Crystal Structures




Crystal = Lattice + Basis

Crystal = Lattice + Motif

Motif or basis:
an atom or a group of atoms associated with each lattice point



14 BRAVAIS LATTICES+ 7 CRYSTAL
SYSTEMS
= Only 7 different shapes of unit cell can be
stacked together to completely fill all space

without overlapping.
* This gives 7 crystal systems, into which all crystal structures
can be classified. These systems & subsystems are:

1. Cubic System (SC, BCC, FCC)

2. Hexagonal System (S)
3. Triclinic System (S)
4, Monoclinic System (S, Base-C)

5. Orthorhombic System (S, Base-C, BC, FC)

0. Tetragonal System (S, BC)
/. Trigonal (Rhombohedral) System (S) 3




Summary: Fourteen Bravais
Lattices in Three Dimensions

The 14 possible BRAVAIS LATTICES

{note that spheres in this picture represent lattice points, not atoms! }
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Fourteen Bravais Lattices ...

HEXAGONAL TRIGONAL
a=bxc a=b=c P
a=p=90° P o= p=y#90°
v =120°
MONOCLINIC -

bsc p 1 Tylg)es of Unit Cell
o7 0 c = Primitive
=g I = Body-Centred
pe120° E = Face-Centred
C =Side-Centred

TRICLINIC :
azbzc P 7 Crystal Classes
o P#yz90° — 14 Bravais Lattices




Miller indices

A Miller index is a series of coprime integers that are inversely proportional to
the intercepts of the crystal face or crystallographic planes with the edges of
the unit cell.

It describes the orientation of a plane in the 3-D lattice with respect to the
axes.

The general form of the Miller index is (h, k, I) where h, k, and | are integers
related to the unit cell along the a, b, ¢ crystal axes.



Projection on
~ y axis (b)

Projection on
x axis (al2)

Projections:
Projections in terms of a,b and c:

Reduction:
[brackets]

X 4
a/2 b
1/2 1

1 2

[120]



Indices of Planes: Cubic Crystal

{100) (110) (111}

{2000

(100)

Figure 16 Indices of important

planes in a cubic crystal. The plane (200) is parallel to (100) and to
(100).
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¢ / the origin at point O

I
“ssganalsy y
V|
£l
£
L
’ ‘
x ,’ Other equivalent
Y s "~ (001) planes
/

(a)



110 Planes

(110) Plane referenced to the

f / origin at point O

Other e\q/uivalent
X (110) planes

(b)



111 Planes

(111) Plane referenced to
- the origin at point O

N Other equivalent }
(111) planes

(c)



Crystallographic Directions

Algorithm

1. Vector is repositioned (if necessary) to
pass through the Unit Cell origin.

2. Read off line projections (to principal axes
of U.C.) in terms of unit cell dimensions a, b,
and ¢

3. Adjust to smallest integer values

4. Enclose in square brackets, no commas

[uvi]
ex:1,0,% => 2,0,1 => [201]

-1,1,1 => [Ill] where ‘overbar’ represents a
negative index

families of directions <uvw>

X



d -spacing

n a

_|_
a‘> b* c?
Example
The lattice constant for aluminum is

4.041 angstroms. Whatis a,,,?

Oh = 2 2 2 Ao =
\/h LK JhA2 £ KkA2 4172

d= L = L =1.43 angstroms

\/hz +k? \/22 +2°
a’ 4.041°




Theoretical Density, p

Mass of Atoms in Unit Cell

Density = p = Total Volume of Unit Cell
_ nA
VCNA
where 1 = number of atoms/unit cell

A = atomic weight
V- = Volume of unit cell = & for cubic
N, = Avogadro’s number

= 6.023 x 1023 atoms/mol



Number of atoms per unit cell



Coordination Number

* For a Bravais Lattice,
Coordination Number =The number of lattice
points closest to a given point
(number of nearest-neighbors of each point).
« Because of lattice periodicity, all lattice points
have the same number of nearest neighbors or
coordination number. (Coordination number Is
Intrinsic to the lattice.)
Examples
1. Simple Cubic (SC) coordination number = 6
2. Body-Centered Cubic coordination number = 8
3. Face-Centered Cubic coordination number = 12




