الزمن: ساعتان المادة: توبولوجي ## Answer the following questions: (Q-1) (Degree: 25) Let (R,U) be the usual space, $A \subset R$; A = Q find: A^{O} , A', \overline{A} , ex (A), A^{b} and the smalles base of R and local base at $x \in \mathbb{R}$. (Q-2): (Degree: 25) Let X be a space and A,B \subset X. Prove that: $(i)(A \cap B)^0 = A^0 \cap B^0$. (ii) $\bar{A} = A \cup A'$. (iii) $A^b \cap A = \phi$ iff A is open. (Q-3) (Degree: 20) Prove that : (i) $f: X \to Y$ is open iff $f(A^{\circ}) \subset (f(A))^{\circ} \forall A \subset X$. (ii) $f: X \to Y$ is homeomorphism of $f(A) = \overline{(f(A))} \ \forall A \subset X$. (iii) $f: X \to Y$ is continuis if $f^{-1}(A^0) \subset [f^{-1}(A)]^{\circ} \forall A \subset Y$. (Q-4) (Degree: 20) - (i) Prove that the space X is T_1 -space iff $\{x\}$ is closed $\forall x \in X$. - (ii) Prove that every T_4 -space is T_3 -space. - (iii) Give an example of space T_1 space but not regular and example of space regular but not T_1 space .