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Abstract --  Weak signal detection and localization 
are basic and important problems in radar systems. 
Radar performance can be improved by increasing 
the receiver output signal-to-noise ratio (SNR).  
Localizing the received signal is an important task 
in the detection of signal in noise.  In this paper an 
algorithm is described for extracting and localizing 
an RF radar pulse from a severe noisy background.  
The algorithm combines two powerful tools: the 
wavelet packet analysis and higher-order-statistics 
(HOS).  The use of the proposed technique makes 
detection and localization of RF radar pulses 
possible in very low signal-to-noise ratio 
conditions, even without a prior knowledge of the 
pulse parameters (e.g., its frequency and duration), 
which leads to a reduction of the required 
microwave power or alternatively extending the 
detection range of radar systems.  Two higher-
order-statistics measures were used; in particular 
skewness and kurtosis. Detection and localization 
of the RF radar pulse with a signal-to-noise ratio of 
down to −24 dB can be achieved, leading to a 
pronounced improvement in the performance of the 
radar.  Comparison between the used two HOS 
measures shows a slightly better performance when 
using skewness than when using kurtosis.  In 
addition, using skewness requires lower processing 
time, which is another advantage.  
  
Index Terms -- HOS, Denoising, Wavelet 
Packets, kurtosis, skewness, RF radar 
 
 

1- INTRODUCTION 
 
Pulse radar that uses pulses as the radar signal is 
being used in aviation control, weather forecasting, 
and ships.  The strength of the received signal by 
the radar varies with the distance from radar to the 
target and is also dependent on the target radar 
cross-section.  The detectable radar range is given 

as a function of the SNR of the receiver output 
through the well known radar equation [1],  In 
radar systems, weak signal detection is a basic 
and important problem.  Solution of this problem 
increases the possibility of detecting smaller 
objects from great distances.  Improvement of 
receiver output SNR is traditionally 
accomplished with pulse integration where the 
received signal consists of a number of pulse 
repetition intervals (PRI) before or after 
detection. However, pulse integration needs a 
number of pulses to improve the received SNR.  
For radar with fast scanning feature the required 
number of pulses for one object may not be 
adequate, to perform pulse integration.  Wavelet 
analysis [2] and higher-order statistics [3] are 
two of the most successful tools in the field of 
signal processing in the last twenty years.  We 
propose combining both techniques and show 
how such a combination can improve the quality 
of RF-pulse detection and localization in noisy 
environment.  The problem addressed here 
concerns the denoising and localization of 
received RF radar pulse immersed in noise.  In 
[4] the noise was removed using a non-linear 
time-frequency filter, which is based on the 
discrete windowed Fourier transform.  It is 
known that the wavelet transform gives better 
localization in the time-frequency domain than 
the discrete windowed Fourier transform, [2].  In 
the proposed work we will use the wavelet 
packet transform for denoising the RF radar 
pulses.  Wavelet denoising techniques was 
previously used in electromagnetic waves radar 
[7, 8].  The noise is removed by thresholding the 
wavelet transform coefficients of the received 
RF radar pulses.  Where the threshold was 
calculated based on the estimated value of the 
noise.  Such a selection of a threshold can lead to 
losing the received pulse in very low SNR 
situations.  In this paper the threshold level 
selection is based on the higher-order-statistics 
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(HOS) of the coefficients.  Using a threshold, that 
is based on higher-order-statistics, proved to be 
more efficient than the usual way of wavelet 
thresholding [5, 6], which is based on the estimate 
of the amount of noise, especially at very low 
signal-to-noise ratio conditions.  By combining the 
wavelet packet and higher-order statistics, correct 
detection and localization of the RF radar pulse 
with a SNR ratio of down to −24 dB can be 
achieved, leading to a pronounced improvement in 
the performance of the radar.  The organization of 
the paper will be as follow.  Section 2 will give a 
short introduction to wavelet and wavelet packet 
transform, and will show how to generate the 
wavelet packet coefficients of the received RF 
pulse.  Section 3 will give a short introduction to 
higher order statistics and how to use the properties 
of HOS in threshold selection for signal denoising. 
Section 4 will describe the proposed technique.  
Section 5 shows some simulation results for the 
proposed technique.  Section 6 shows a 
performance comparison between the proposed 
technique and the conventional windowed Fourier 
in localizing the received RF pulse in time domain.  
Section 7 is a conclusion. 
 
