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Abstract 
 
 The recent emergence of the discrete fractional Fourier transform (DFRFT) has caused a revived 

interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F with the objective of 

generating orthonormal Hermite-Gaussian-like eigenvectors. The Grünbaum tridiagonal matrix T – 

which commutes with matrix F – has only one repeated eigenvalue with multiplicity two and simple 

remaining eigenvalues. A detailed eigendecomposition of matrix T is performed with the objective of 

deriving two orthonormal eigenvectors – common to both the F and T matrices – pertaining to the 

repeated eigenvalue of T. The nearly tridiagonal matrix S first introduced by Dickinson and Steiglitz 

and later studied by Candan et al. – which commutes with matrix F – is rigorously proved to reduce to 

a 2 x 2 block diagonal form by means of a similarity transformation defined in terms of an involutary 

matrix P. Moreover explicit expressions are derived for the elements of the two tridiagonal 

submatrices forming the two diagonal blocks in order to circumvent the need for performing two 

matrix multiplications. Although matrix T has the merit of being tridiagonal and does not need the 

tridiagonalization step as matrix S, the simulation results show that the eigenvectors of matrix S better 

approximate samples of the Hermite-Gaussian functions than those of matrix T and moreover they 

have a shorter computation time due to the block diagonalization result. Consequently they can serve 

as a better basis for developing the DFRFT. 

 

Keywords: Discrete FRactional Fourier Transform (DFRFT), DFT matrix, Grünbaum tridiagonal 

matrix, Dickinson-Steiglitz nearly tridiagonal matrix, circular flip matrix, Hermite-Gaussian-like 

eigenvectors. 

 

1. Introduction 

 The recent appearance of the discrete fractional Fourier transform (DFRFT) resulted in a revived 

interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F since having 
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orthonormal eigenvectors of that matrix is a necessary condition for the DFRFT to have the desirable 

index additivity property. Moreover having eigenvectors that approximate samples of the Hermite-

Gaussian functions is desirable in order for the DFRFT to approximate its continuous-time counterpart 

namely the continuous fractional Fourier transform (FRFT) since the Hermite-Gaussian functions are 

the eigenfunctions of both the classical Fourier transform and the FRFT [1]. In their pioneering work, 

McClellan and Parks arrived at the multiplicities of the eigenvalues of matrix F and developed an 

analytical method for generating a complete set of independent eigenvectors [2]. Unfortunately this set 

cannot be taken as a basis for defining the DFRFT due to its nonorthogonality. 

 Santhanam and McClellan were the first to try to develop a definition for the DFRFT through the 

eigendecomposition of matrix F [3]. Unfortunately this definition was later shown – by Pei et al. [4,5] 

– not to be a fully-fledged one since it is inherently the sum of four terms; namely the time-domain 

signal and its DFT together with their circularly reflected versions. 

 Since matrix F has only four distinct eigenvalues, the dimensions of its eigenspaces are large and a 

direct computation of the eigenvectors will involve a highly degenerate problem. Grünbaum 

discovered a real symmetric tridiagonal matrix T which commutes with matrix F [6]. This matrix has 

only one eigenvalue of multiplicity two and simple remaining eigenvalues. Consequently the 

eigenvectors of T corresponding to its simple eigenvalues are also eigenvectors of F by virtue of the 

commutation of both matrices. Unfortunately not every set of two linearly independent eigenvectors of 

T pertaining to its repeated eigenvalue will be eigenvectors of F. Clary and Mugler developed a family 

of Grünbaum matrices which commute with a corresponding family of shifted Fourier matrices [7]. 

Santhanam and Vargas-Rubio picked a particular version of Grünbaum matrix which commutes with 

the centered DFT matrix because this particular matrix is unreduced and consequently all its 

eigenvalues are simple [8]. Vargas and Santhanam used the orthonormal eigenvectors of this matrix as 

a basis for developing the centered discrete fractional Fourier transform (CDFRFT) [8-11]. 

 Along a completely different line of investigation, Dickinson and Steiglitz [12] arrived at a real 

symmetric nearly tridiagonal matrix S which commutes with matrix F and proved that the maximum 

algebraic multiplicity of any of its eigenvalues can be two; which occurs only when the order N of the 

matrix is a multiple of 4. Although a common set of eigenvectors of S and F always exists, the case of 

a double eigenvalue of S requires special attention since a set of two corresponding eigenvectors – 

obtained by a general eigenanalysis software package – will generally neither be eigenvectors of F nor 

even be orthogonal. Candan, Kutay and Ozaktas [13,14] applied a similarity transformation defined in 
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terms of a unitary matrix P to matrix4 S and argued that 1−PSP  is a 2 x 2 block diagonal matrix and 

that the two diagonal blocks are unreduced tridiagonal matrices. They started their analysis by 

discretizing the second order differential equation satisfied by the Hermite-Gaussian functions and 

obtained a second order difference equation – called Harper's equation – whose coefficients are 

periodic with period N implying the existence of periodic solutions with the same period. 