Arrangement of lattice points in the unit cell
& No. of Lattice points / cell

. . : Effective number of Lattice
Position of lattice points :
points / cell
1| P |8Corners =8x(1/8) =1
8 Corners
2 | | |+ = 1 (for corners) + 1 (BC)
1 body centre
8 Corners
= 1 (for corners) + 6 x (1/2)
3| F |+ —4
6 face centres
A/
8 corners = 1 (for corners) + 2x(1/2)
4 | B/ |+ _ 5
C |2 centres of opposite faces |




Atomic Packing Factor (Packing Fraction)
* For a Bravais Lattice,

The Atomic Packing Factor (APF) =

volume of the atoms within the unit cell
divided by the volume of the unit cell.
Yolume of Atoms m Umt Cell
Yolume of Ut Cell

APF =

* When calculating the APF, the volume of the atoms
In the unit cell is calculated AS /F each atom was a
hard sphere, centered on the lattice point & large
enough to just touch the nearest-neighbor sphere.

* Of course, from Quantum Mechanics, we know that
this is very unrealistic for any atom!!




1- CUBIC CRYSTAL SYSTEMS
3 Common Unit Cells with Cubic Symmetry

i % ¢

Simple Cubic Body Centered Face Centered
(SC) Cubic (BCC) Cubic (FCC)



3 Common Unit Cells with Cubic

N

pid)
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Figure § The cubic space lattices. The cells shown are the conventional cells.

Table 2 Characteristics of cubic lattices"
551111:!]\‘:‘ Eml_'.'--;:v::nt-::rr.'{l Face-centered
Volume, convenlional cell o’ a o’
Lattice points per cell 1 2 4
Volume, primitive cell o Lo w
Lattice points per unit volume lia® 2’ 4
Number of nearest neighbors G 5 12
Nearest-neighbor distance 0 3% /2 = 0 866 af2" = (. T07a
Number of second neighbors 12 i G
second neighbor distance 2% i fl
Packing lraction” Lo L3 L
=) 534 =01 68 =740
“The packing Eraction is the maximum proportion of the available volume that can be filled
with hard spheres




a- Simple Cubic (SC) Lattice

* The SC Lattice has one lattice point In Its unit

cell, so it's unit cell is a primitive cell.
* In the unit cell on the left, the atoms at the corners
are cut because only a portion (in this case 1/8)

“belongs” to that cell. The rest of the atom “belongs”
to neighboring cells.

Coordinatination Number of the SC Lattice = 6.

o
N4



http://www.kings.edu/~chemlab/vrml/simcubun.wrl

Simple Cubic (SC) Lattice
Atomic Packing Factor

% R=0.5a
close-packed
directions

contains 8x1/8 =

1atomumt cell

APF = 0,52 for simple cubic

atom

volume
unit cell
‘H %x m.ﬁa}ﬂ‘r atom
APF =
a9
"‘—-_______‘ volume

unit cell




b- Body Centered Cubic (BCC) Lattice

* The BCC Lattice has two lattice
points per unit cell so the BCC
unit cell is a non-primitive cell.

* Every BCC lattice point has 8

nearest- neighbors. So (in the
hard sphere model) each atom is In
contact with its neighbors only
along the body-diagonal directions.

 Many metals (Fe,Li,Na..etc),
Including the alkalis and .
several transition elements ’ -~
have the BCC structure.




Body Centered Cubic (BCC) Structure

o

Body Centered Cubic
and related strictires




Body Centered Cubic (BCC) Lattice
Atomic Packing Factor

atom

volume
i _ 4" atom
/ \ APF= LS
- %‘\
4 B volume
\ | unit cell
— Vatoms —
APF gcc 0.68
o Vunitcell




Elements That Form Solids
with the BCC Structure

Table 4.2

ELEMENTS WITH THE MONATOMIC BODY-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT  a(A) ELEMENT  a (A) ELEMENT  a(A)

Ba 5.02 Li 349 (78 K) Ta 3.31
Cr 2.88 Mo 3.15 Tl 3.88
Cs 6.05(78 K) Na 423 (5K) \Y 3.02
Fe 2.87 Nb 3.30 W 3.16

K 523(5K) Rb 5.59 (5 K)




c- Face Centered Cubic (FCC) Lattice

*In the FCC Lattice there are atoms at the corners of
the unit cell and at the center of each face.