2- WAVELET AND WAVELET PACKET 

TRANSFORM 
 

Time-frequency representations are used to 
distribute the energy of a signal in the time-
frequency plane; in such a way that relevant 
information can be extracted to achieve good 
detection.  The results generally depend on the 
method used as a time-frequency representation. 
For example, discrete windowed Fourier transform 
tile the time frequency plane in regular cells all of 
which have the same uncertainties.  Discrete 
wavelet bases tile the time-frequency plane more 
naturally.  A low frequency needs to be observed 
for a long time to be correctly estimated whereas a 
high frequency can rapidly change at any time.  
Hence, time-frequency localization naturally 
depends on the ‘observation scale’.  It is possible, 
using adapted wavelet transform, to obtain adapted 
tiling in the time-frequency plane, which is 
automatically generated based on the signal 
observation.  On the other hand, the time-frequency 
plane tiling, using wavelet packet transform, 
corresponds to a complete set of admissible 
wavelets constituting a Hilbert space.  The signal is 
projected on each element of this space producing 
decomposition coefficients.  Figure 1 shows the 
tiling of the time frequency plane for windowed 
Fourier transform (a), wavelet transform (b), and 

wavelet packet transform (c). The difference 
between wavelet transform and wavelet packet 
transform will be indicated in the next 
subsections.  In addition, the Short Time Fourier 
Transform (STFT) can provide a time frequency 
representation of the signal.  However, STFT 
does not have an inverse.  In other words; the 
original signal cannot be reconstructed from the 
time-frequency map. 
 
2.1. Wavelet Transform 
 
Wavelet analysis is perhaps best viewed in the 
context of multiresolution analysis as developed 
by Malat [9].  There are two functions to be 
consider in such an analysis: the scaling 
function, φj,k(t) = 2j/2φ(2jt−k), and the mother 
wavelet, ψj,k(t) = 2j/2ψ(2jt− k), where j and k are 
integers representing the scale factor and the 
translation factor respectively.  In the time-scale 
(or time-frequency) joint representation the 
horizontal stripes of the wavelet transform 
coefficients are the correlations between the 
signal and the wavelets at given scale j.  When 
the scale is small the wavelet is concentrated in 
time, and the wavelet analysis has a detailed 
view of the signal. When the scale increases the 
wavelet spreads out in time, and the wavelet 
analysis takes into account the long-time 
behavior of the signal.  Any function f(t) in 
general can be represented as 

)(),()()()( ,
0

00
tkjdtkatf kj

kjj
kj

k
j ψφ ∑∑∑

∞

∞−=

∞

=

∞

∞−=

+= . (1) 

 
The first summation in (1) provides us with a 
coarse approximation to f(t).  The second 
summation for each j provides finer details.  In 
practice, the wavelet approximation coefficients 
aj0(k) and the detail coefficients d(j,k) are 
computed using Mallat’s fast algorithm [9] 
which involves the following filtering 
operations: 
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where h(n) and g(n) are referred to as the scaling 
filter and wavelet filter, respectively.  Equations 
(2) and (3) show how the discrete wavelet 
transform (DWT) is performed: By convolving 
the coefficients at scale j with the time reversed 
filter coefficients h(−n) and g(−n) and then 
down sampling to get the coefficients at scale 
j−1. 



  

 
 
Figure 1. Tiling the time-frequency plane (a) Windowed Fourier transform (b) Wavelet transform (c) 
Wavelet packet transform 
.
 

 
 
Figure 2. Filter bank implementation of discrete 
wavelet decomposition. 
 

 
 
Figure 3. Filter bank implementation of discrete 
wavelet reconstruction. 
 
Figures 2 and 3 show a filter bank implementation 
for the decomposition and reconstruction of the 
wavelet transform.  These filter structures are 
known in terms of subband coding as 2-band 
perfect reconstruction quadrature mirror filters (PR 
QMF).  The PR QMF subband coding scheme 
depicted in Figs. 2 and 3 adhere to a dyadic tree 
structure, which splits only the lower half of the 
signal spectrum at each successive level.  When the 
subband coding tree has been fully traversed, the 
approximation coefficients are produced at the 
final tree split, with the detail coefficients being 
produced at each tree split.  A thorough treatment 
of wavelet decompositions as they relate to 
subband coding can be found in [10]. 
 