Interestingly, one period of each solution forms the elements of an eigenvector of matrix S. The real-

valued periodic particular solutions of Harper's equation are called Harper functions [15,16]. The 

implication is that the eigenvectors of S are Hermite-Gaussian-like. Pursuing it further, Pei et al. 

viewed the orthonormal eigenvectors of S as only initial ones and generated final ones which better 

approximate the Hermite-Gaussian functions by using either the orthogonal procrustes algorithm 

(OPA) or the Gram-Schmidt algorithm (GSA) [4]. Hanna, Seif and Ahmed proved that those final 

eigenvectors are invariant under the change of the initial ones [17].  

 A digital method for computing the continuous FRFT – without using the notion of the DFRFT – 

was proposed in [18]; however this method does not preserve the index additivity property. The 

definition of the DFRFT to be adopted here is the one first proposed by Pei and Yeh [19] and later 

consolidated by Candan et al. [13,14] and by Pei et al. [4,5]. Other developments of the fractional 

Fourier transforms were made by Cariolaro et al. [20-22]. 

 One main objective of the present paper is to perform a detailed eigenanalysis of the original 

Grünbaum matrix T which commutes with the DFT matrix F rather than the simple version of the 

Grünbaum matrix which commutes with the centered DFT matrix. More specifically two orthonormal 

eigenvectors common to both T and F – which pertain to the only eigenvalue of T of multiplicity two 

– will be analytically derived. The complete set of common orthonormal eigenvectors will be arranged 

according to the number of their zero crossings in ascending order in order to be compared with 

samples of the Hermite-Gaussian functions. 

 A second objective is to present a rigorous development and arrive at explicit expressions for some 

of the results just argued by Candan et al. [13] regarding the eigenanalysis of the nearly tridiagonal 

matrix S. More specifically the matrix 1−PSP  will be rigorously proved to be block diagonal and 

explicit expressions will be derived for the elements of the two tridiagonal submatrices (forming the 

two diagonal blocks) in the general case of a matrix S of any order N which was not done in [13,14]. 

The main advantage of having those explicit forms is the speeding up of the generation of the 

                                                 
4 Strictly speaking, denoting matrix S  in the work of Dickinson et. al. [12] and Pei et. al. [4] by 1S  and matrix S  in the 

work of Candan et. al. [13] by 2S , the two matrices are related by ISS 12 4−= . Therefore 1S  and 2S  have the same 

eigenvectors. In the present paper matrix S in (55) is actually matrix 2S  of [13]. 
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desirable eigenvectors of matrix S by avoiding the actual performance of the two matrix 

multiplications appearing in the similarity transformed matrix 1−PSP . 

 A third objective is to perform a simulation study in order to compare the behavior of the 

eigenvectors of the two matrices T and S and the two DFRFT defined based on those eigenvectors. 

Although matrix T has the merit of being tridiagonal rather than nearly tridiagonal as matrix S, the 

simulation results will show that the DFRFT based on the eigenvectors of S better approximates its 

continuous-time counterpart than that based on the eigenvectors of T. Moreover the computation time 

in the case of matrix S – utilizing the block diagonalization results – will be shown to be shorter than 

that in the case of matrix T. 

 After presenting some general properties of the DFT matrix in section 2, an eigenanalysis of 

Grünbaum tridiagonal matrix T will be performed in section 3. Some results regarding the 

tridiagonalization and eigendecomposition of Dickinson-Steiglitz nearly tridiagonal matrix S will be 

rigorously derived in section 4. Finally a comparative simulation study of the different techniques for 

generating eigenvectors of the DFT matrix – especially those based on the matrices T and S – will be 

carried out in section 5. 

