- (1)(a) Defind a normed space and Prove that ℓ_2^{κ} is a normed space and also prove that ℓ_2^{κ} is a Banach space.
 - (b) Prove that , If X is a Banach space and Y is a closed subspace in X then Y is a Banach space.
- (2)(a) Prove that: If $T: X \to Y$; X, Y are normed space and T is continuous then T is continuous at the zero element in X.
- (b) Let $T \in L(X)$ where X is an inner product space, prove that if $||Tx|| = ||x|| \ \forall x \in X \ then \ \langle Tx, Ty \rangle = \langle x, y \rangle \ \forall x, y \in X$.
- (3)(a) state the Hahn-Banach theorem and prove that If Y be a subspace of a normed space X and suppose

$$x_0 \in X \text{ satisfying } d = d(x_0, Y) = \inf_{x \in Y} ||x_0 - x|| > 0$$

then there is a bounded linear functional F on X such that

$$||F|| = 1, F(x_0) = d \text{ and } F(x) = 0 \text{ for } x \in Y.$$

- (b) Prove that, $\sigma_p(T) \subset \sigma(T)$.
- (4)(a) Prove that, the inner product space X can be considered as a normed space with the norm $||x|| = \sqrt{\langle x, x \rangle}$; $x \in X$.
 - (b) Prove that, if $T \in B(H)$ and $T_1 = \frac{1}{2}(T + T^*)$, $T_2 = \frac{-i}{2}(T T^*)$ then T_1 and T_2 are self adjoint operators and $T = T_1 + iT_2$.
- (5)(a) Prove that, if X be an inner product space and $x, y \in X$ then $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$.
 - (b) Prove that: If X be a real inner product space and $x, y \in X$ then $\langle x, y \rangle = \frac{1}{4} \| ||x + y||^2 ||x y||^2$.

(مع تمنياتي بالنجاح)