 

 
2.2. Wavelet Packet Transform 
 
The wavelet packet transform has a number of 
applications.  One of these involves the calculation 
of the best basis, which is a minimal representation 
of the data relative to a particular cost function.  
The best basis is used in applications that include 
noise reduction and in data compression.  One step 
in the wavelet transform calculates a low pass 
(scaling function) result and a high pass (wavelet 
function) result.  The low pass result is a smoother 
version of the original signal.  The low pass result 
recursively becomes the input to the next wavelet 
step, which calculates another low and high pass 
result, until only a single low pass (20) result is 
calculated.  The wavelet transform applies the 
wavelet transform step to the low pass result. The 
wavelet packet transform applies the transform step 
to both the low pass and the high pass result.   
Assume that the observed data x(n) is given by: 
 

x(n) = z(n) + e(n)      (4) 
 

where z(n) is the received RF radar pulse, e(n) is a 
white Gaussian noise and n = 1, 2, . . . , N.  The 
two-dimensional wavelet packet transform gives 
the two-dimensional wavelet packet coefficients as 
follow: 
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where  ,  and  are 
the wavelet packet coefficients of x, t and e 
respectively, j = 1, 2, . . . , J while J is the number 
of decomposition levels, s = 1, 2, . . . , 2j , is the 
number of scales and  i = 1, 2, . . . , M, with M = 
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N/2j and N is the length of the signal vector.  As an 
example, Fig. 4(a) shows the received signal x(n) 
in the time domain with N = 4096 sample, SNR = 
−3 dB.  Figure 4(b) shows the wavelet packet 
coefficients of x(n),  , using Daubechies 
wavelet [11] of order 4 and number of levels J = 4. 

)(, iWP x
sJ

The order of the Daubechies wavelet controls the 
number of vanishing moments, which is related to 
the regularity of the wavelet.  Increasing the order 
of the Daubechies wavelet increases its regularity. 
On the other hand this will reduce the localization 
of the wavelet.  Consequently, a tradeoff between 
the regularity and the localization of the wavelet 
should take place.  Daubechies wavelets of order 4, 
8 and 16 have been tested in different situations 
and the order which results in the best results has 
been chosen. 
 
2.3. Wavelet and Wavelet Packet Denoising 
 
The concept of denoising in wavelet and wavelet 
packet transform is the same.  Donoho [12] used 
the same approach to wavelet-based denoising.  
The idea is that only large wavelet coefficients 
contribute to the signal, and hence to obtain the 
estimated value of z one needs to keep only those 
coefficients whose magnitudes are greater than a 
certain hard threshold with value λ.  In recognizing 
that each wavelet coefficient contains a signal and 
noise portion, it is desirable to try removing the 
noisy portion. 
 

 
 
Figure 4. (a) The received noisy radar pulse x(n), 
SNR = −3 dB. (b) The wavelet packet coefficients 
of x(n), J = 4. 
 
Soft thresholding like hard thresholding, aim to 
meet this objective by keeping only those 
coefficients whose magnitudes are greater than a 
certain level λ.  However, the remaining 
coefficients are shrunk towards zero by an amount 

λ, hence; soft thresholding is often referred to in 
wavelet literature as wavelet shrinkage.  In 
applying wavelet thresholding the choice of λ is 
critical.  Choosing too large threshold results in 
over smoothing, whereas choosing too small 
threshold results in noisy estimates.  In previous 
works of wavelet denoising the selection of the 
threshold λ is based on an estimate for the amount 
of noise in the wavelet coefficients.  Applying such  
technique in very low SNR situation can lead to 
completely losing the signal, which is hidden in 
noise.  In this paper a new technique for denoising 
based on wavelet packet transform is presented.   
The RF radar pulse signal can be extracted by 
thersholding the wavelet packet transform 
coefficients.  A denoising procedure, which is 
based on setting Gaussian coefficients (of the 
wavelet packet transform of the received signal) to 
zero, is performed.  A denoised signal is then 
reconstructed from the retained coefficients.  The 
problem becomes now how to get a Gaussianity 
measure.  Higher-order-statistics are traditionally 
used to accomplish this task. 
 