 

2. General Properties of the DFT Matrix 

 The discrete Fourier transform matrix ( )nmf ,=F  of order N is defined by: 

( )( ) NnmnmW
N

nmf ,,1, ,          111
, L=−−=           where          ⎟

⎠
⎞

⎜
⎝
⎛
−=

N
jW

π2
exp . (1) 

Matrix F  can be expressed in partitioned form as5: 

⎟
⎠
⎞

⎜
⎝
⎛

=
Gµ

µF
T

N

11  (2) 

where µ  is the summing vector:  

( )T111 L=µ   (3) 

and ( )
nm

g
,

=G  is a square matrix of order ( )1−N  whose elements are given by: 

1,,1, ,          , −== NnmWg mn
nm L . (4) 

Lemma 1: Matrix G  defined by (4) is centrosymmetric, i.e. GJGJ =  where J  is the contra-identity 

matrix defined by: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

1

1
NJ  . (5) 

                                                 
5 The superscripts T , * , H respectively denote the transpose, the complex conjugate and the Hermitian transpose (i.e. the complex 
conjugate transpose). 
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It can be shown that [23, p. 351]: 

⎟
⎠
⎞⎜

⎝
⎛=≡

J
FΓ

0
012 . (6) 

It follows from the above equation and the fact that IJ =2  that: 

IFΓ == 42 . (7) 

Definition 1: Vector y  is a circular flip of vector x  if Γxy = . More specifically, if vectors x  and y  are 

expressed as: ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

==
y

y
x

x ~
1   and   ~

1 yx - where x~  denotes the subvector of all elements of x  apart from 

the first one – then: 11 xy =  and xJ y ~~ = . 

Based on this definition, matrix Γ  is called the circular flip matrix. 

Definition 2: Vector x  is circularly even if xΓx = . More specifically, 1x  is unrestricted and xxJ ~~ = . 

Definition 3: Vector x  is circularly odd if xΓx −= . More specifically, 01 =x  and xxJ ~~ −= . One should 

notice that if the length N of x  is even, then the middle element of x~  in a circularly odd vector x  will 

vanish. 

Lemma 2: If vectors u  and v  are respectively circularly even and odd, then: 

a) u  and v  are orthogonal 

b) Fu  and Fv  are respectively circularly even and odd. 

 

3. An Eigenanalysis of the Grünbaum Tridiagonal Matrix 

 The nice properties of the eigenvectors of Grünbaum matrix T will be first covered in order to set 

the stage for analytically deriving two orthonormal eigenvectors common to both T and F matrices 

and pertaining to the only eigenvalue of T of multiplicity two. Finally all N orthonormal eigenvectors 

of T will be arranged in ascending order according to the number of their zero crossings. 

 

3.1. Preliminaries 

 The Grünbaum tridiagonal matrix of order N can be expressed as the block diagonal matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

2T0
0

T 1T
 (8) 

where 1T  is the scalar 0 and 2T  is a tridiagonal matrix of order ( )1−N  given by: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−

12

2

2

221

11

NN

N

αβ
β

β
βαβ

βα

OO

OO2T  (9) 



 6

with 

1,,1 ,     2 2
1 −== Nmsc mm Lα  (10) 

2,1 ,      1 −=−= + Nmss mmm Lβ  (11) 

( ) mNmsm ∀=        /sin π  (12) 

( )Nc /cos1 π= . (13) 

Since mss mmN ∀=−      , it follows that mmN αα =−  and mmN ββ =−−1 . Consequently the two vectors: 

[ ]TN 11 −= αα Lα  (14) 

[ ]TN 21 −= ββ Lβ  (15) 

are even symmetric, i.e. 

βJβαJα 2N1N −− ==      ,     `  (16) 

where mJ  is the contra-identity matrix of order m. An examination of (9) in the light of (16) shows 

that 2T  can be expressed as 

[ ]12 hJhJhJhhhT 1N1N31N3212 −−−= L  (17) 

where 1,1 ,   −= Nm Lmh  are the columns of 2T . Consequently 2T  can be compactly expressed as 

( )[ ]
[ ]⎩
⎨
⎧

=
−−

−−
even is N if      
odd is N if                 

. 10.5N1N5N0

1N0.51N
2 HJJhH

HJJH
T  (18) 

where 

[ ]
[ ]⎩
⎨
⎧

=
−

−

even is N if       
odd is N if      

.

)(.

15N021

1N5021

hhh
hhh

H
L

L
 (19) 

One should observe that 5N01N5N0 hJh .. −=  if N is even. 

Lemma 3: Matrix 2T  is centrosymmetric, i.e., 

21N21N TJTJ =−− . (20) 

 

3.2. Properties of the Eigenvectors and Eigenvalues 

 Since matrix T  is real and symmetric, all its eigenvalues are real and one can select its 

eigenvectors to be real. The same applies to matrix 2T . Equations (9), (11) and (12) show that all 

elements on the first upper (or lower) diagonal of 2T  are nonzero, i.e. 2T  is an unreduced matrix. 

