الزمن: ساعتان

المادة: توبولوجي

Answer the following questions:

(Q-1)

(Degree: 25)

Let (R,U) be the usual space, $A \subset R$;

A = Q find:

 A^{O} , A', \overline{A} , ex (A), A^{b} and the smalles base of R and local base at $x \in \mathbb{R}$.

(Q-2):

(Degree: 25)

Let X be a space and A,B \subset X. Prove that:

 $(i)(A \cap B)^0 = A^0 \cap B^0$.

(ii) $\bar{A} = A \cup A'$.

(iii) $A^b \cap A = \phi$ iff A is open.

(Q-3)

(Degree: 20)

Prove that :

(i) $f: X \to Y$ is open iff $f(A^{\circ}) \subset (f(A))^{\circ} \forall A \subset X$.

(ii) $f: X \to Y$ is homeomorphism of $f(A) = \overline{(f(A))} \ \forall A \subset X$.

(iii) $f: X \to Y$ is continuis if $f^{-1}(A^0) \subset [f^{-1}(A)]^{\circ} \forall A \subset Y$.

(Q-4)

(Degree: 20)

- (i) Prove that the space X is T_1 -space iff $\{x\}$ is closed $\forall x \in X$.
- (ii) Prove that every T_4 -space is T_3 -space.
- (iii) Give an example of space T_1 space but not regular and example of space regular but not T_1 space .