*The FCC unit cell has 4 atoms so it is a non-primitive
cell.

*Every FCC Lattice point has 12 nearest-neighbors.

Many common metals (Cu,Ni,Pb..etc) crystallize in
the FCC structure.




race ceniered CubiC (FCLL)
Steyct

4

(a) (b)




Closed-packed structures

(or, what does stacking fruit have to do with solid state physics?)



FCC: Conventional Cell With Basis

 \We can also view the FCC lattice In terms
of a conventional unit cell with a four point
basis.

« Similarly, we can view the BCC lattice In
terms of a conventional unit cell with a two
point basis.



Simple Crystal Structures

* There are several crystal structures of
common Iinterest: sodium chloride, cesium
chloride, hexagonal close-packed,
diamond and cubic zinc sulfide.

* Each of these structures have many
different realizations.



Face Centered Cubic (FCC) Lattice
Atomic Packing Factor

l/(l

/
W

4R

\/\2(1 = 4R

o
atom
Al volume
unit cell 4 ~ |l
4 E=z1(0.353a) atom
APF = |
g3
1___————___"1.1"G|UI'I"IE
unit cell
—_— Vatoms _— T
APF ree 0.74
Vunitcell

33



Elements That Form Solids
with the FCC Structure

ELEMENTS WITH THE MONATOMIC FACE-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT a(A) ELEMENT a(A) ELEMENT  a(A)
Ar 5.26 (42 K) Ir 3.84 Pt 3.92
Ag 4.09 Kr 572(58K)  6-Pu 4.64
Al 4,05 La 5.30 Rh 3.80
Au 4.08 Ne 443 (42 K) Sc 4.54
Ca 5.58 Ni 3.52 Sr 6.08
Ce 5.16 Pb 4.95 Th 5.08
B-Co 3.55 Pd 3.89 Xe (S8 K) 6.20
Cu 3.61 Pr 5.16 Yb 5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed.,
Interscience, New York, 1963. In most cases, the data are taken at about room tem-
perature and normal atmospheric pressure. For elements that exist in many forms the
stable room temperature form (or forms) is given. For more detailed information, more
__precise lattice constants, and references, the Wyckoff work should be consulted.




FCUGU & DUCL.
Conventional Cells With a

| Basis .
 Alternatively, the FCC Lattice can
be viewed In terms of a
Conventional Unit Cell with a 4-
point basis.
» Similarly, the BCC lattice can be
viewed In terms of a
Conventional Unit Cell with a 2-

poInt basis.



Comparison of the 3 Cubic Lattice
Systems
Unlt CeII Contents

corner @qulls 1/8
face center 2 cells 1/2
body center 1 cell 1
edge center 2 cells 1/2
Lattice Type Atoms per Cell
P (Primitive) 1 [=8x1/8]
| (Body Centered) 2 [=(8x1/8)+

(1 x 1)]
F (Face Centered) 4 [=(8 x 1/8) + (6 x

1./2\1
LTI )]

7~ 1rSN" | _ I~ _ L . . _ 1IN r . )
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Factor

[t is very easy toshow that the filling of space by spheres is 7%
gz for the foo unit cell of cubic close packing (CCF) with an ABC layer repeat

For spheres of radius, r, touc hjng al::lng the face d:hgnml the cubic unit cell parameter
15 caleulated as x =E«Er

total urndit cell wolume = 19
=162 1
occupied vohume = 4 spheres
i 3
spacefilling=_n_ = #[05%
XA




2- HEXAGONAL CRYSTAL SYSTEMS
*In a Hexaqgonal Crysital System, three

equal coplanar axes intersect at an
angle of 60°, and another axis Is
perpendicular to the others and of a

B | e
‘/\(E,.>1’c‘ ':> - /!\

N\
BTN 4

h A~ _/

The atoms are all the same.




Simple Hexagonal Bravais
Lattice

la,l=la)=«a

Figure 4.19

The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in inset) are
stacked directly above one another, a distance ¢ apart.