Consequently all eigenvalues of 2T  are distinct [24]. It follows that any complete set of (N-1) 

eigenvectors of 2T  is always orthogonal. Actually it can be taken to be orthonormal. 

Lemma 4: All unity norm real eigenvectors of matrix 2T  are either even or odd symmetric, i.e. if x  is 

an eigenvector of 2T , then 
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xJx  ±= . (21) 

Proof: From xxT2  λ=  and the fact that IJ 2 =  one gets ( )( ) ( )JxJxJJT2 λ=  and by virtue of (20) one 

gets ( ) ( )JxJxT2  λ= . The distinctness of the eigenvalues of 2T  implies that xJx  γ=  where γ  is a 

real nonzero scalar. Since the eigenvectors x  and Jx  are unity norm, one concludes that 1 ±=γ  and 

(21) follows immediately. 

  (Q.E.D.) 

 The block diagonal structure of matrix T  defined by (8) and the scalar nature of 1T  imply that if 

2M  is a modal matrix of 2T , then the corresponding modal matrix )1(M  of T  is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2M0
0

M
1)1( . (22) 

Obviously, the first column of )1(M  is circularly even and the remaining columns are either circularly 

even or odd depending on the corresponding columns of 2M  being even or odd symmetric 

respectively. The above equation also shows that the unitarity of 2M  implies the unitarity of )1(M . 

 

Lemma 5: The eigenvalues of matrix T  lie in the half closed interval )4,0[  for all finite values of the 

order N. 

Proof: See Appendix A. 

 

3.3. Eigenvectors Pertaining to the Repeated Eigenvalue 

The following fact is taken from [6]: 

Fact: 0=λ  is the only repeated eigenvalue of matrix6 T . It has multiplicity 2 and the two 

corresponding orthonormal eigenvectors of T can be simply taken as  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= µx

0
x 21

1
1
0

     and     
1

N
 (23) 

where µ  is the summing vector (3) of dimension (N-1). (Actually 0=λ  is an eigenvalue of both 1T  

and 2T  in (8)). 

 Unfortunately Grünbaum [6] mistakenly took 1x  and 2x  as eigenvectors of the DFT matrix F of 

(2) which commutes with T although it is straightforward to show that 1x  and 2x  are not eigenvectors 

of F. The objective now is to find the two eigenvectors common to both T  and F which correspond to 

                                                 
6 Denoting the two T matrices in [6] by aT  and bT  where ( ) ( )( )ITT ab −= NN /cos/sin2 2 ππ , it is obvious that 

aT  and bT  have the same eigenvectors and that the eigenvalue 1=λ  of aT  corresponds to the eigenvalue 0=λ  of 

bT . In the present paper matrix T of (8) is actually matrix ( )bT−  in [6]. 
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the eigenvalue 0=λ  of T . The approach to be followed is that delineated in [25, pp. 52-54] and is 

summarized in the following steps: 

1. Define matrix X  as 

      [ ]21 xxX = . (24) 

2. Find matrix Y  such that 

      XYFX = . (25) 

3. Find the modal decomposition of the square matrix Y  of order 2 as7 

      1ZZY −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
0
µ

µ
. (26) 

4. Compute XZ ; the two eigenvectors common to both T and F and pertaining to the repeated 

eigenvalue 0=λ  of T are given by the columns of XZ  and the two corresponding 

eigenvalues of F are 1µ  and 2µ . 

 From (23), one gets 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
= µ0X

1
1
01

N
. (27) 

 By exploiting the orthonormality of the columns of X, one can directly solve (25) for Y to get 

FXXY H= . (28) 

 By substituting (2) and (27) in the above formula, one gets 

( ) ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−

−
= GµµY T

N
N

N

N 1
11

111 . (29) 

 Using (3) and (4), one obtains 

∑∑
−

=

−

=

=
1

1

1

1

N

m

N

n

mnT WGµµ . (30) 

 Using (1), it can be shown that 

1,,1     ,     1
1

1
−=−=∑

−

=

NmW
N

n

mn L . (31) 

 By virtue of the above two equations, (29) reduces to 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
−

=
11

111
N

N
N

Y . (32) 

 The two eigenvalues of the above real symmetric matrix are 11 =µ  and 12 −=µ  and the 

corresponding two orthogonal eigenvectors are 

                                                 
7 The scalars 1µ  and 2µ  in (26) should not be confused with vector µ  in (3). 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

