(1)(a) Find the image of (with drawing):

(i)
$$x^2 - y^2 = a$$
 and $xy = b$ under $w = z^2$

(ii)
$$y > 1$$
 under $w = (1-i)z$

(b) Find
$$\int_{c}^{2} \frac{z^{3}}{z+i} dz$$
 where $c:|z|=2$

- (r)(a) Does the limit: $\lim_{z\to 0} \left[z^2/|z|^2 \right]$ exists?
 - (b) Find $\int_{Z}^{2} dz$ where c:a Segment from 0 to $\left(2+i\frac{\Pi}{2}\right)$
- (r)(a) Prove that: If the limit of a function f at a point exists then it is unique.
- (b) Find $\int \frac{Z^2 \sin \Pi z + \cos^2 \Pi z}{(z-1)(z-2)} dz$ where

(i)
$$c:|z-1|=\frac{1}{2}$$
 (ii) $c:|z|>2$.

(ii)
$$c: |z| > 2$$
.

- (i)(a) Prove that: If $f(z) = u(x,y) + i \lor (x,y)$ and f'(z) exists at a point $z_0 = x_0 + i y_0$ then u_x, u_y, v_x, v_y exists at (x_0, y_0) and satisfy The equations $u_x = \vee_y$ and $u_y = -\vee_x$
- (b) Find the values of z where $e^{z} = -2$ (by Detail)
- (o)(a) Prove that $\lim_{z \to z_0} z^2 = z_0^2$
 - (b) Prove that $f(z) = \frac{\overline{z}}{z}$, $z \neq 0$

Is not continuous at z = 0