3- HIGHER ORDER STATISTICS 
 
Dealing with non-Gaussian random processes, the 
notions of higher order moments, cumulants, and 
their polyspectra called higher order statistics are 
of paramount importance in statistical signal 
processing.  If x(n); n = 0;±1; ±2; ±3,  is a real 
stationary discrete time signal and its moments up 
to order p exist, then its pth order moment function 
is given by 

{ })(....)()(),...,,( 11121 −− ++= ppp nxnxnxEm τττττ (6) 
and depends only on the time differences 

121 ,...,, −pτττ  τi = 0;±1; ±2; ±3; for all i. Here 
E{.} denotes statistical expectation and for a 
deterministic signal, it is replaced by a time 
summation over all time samples (for energy 
signals) or time averaging (for power signals).  If 
in addition the signal has zero mean, then its 
cumulant functions (up to order four) are given by 
second-order cumulant: 
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third-order cumulant: 
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fourth-order cumulant: 
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By setting all the lags to zero in the above umulant 
expressions, we obtain the variance , skewness , 
and kurtosis respectively, 



 
Variance: 
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When estimating higher-order statistics from finite 
data records, the variance of the estimators is 
reduced by normalizing the input data to have a 
unity variance, prior to computing the estimators. 
Equivalently, the third order statistics are 
normalized by the appropriate powers of the data 
variance, thus we define the normalized skewness: 
 

[ ]
{ }
{ }[ ] 5.12

3

5.1
2

3

)(
)(

)0(
)0,0(

nxE
nxE

C
C

S ==        (7) 

and the normalized kurtosis: 
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One of the key motivations behind the use of 
cumulants in signal processing problems is their 
ability to suppress additive Gaussian noise [2,3]. 
This ability of noise suppression is based on the 
fact that the nth order cumulants of a Gaussian 
signal, Cumn[x], are equal to zero for n > 2.   
In the case under study the noise samples are 
Gaussian distributed when observed for a 
sufficiently long time.  On the other hand the signal 
samples are not Gaussian.  We will apply the 
Gaussianity measure for the wavelet packet 
coefficients of the received signal, .  
The presence of the signal will give non-Gaussian 
coefficients at some frequency bands where the 
radar pulse exists.  On the other hand, Gaussian 
coefficients will represent noise only.  The wavelet 
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coefficients of Gaussian noise clearly remain 
Gaussian when applying the linear wavelet 
transform [6].  A good candidates from the higher 
order cumulants are both skewness and kurtosis, 
which is the normalized version of the third and the 
fourth-order cumulants, respectively [2,3].  The 
Gaussian process has skewness and kurtosis values 
that theoretically equal to zero.  The third and 
fourth-order cumulants are computed by a 
statistical expectation (assuming zero mean of the 
wavelet packet coefficients).  One should consider 
a normalized measure because the Gaussianity 
measure must not depend on the signal energy at 
each frequency band.  

The kurtosis (for example) is defined as  K4(WPJ,s) 
= Cum4(WPJ,s)/(E[WP2

J,s])2.  In practice we have a 
limited number of data samples, so we are not able 
to have an exact value of either the skewness or the 
kurtosis.  Instead we have an estimate value using 
time or samples average.  The estimation of the 
skewness and kurtosis can be calculated as 
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The estimated value is allowed to exist in a 
predetermined confidence interval, which is 
conditioned by the probability properties of the 
estimator.  Normally, the confidence interval is 
calculated when the probability density is known.  
On the other hand, the probability density function 
of the higher order cumulants of a Gaussian 
sequence is not known analytically.  A partial 
solution to this problem is to use the Bienayme-
Tchebychev inequality, which makes it possible to 
frame our estimate of the estimator and is 
expressed  as [13]: 
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where L is the quantity to be estimated. 
A fixed confidence percentage corresponds to a 
value of the factor a = 1/√(1-α) , where α is the 
authorized confidence percentage value.  Given a 
desired predetermined percentage, the estimator 
can be framed between two values depending on 
the first statistics of the estimator.  In the case 
where the M coefficients WPJ,s are white and 
Gaussian, bias and variance of the kurtosis 
estimator when computed using (10) are given by 
[6, 14]: 
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The Bienyme-Tchebychev inequality allows a 
Gaussian estimator to move between 
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with an α authorized confidence percentage value. 
The simple test for Gaussianity measure is that: 
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Figure 5 shows the Gaussianity measure for the 
example of Fig. 4.  Figure 5(a) is the wavelet 
packet coefficients and Fig. 5(b) shows the 
estimated kurtosis of the coefficients for each 
scale.  The threshold is calculated using α = 90%, 
which was numerically found to be optimum).  
From Fig. 5 we notice that the coefficients at scale 
2,4 belong to the signal., whereas the coefficients 
of the other scales belong to the noise. 
 