Hexagonal Close Packed (HCP) Lattice

Hexaoona! Claose Faclked
and related striciires

Crystal el Crystal et Crystal ctiel
[ L6353 L1 1.5861 L 1.5494
Be 1.55] il 1. 556 (ol |54
Mg 1,623 Ci 1,622 L 1,546

Ti L5050 Y 1.570)



Hexagonal Close Packed
(HCP) Lattice

 This Is another structure
that Is common,
particularly in metals. In
addition to the two layers
of atoms which form the
base and the upper face
of the hexagon, there Is
also an intervening layer
of atoms arranged such
that each of these atoms
rest over a depression

In A+ a1 AN FlavAa AN AFtAIRA A~ 1IN



http://www.kings.edu/~chemlab/vrml/hcpun.wrl

Hexagonal Close Packed
(HCP) Lattice

(a)

(b)
The HCP lattice is not a Bravais lattice, because orientation of
the environment of a point varies from layer to layer along the
c-axis.



Hexagonal Close Packed (HCP) Lattice
Bravais Lattice:

. a=>Db
Sexsgol?/lal L:;“;e Angle between a & b = 120°
e, be, VI(, , e c=1633a

(Group Il elements)

ABABAB Type of Basis: (0,0,0) (2/3a ,1/3a,1/2c)




CLOSE-PACKING OF SPHERES

A single layer of spheres 1s closest-packed with a HEXAGONAL coordination of
each sphere

1 layer




Comments on Close Packing

Close Packed

Sequence ABABAB:
Hexagonal Close

Seguence ABCABCAB:
Face Centered Cubic
Close Packed

Sequence ABAB:
Body Centered Cubic

Seguence AAA:
Simple Cubic




Hexagonal Close Packing

Figure 21 A close-packed laver of spheres is shown, with centers at points marked A. A second and
identical layer of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third laver. It can go
in over A or over C. If it goes in over A the sequence is ABABAB. . . and the structure is hexagonal
close-packed. If the third layer goes in over C the sequence is ABCABCABC . and the structure
is face-centered cubic.

N R KR




HCP Lattice =
Hexagonal Bravais Lattice with a 2 Atom Basis

Figure 22 The hexagonal close-packed struc-
ture. The atom positions in this structure do
not constitute a space lattice. The space lattice
is simple hexagonal with a basis of two identi-
cal atoms associated with each lattice point.
The lattice parameters a and ¢ are indicated,
where a is in the basal plane and ¢ is the mag-
nitude of the axis a, of Fig. 14.



Comments on Close Packing
A second layer of spheres 18 placed in the indentations left by the first layer

. space 1s trapped between the layers that is not filled by the spheres
- TWO different types of HOLES (so-called INTERSTITIAL sites) are left

- OCTAHEDRAL (O) holes with 6 nearest sphere neighbours
- TETRAHEDRAL (T+) holes with 4 nearest sphere neighbours

When a third layer of spheres 1s placed in the indentations of the
second layer there are TWO choices

. The third layer lies in indentations directly in line {(eclipsed)
with the 1st layer
. Layer ordering may be described as ABA
. The third layer lies in the alternative indentations leaving it
staggered with respect to both previous layers

. Layer ordering may be described as ABC



- More Complex close-packing sequences than simple HCP & CCP
are possible
- HCP & CCP are merely the simplest close-packed stacking sequences,
others are possible!
= All spheres in an HCP or CCP structure have identical environments

> Repeats of the form ABCB.... are the next simplest

s There are tWO types of sphere environment
= surrounding layers are both of the same type (i.e.

anti-cuboctahedral coordination) like HCP, so labelled h
= surrounding layers are different (i.e. cuboctahedral coordination)

like CCP, so labelled C
= Layer environment repeat is thus hche...., so labelled h¢
» Unit cell is alternatively labelled 4 H

= Has 4 layers in the c-direction
= Hexagonal

= The hc (4 H) structure is adopted by early lanthanides



» Other Systems may be Classified as having Similar Structures
BUCKMINSTERFULLERENE FOOT & MOUTH VIRUS

BCC



Close-Packed Structures

ABCABC... — fcc
ABABAB... - hcp



3 - TRICLINIC & 4 = MONOCLINIC

CRYSTAL SYSTEMS

e Triclinic crystals have the least symmetry of any
crystal systems. The three axes are each different
lengths & none are perpendicular to each other.