=
1
1

N
N

1z      ,     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
−

=
1

1
2 N

Nz . (33) 

Forming matrix ( )21 zzZ =  and using (27) and (33), one gets 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−+

=
µµ

XZ 11 NN . (34) 

 The orthonormality of the columns of X and the orthogonality of the columns of Z imply the 

orthogonality of the columns of XZ . By normalizing the two columns of (34) one gets the two 

orthonormal eigenvectors common to both T and F and corresponding to the repeated eigenvalue 

0=λ  of T and the two eigenvalues 11 =µ  and 12 −=µ  of F. They are given respectively by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

+
=

µ
w1

1

22

1 N

NN
     ,     ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

−
=

µ
w 1

22

1
2

N

NN
. (35) 

 As expected, one should notice that these two eigenvectors of F are both circularly even since they 

correspond to the real eigenvalues 1 ±  [2]. It remains to mention that eigenvectors of T corresponding 

to its simple eigenvalues (all eigenvalues other than 0=λ ) are eigenvectors of F. 

 

3.4. Ordering the Eigenvectors According to the Number of Zero Crossings 

 Let )(λmp  be the characteristic polynomial of the mth principal submatrix of 2T  of (9), i.e. 

1)(0 =λp  (36) 

( )λαλ −= 11 )(p  (37) 

( )( ) 2
1212 )( βλαλαλ −−−=p  (38) 

 It can be shown that these polynomials satisfy the three-term recurrence relation [25, p. 300]: 

( ) ( ) ( ) ( ) 1,,3,2 ,     2
2

11 −=−−= −−− Nmppp mmmmm Lλβλλαλ . (39) 

 It can also be shown that the eigenvector of 2T  corresponding to the eigenvalue iλ  is given by [25, 

p. 316]: 

( ) ( ) ( ) ( ) ( )
1,,1 ,     11

221

22

21

2

1

1 −=⎥
⎦

⎤
⎢
⎣

⎡
−−=

−

−− Ni
ppp

T

N

iNNii
i L

L
L

βββ
λ

ββ
λ

β
λ

λv . (40) 

 Since (11) and (12) imply that 2,,1 , 0 −=< Nii Lβ , the above equation implies that the signs of 

the elements of the eigenvector ( )iλv  are identical to those of the elements of the vector: 

( ) ( ) ( )[ ]TiNii ppp λλλ 210 −L . (41) 

 In order to state the Sturm sequence property of the polynomials ( ) 1,,0 , −= Nmpm Lλ , one starts 

by introducing the integer valued function ( )λs  defined as the number of agreements in sign of 
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consecutive members of the sequence ( ) 1,,0 , −= Nmpm Lλ . If the value of some member 

( ) 0=λmp  its sign will be chosen to be opposite to that of ( )λ1−mp . 

Fact: The number of the eigenvalues of the unreduced real symmetric tridiagonal matrix 2T  of (9) that 

are greater than a=λ  is given by the integer valued function ( )as . (See [25, p. 300] and [26, p. 534]). 

 Let the eigenvalues of 2T  be arranged in descending order as 121 −>>> Nλλλ L  where 01 =−Nλ . 

Since the zeros of ( )λmp  separate those of ( )λ1+mp  in the strict sense [25], one can use (41) to show 

that 

( ) 1,,1 ,     1 −=−= Niis i Lλ . (42) 

 Since ( ) 01 =− iNp λ  and consequently the sign of ( )iNp λ1−  will be opposite to that of ( )iNp λ2− , one 

finds that all sign agreements in the sequence ( ) 1,,0 , −= Nmp im Lλ  will occur in the subsequence 

( ) 2,,0 , −= Nmp im Lλ  forming the elements of vector (41). 

 For any vector x whose elements are mx , a zero crossing occurs at m  if 01 <+mm xx  [14]. 