 
 
Figure 5. (a) The wavelet packet of x(n). (b) The 
kurtosis of the wavelet packet. 
 
The skewness estimator varies between 
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The variance of the skewness is calculated [13], in 
the case where the M coefficients WPe

J,s (i) are 
white and Gaussian, and is given by 
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where σ2  is the variance of the M noise 
coefficients.  The variance of the skewness 
estimator (for σ =1) is MS 6)var(
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simple test for Gaussianity measure is that the 
skewness varies between 
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The skewness has been framed with 90 % of 
confidence by the following inequality [15, 16]: 
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4- The Denoising Algorithm 
 
This algorithm is applied to denoising a received 
RF radar pulses.  The algorithm is divided into two 
stages to decrease the computation complexity and 
hence increases the processing speed. The first 
stage is essential.  The second stage is used for 
further improvement in SNR if necessary.   The 
steps of the first stage of the algorithm are as listed 
below: 
1. Compute the wavelet packet coefficients of the 
received signal  at level J, scale s = 1, 2, 
. . . , 2

)(, iWPx
sj

J . 
2. Estimate the skewness or the kurtosis for the 
wavelet packet coefficients of each scale using (9) 
and (10), (force the mean value of the coefficients 
at each scale to be zero). 
3. Apply the Gaussianity test of (18) or (14). 
4. Set the Gaussian coefficients to zero (the 
coefficients that have skewness or kurtosis value in 
the interval) 
5. Count the number of the remaining non-
Gaussian scales. If the number of the non-Gaussian 
scales is greeter than one apply a hard threshold to 
the remaining non-Gaussian coefficients scales. 
The threshold value is calculated using the 
following relation: )log(2 Nss σλ =  where σs 
= Median[|WP P

x
J,s|]/0.6745, is the estimate of the 

noise at scale s [2].  The purpose of this step is to 
further improve the SNR. 
Otherwise go to the next step. 
6. Reconstruct the signal from the retained 
coefficients. 
 
The number of decomposition levels J defines the 
finest bandwidth available for decomposition in the 
same time it also determines the number of 
coefficients within each band. Increasing the value 
of this parameter allows selecting and/or 
discriminating the frequency bands more precisely. 
A high value of J means however less number of 
coefficients within each band.   This leads to 
insufficient estimation reliability of the statistic 
(skewness or kurtosis), which can lead to incorrect 
decision.  The values of J of 4, 5, 6 and 7 have 
been tested in different situations and a tradeoff 
between the bandwidth precision and estimation 



reliability has been made.  Figure 6 shows the 
result of the first and second stage of the algorithm 
for the example in Fig. 4. 
 

 
Figure 6. (a) The clean RF radar pulse z(n) (b) The 
received noisy RF radar pulse x(n), SNR = −3 dB 
(c) The result of the first stage (d) The result of the 
second stage (step 5). 
 