These materials are the most difficuli 4}7»

ﬂ@

B

Triclinic (Simp

e)

o= #y=90°

azb#cC

Monoclinic (Simple)

o =17 =90° [} #90°
a=b#c

Monoclinic

(Base Centered)
a=7=90° R =

90°

azb#c



http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html
http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bondd.html
http://www.kings.edu/~chemlab/vrml/naclun.wrl

5 - ORTHORHOMBIC CRYSTAL SYSTEM

Orthorhombic | | Orthorhombic

(Simple) (Body g
o =R =y=90° Centered)

azhro |[a=B=y=90| At
— aZb#C

:

Orthorhombic | | Orthorhombic
(Base (Face * 0
Centered) Centered) '

G
<
e e

azb#cC aZD#C

o=R=y=90° oa=0R=y=90° Q'?


http://www.kings.edu/~chemlab/vrml/cesun.wrl
http://www.kings.edu/~chemlab/vrml/hcpun.wrl
http://www.kings.edu/~chemlab/vrml/naclun.wrl
http://www.kings.edu/~chemlab/vrml/cesun.wrl

6 — TETRAGONAL CRYSTAL SYSTEM

= A
i e

Tetragonal
Tetragonal (Body
(P) Centered)
o =R=y=900° a=R=y=90° |.

a=b=#c A=h<ec


http://www.kings.edu/~chemlab/vrml/hcpun.wrl
http://www.kings.edu/~chemlab/vrml/naclun.wrl

7/ - RHOMBOHEDRAL (R) OR TRIGONAL
CRYSTAL SYSTEM

Rhombohedral (R) or
Trigonal (S)
a=b=c,a=0R=y=90°




Simple Cubic Structure (SC)

« Rare due to low packing density (only Po — Polonium --
has this structure)

« Close-packed directions are cube edges.

o =6
(# nearest neighbors)
for each atom as seen o

(Courtesy P.M. Anderson)



Atomic Packing Factor (APF)

Volume of atoms in unit cell*
Volume of unit cell

APF =

*assume hard spheres

APF for a simple cubic structure = 0.52

volume
t atoms A < " om
a unitcell 1 — = (0.58)3

3
a’ «_ volume
unit cell

close-packed directions

contains (8 x 1/8) =

1 atom/unit cell Here: a = R,*2

Ada/?ted from Fig. 3.23, Where R, is the ‘handbook’
Callister 7e. atomic radius



Body Centered Cubic Structure (BCC)

« Atoms touch each other along cube diagonals within a
unit cell.

--Note: All atoms are identical; the center atom is shaded
differently only for ease of viewing.

ex: Cr, W, Fe (a), Tantalum, Molybdenum

Adapted from Fig. 3.2,
Callister 7e.

» Coordination # = 8 |
2 atoms/unit cell: (1 center) + (8 corners x 1/8)

(Courtesy P.M. Anderson)



Atomic Packing Factor: BCC
V3 a

V2 a

Close-packed directions:
length=4R =3 a

atoms

- 4 3 volume
unit cell 2 3 m (I3a4) atom
APF = olume
volu
é%e_lgt.ezc(];)r?gallisz‘er 7e. a3 < un |t CE”

« APF for a body-centered cubic structure = 0.68



Face Centered Cubic Structure (FCC)

« Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag
 Coordination # =12

Adapted from Fig. 3.1, Callister 7e.

4 atoms/unit cell: (6 face x %2) + (8 corners x 1/8)

(Courtesy P.M. Anderson)



Atomic Packing Factor: FCC

 APF for a face-centered cubic structure = 0.74
The maximum achievable APF!

Close-packed directions:
length = 4R =2 a

(a = 2\2*R)
Unit cell contains:
6 x1/2 + 8 x1/8
= 4 atoms/unit cell
i _atoms
ch unitcell ™4 2 (2a4)3 ‘\Vzltgrr:e
APF =
volume

a3< _
unit cell



Hexagonal Close-Packed Structure (HCP)

ex: Cd, Mg, Ti, Zn
« ABAB... Stacking Sequence

« 3D Projection « 2D Projection
A sites
Top layer
B sites .
Middle layer
A sites
Adapted from Fig. 3.3(a), BOttom Iayer
Callister 7e.
« Coordination # = 12 6 atoms/unit cell

« APF =0.74
* c/la=1.633 (ideal)



We find that both FCC & HCP are highest density packing
schemes (APF = .74) — this illustration shows their
differences as the closest packed planes are “built-up”

(a) Stacking of close-packed planes (b) Stacking of close-packed planes

Normal to
close-packed planes

Close-packed /
planes B A '\/ i
/ [
|
|
!
i
) o !

