e. 

a   2 

a   3 



•  Coordination # = 12 

Adapted from Fig. 3.1, Callister 7e.  

(Courtesy P.M. Anderson) 

• Atoms touch each other along face diagonals. 
--Note:  All atoms are identical; the face-centered atoms are shaded 

   differently only for ease of viewing. 

Face Centered Cubic Structure (FCC) 

ex: Al, Cu, Au, Pb, Ni, Pt, Ag 

4 atoms/unit cell: (6 face x ½) + (8 corners x 1/8) 



•  APF for a face-centered cubic structure = 0.74 

Atomic Packing Factor:  FCC 

The maximum achievable APF! 

APF =  

4 

3 
p  (  2 a/4 ) 3 4 

atoms 

unit cell atom 

volume 

a 3 

unit cell 

volume 

Close-packed directions:  

length = 4R = 2 a  

Unit cell contains: 
     6 x 1/2 + 8 x 1/8   
  =  4 atoms/unit cell a 

2 a 

Adapted from 

Fig. 3.1(a), 

Callister 7e.  

(a = 22*R) 



•  Coordination # = 12 

•  ABAB... Stacking Sequence 

•  APF = 0.74 

•  3D Projection •  2D Projection 

Adapted from Fig. 3.3(a), 

 Callister 7e.  

Hexagonal Close-Packed Structure (HCP) 

6 atoms/unit cell  
  

ex: Cd, Mg, Ti, Zn 

• c/a = 1.633 (ideal) 

c 

a 

A sites 

B  sites 

A sites 
Bottom layer 

Middle layer 

Top  layer 



We find that both FCC & HCP are highest density packing 

schemes (APF = .74) – this illustration shows their 

differences as the closest packed planes are “built-up” 



Theoretical Density, r 

where        n = number of atoms/unit cell 

        A = atomic weight  

        VC = Volume of unit cell = a3 for cubic 

        NA = Avogadro‟s number  

             = 6.023 x 1023 atoms/mol 

Density =  r  = 

VC NA 

n A 
r  = 

Cell   Unit   of    Volume Total 

Cell   Unit   in    Atoms of   Mass 



 

• Ex: Cr (BCC)   

  A = 52.00 g/mol   

  R = 0.125 nm    

  n = 2 

 a = 4R/3 = 0.2887 nm 

a 
R 

r =  
a 3 

52.00 2 

atoms 

unit cell 
mol 

g 

unit cell 

volume atoms 

mol 

6.023 x 1023 

Theoretical Density, r 

rtheoretical
 

ractual 

= 7.18 g/cm3 

= 7.19 g/cm3 



Locations in Lattices: Point Coordinates 

Point coordinates for unit cell 
center are  

  

a/2, b/2, c/2       ½ ½ ½  
 

   

Point coordinates for unit cell 
(body diagonal) corner are 
111 

 

 

Translation: integer multiple of 
lattice constants   identical 
position in another unit cell  

z 

x 

y 
a b 

c 

000 

111 

y 

z 



2c 







b 

b 



Crystallographic Directions 

1. Vector is repositioned (if necessary) to 

pass through the Unit Cell origin. 

2. Read off line projections (to principal axes 

of U.C.) in terms of unit cell dimensions a, b, 

and c 

3. Adjust to smallest integer values 

4. Enclose in square brackets, no commas 
  

 [uvw] 

ex: 1, 0, ½ =>   2, 0, 1 =>  [ 201 ] 

-1, 1, 1 

families of directions <uvw> 

z 

x 

Algorithm 

where „overbar‟ represents a 

negative index 

[ 111 ] => 

y 



What is this Direction ????? 

Projections: 

Projections in terms of a,b and c: 

Reduction: 

Enclosure [brackets]               

x                     y                  z 

a/2 b 0c 

1/2 1 0 

1 2 0 

[120] 



ex:  linear density of Al in [110]  

direction  

  a = 0.405 nm 

 

Linear Density – considers equivalance and is 

important in Slip 
 

• Linear Density of Atoms  LD =  
 

 
 

a 

[110] 

Unit length of direction vector 

Number of atoms  

# atoms 

length 

1 3.5 nm 
a 2 

2 
LD 

-   

# atoms CENTERED on the direction of interest! 

Length is of the direction of interest within the Unit Cell 



Determining Angles Between Crystallographic 

Direction: 

   
1 1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2

u u v v w w
Cos

u v w u v w
 -

 
  

 
      

Where ui‟s , vi‟s & wi‟s are the “Miller Indices” of the directions in 

question  

 

– also (for information) If a direction has the same Miller Indices as 

a plane, it is NORMAL to that plane 



HCP Crystallographic Directions 

1. Vector repositioned (if necessary) to pass    

     through origin. 

2. Read off projections in terms of unit 

     cell dimensions a1, a2, a3, or c 

3. Adjust to smallest integer values 

4. Enclose in square brackets, no commas 
  

 [uvtw] 

[ 1120 ] ex:       ½, ½, -1, 0          => 

Adapted from Fig. 3.8(a), Callister 7e. 

dashed red lines indicate  

projections onto a1 and a2 axes a1 

a2 

a3 

-a3 

2 

a 2 

2 

a 1 

- 
a3 

a1 

a2 

z 

Algorithm 



HCP Crystallographic Directions 
• Hexagonal Crystals 

– 4 parameter Miller-Bravais lattice coordinates are 

related to the direction indices (i.e., u'v'w') in the „3 

space‟ Bravais lattice as follows. 

 

 

 

' w w 

t 

v 

u 

) v u ( + - 

) ' u ' v 2 ( 
3 

1 
- 

) ' v ' u 2 ( 
3 

1 
-  

] uvtw [ ] ' w ' v ' u [  

Fig. 3.8(a), Callister 7e. 

- 
a3 

a1 

a2 

z 



Computing HCP Miller- Bravais Directional Indices 

(an alternative way): 

- 
a3 

a1 

a2 

z 

We confine ourselves to the bravais 

parallelopiped in the hexagon: a1-

a2-Z and determine: (u‟,v‟w‟) 

Here: [1 1 0]  - so now apply the 

models to create M-B Indices 

   

   

   

1 1 12 ' ' 2 1 1 1
3 3 3

1 1 12 ' ' 2 1 1 1
3 3 3

1 1 2 2
3 3 3

' 0

M-B Indices: [1120]

u u v

v v u

t u v

w w

 -   -  

 -   -  

 -   -   -  -

 
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 Similarly, the distance between any two   

    successive lattice points along the Y-direction   

    is taken as `b’.  

 Here a  and b are said to be lattice translational  

   vectors. Consider a square lattice in which a=b. 