5- Simulation and Results 
 
The denoising of the received RF radar pulse is 
simulated in the presence of white Gaussian noise. 
The effect of signal parameter changes on the 
algorithm has been investigated.  These parameters 
include the SNR and pulse repetition period (PRP) 
of the signal.  The SNR is defined as the ratio of 
the signal power to the noise power in the entire 
period.  Figure 7 shows another example for 
denoising the RF radar pulse at SNR = −20 dB, N 
= 131072, which is equivalent to increasing the 
PRP.  Using Daubechies wavelet of order 16 and 
number of levels J = 7.  The threshold is calculated 
using α = 90%.  From Fig. 7 it is clear that our 
proposed technique is still able to detect the radar 
pulse at SNR = −20 dB.  As a measure for the 
quality of the algorithm, the Root Mean Square 
Error (RMSE)is calculated between the clean and 
the denoised signal.  We made a comparison 
between our algorithm and the wavelet denoising 
technique available in MATLAB software using 
soft threshold with ‘heursure’ threshold selection. 
Figure 8 shows a comparison for the RMSE 
between our proposed techniques (solid line) for 
both the skewness and the kurtosis and that of the 
MATLAB (dashed line) with the same number of 
decomposition levels and the same mother wavelet 
(Daubechies order 16) for both techniques. It is 
clear from Fig. 8 that our proposed technique gives 
better results. The proposed technique gives very 
low RMSE value (maximum 0.02 for kurtosis and 

0.017 for skewness at SNR = −20 dB).  Where the 
wavelet denoising technique using ‘heursure’ 
threshold selection gives RMSE = 1.6 at the same 
SNR. 
 

 
 
Figure 7. (a) Clean signal (b) Noisy signal SNR = 
−20 dB (c) denoised signal after the first stage (d) 
denoised signal after the second stage (step 5) 
 

.Figure 8. RMSE as a function in SNR for the 
proposed technique and the wavelet denoising in 
MATLAB. 
 
6- Pulse Localization 
 
In denoising the RF radar pulse, one of the 
important tasks is the localization of the 
received pulse in time domain.  This means 
that our job is not only to see a clean signal in 
time domain but also undistorted information 
of the pulse (pulse width and position). 
Improper localization of the pulse in time 



domain will lead to an error in the radar 
ranging.  As we mentioned in the previous 
sections that the wavelet transform gives 
better localization in the time-frequency 
domain than the discrete windowed Fourier 
transform.  To confirm the ability of the 
proposed technique in localizing the received 
RF pulse in time domain we will present a 
comparison between the proposed denoising 
technique and denoising using windowed 
Fourier transform.  Figures 9 and 10 show a 
comparison between the denoised signals 
using the two techniques.  Figure 9 shows the 
result using the proposed technique and Fig. 
10 shows the result using windowed Fourier 
transform.  In each figure the clean signal 
(upper panel), noisy signal (middle panel), and 
the denoised signal (lower panel) was 
presented.  It is clear from Fig. 10 that the 
windowed Fourier transform is not able to 
localize the signal in time domain contrary to .  
the wavelet packet transform shown in Fig. 9. 
 

 
 
Figure 9. Result for signal denoising using wavelet 
packet Transform. 
 
However, comparison also shows that the 
windowed Fourier transform for the RF pulse 
is able to well localize the signal in the 
frequency domain in comparison with the 
wavelet packet transform.  The reason for this 
is that the sinusoidal kernel of the Fourier 
transform is highly correlated with the carrier 
frequency of the received RF pulse.  At the 
end we can add a shaping circuit to restore the 
pulse completely.  The carrier sinusoidal 

frequency could be easily determined.  So, 
different parameters can be well estimated 
within this severe noisy environment. 
 

 
 
Figure 10. Result for signal denoising using 
windowed Fourier transform. 
 
7- Conclusion 
 
A denoising algorithm for RF radar pulses has been 
described.  The proposed algorithm combines two 
powerful tools; the wavelet packet transform and 
higher-order-statistics.  Namely, both kurtosis and 
skewness were used and compared.  The proposed 
algorithm is able to detect and well localize RF 
radar pulses without a prior knowledge of the pulse 
parameters (e.g., its frequency and duration).  Also, 
we can easily estimate these parameter values.  The 
proposed algorithm has been tested for SNR down 
to −24 dB and proved to work successfully.  
Skewness shows a slightly better performance than 
kurtosis.  In addition, skewness calculation is less 
complex than the kurtosis calculation.  Using such 
a technique in electromagnetic wave radar will lead 
to a reduction of the required microwave power 
supplied to the radar or extending the radar 
detection range. 
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