Close-packed
planes

C
Normal to A / /\
close-packed
e

planes

(c) Face-centered cubic (d) Hexagonal close packed



Theoretical Density, p

Mass of Atoms in Unit Cell

Density = p = Total Volume of Unit Cell
_ nA
VCNA
where 1 = number of atoms/unit cell

A = atomic weight
V- = Volume of unit cell = & for cubic
N, = Avogadro’s number

= 6.023 x 1023 atoms/mol



Theoretical Density, p

« Ex: Cr (BCC)
A =52.00 g/mol
R=0.125 nm
n=2
.~ a=4RIN3 =0.2887 nm

atoms Ptheoretical — 7-18 g/Cm3
unitcell ™2 52.00 <*+— J
. mol | Pactual =7.19 g/lcm3
p =

a3 6.023x1023
volume _» w__atoms

unit cell mol




Locations In Lattices: Point Coordinates

Point coordinates for unit cell
center are

al2, b2, cl2 V222

Point coordinates for unit cell
(body diagonal) corner are
111

Translation: integer multiple of
lattice constants - identical
position /n another unit cell



Crystallographic Directions

Algorithm

1. Vector is repositioned (if necessary) to
pass through the Unit Cell origin.

2. Read off line projections (to principal axes
of U.C.) in terms of unit cell dimensions a, b,
and ¢

3. Adjust to smallest integer values

4. Enclose in square brackets, no commas

[uvi]
ex:1,0,% => 2,0,1 => [201]

-1,1,1 => [Ill] where ‘overbar’ represents a
negative index

families of directions <uvw>

X



Projection on
~ y axis (b)

Projection on !
xaxis (@l2) L}
I

Projections:
Projections in terms of a,b and c:

Reduction:
Enclosure [brackets]

X 4
al2 b
1/2 1

1 2

[120]



Linear Density — considers equivalance and is

important in Slip
Number of atoms

Unit length of direction vector

« Linear Density of Atoms = LD =

[110]
ex: linear density of Al in [110]
direction
a=0.405 nm
# atoms \
= ID=_2 =35nm"™

length /v\/Ea

# atoms CENTERED on the direction of interest!
Length is of the direction of interest within the Unit Cell



Determining Angles Between Crystallographic
Direction:

u,u, +V,V, + W\W,

\/(uf +V, +W12)o(u22 +V; —I—W22)

0 =Cos™

Where u;'s , v;'s & w;'s are the “Miller Indices” of the directions in
guestion

— also (for information) If a direction has the same Miller Indices as
a plane, it is NORMAL to that plane



HCP Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass
through origin.
2. Read off projections in terms of unit

Qw

e b
~

I

I

|

| o cell dimensions a,;, &,, a;, or ¢

| 1 3. Adjust to smallest integer values

T TS _ 4. Enclose in square brackets, no commas
ay = D~ [1120] ;

~ [uvin]
e, al
Adapted from Fig. 3.8(a), Callister 7e.
~ <
ex: %, %,-1,0 => [1120] &

dashed red lines indicate
projections onto g, and a, axes a,



HCP Crystallographic Directions

« Hexagonal Crystals

— 4 parameter Miller-Bravais lattice coordinates are
related to the direction indices (i.e., ¢ VW) in the ‘3
space’ Bravais lattice as follows.

[V w'] = [uviw]

[0001]
' 1
I } u==Qu-v
‘Wi ;@)
| | 2 1
| 1/ v=—2V-U
F—F17] ) 3( )
S LA N N 1120
SN A t=~(u+v)
niog) w= w'

Fig. 3.8(a), Callister 7e.



Computing HCP Miller- Bravais Directional Indices
(an alternative way):

We confine ourselves to the bravais
parallelopiped in the hexagon: a,-
z a,-Z and determine: (u’,v'w’)

(00011 Here: [1 1 O] - so now apply the
models to create M-B Indices

u:/}g(Zuiwf):/}Q(Z*l—l):/%;—»l

I

I

I
- f:l:rd_j i) V:%(ZV'_UI):%(ZH_D:%_”
SV (e ¥) - o

w=w'=0

a
L/

T

P

Ny

M-B Indices: [1120]
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