Consequently the number of zero crossings in vector (41) will be given by: 

( ) ( ) ( ) 1,,1 ,     2 −=−−= NisNz ii Lλλ . (43) 

From (42) and (43), one gets 

( ) ( ) 1,,1 ,     1 −=−−= NiiNz i Lλ . (44) 

 The modal matrix of 2T  corresponding to its eigenvalues arranged in descending order is 

( ) ( ) ( )[ ]121 −= Nλλλ vvvM 2 L . (45) 

The corresponding modal matrix of T given by (22) will be 

[ ]NuuuM 1 L2
)1( =  (46) 

where 11 eu =  (the first elementary column vector) and  

( ) Nm
m

,,2 ,     
0

1

L=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−λv
um  (47) 

with the corresponding diagonal matrix of eigenvalues given by 

{ }121
)1( ,,,,0 −= NDiag λλλ LΛ . (48) 

 Since the first and last diagonal elements of )1(Λ  represent the only repeated eigenvalue of T, the 

eigenvectors 1u  and Nu  of )1(M  should be replaced by the eigenvectors 1w  and 2w  of (35) in order 

to get the following common modal matrix of T and F: 

[ ]21N321 wuuuwM −= L)2(  (49) 

and the corresponding diagonal matrix of the eigenvalues of T will be )1()2( ΛΛ = . In order to arrange 

all the eigenvalues of T in descending order, one has to define: 
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{ }NNDiag λλλλ ,,,, 121
)3(

−= LΛ  (50) 

where 01 ==− NN λλ  and the corresponding modal matrix is 

[ ]121N32 wwuuuM −= L)3( . (51) 

 The number of zero crossings in the first ( )2−N  columns of )3(M  - as evaluated by (44) - will 

decrease monotonically from ( )2−N  to 1. The number of zero crossings in 2w  and 1w  - as can be 

seen from (35) - are 1 and 0 respectively. In order to arrange the eigenvectors according to the number 

of their zero crossings in ascending order, one flips the columns of (51) to get the final orthonormal 

modal matrix common to both T and F as 

[ ]232N1N21 uuuuwwM L−−= . (52) 

 The corresponding diagonal matrix of the eigenvalues of T is: 

{ }11 ,,, λλλ L−= NNDiagTΛ  (53) 

and the corresponding diagonal matrix of the eigenvalues of F is8: 

{ }NDiag µµµ ,,, 21 L=FΛ  (54) 

where 11 =µ  and 12 −=µ . 

 The philosophy behind arranging the eigenvectors of F according to the number of their zero 

crossings in ascending order is to have an analogy between those eigenvectors and the Hermite-

Gaussian functions. 

 The algorithm for generating the desired unitary modal matrix of F – based on the 

eigendecomposition of matrix T - can be summarized in the following steps: 

1) Find the modal matrix 2M  (given by (45)) of matrix 2T  defined by (9). 

2) Compute the eigenvectors 1,,2  ,  −= Nm Lmu  using (47). 

3) Compute the eigenvectors 1w  and 2w  using (35). 

4) Form the common modal matrix M  according to (52) where the eigenvectors correspond to 

the eigenvalues of T (expressed by (53)) arranged in ascending order. 

5) Knowing the modal matrix of F find the corresponding diagonal matrix FΛ  of the eigenvalues. 

 

4. A Modal Decomposition of Dickinson-Steiglitz Nearly Tridiagonal Matrix 

 The nearly tridiagonal matrix S introduced by Dickinson and Steiglitz [12] and explored by Candan 

et al. [13] will be first expressed in partitioned form. An involutary matrix P will be employed for 

defining a similarity transformation to be applied to matrix S in order to reduce it to a tridiagonal 

                                                 
8 The elements Nµµµ ,,, 21 L  of the diagonal matrix FΛ  in (54) should not be confused with the elements of the 
summing vector µ  in (3). 
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form. More specifically the similarity transformed matrix will be rigorously proved to have a 2 x 2 

block diagonal form where the two diagonal blocks are unreduced tridiagonal submatrices whose 

elements will be explicitly derived – which was not done in [13] – in order to circumvent the need for 

performing the two matrix multiplications involved in the definition of the similarity transformation. 

The emergent modal matrix of S will be rigorously proved to be a modal matrix of the DFT matrix F 

irrespective of the multiplicities of the eigenvalues of S. 

 

4.1. Partitioned Form of Matrix S 

 A nearly tridiagonal matrix S is defined by: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

Ns
Ns

s
s

11
111

1

1
121

111

OO

OOO

OO

S . (55) 

The diagonal elements of S are given by [13]: 

( ) Nnn
N

ns ,,1 ,          41
2

cos2 L=−−= ⎟
⎠
⎞

⎜
⎝
⎛ π . (56) 

It is straightforward to show that: 

NnnsnNs ,,2 ,          2 L==−+ . (57) 

Consequently the vector s  defined as: [ ]TNsss L21=s  is circularly even. Let the columns of 

matrix S  be denoted by Nn ,,1 , L=nc  , i.e. 

[ ]
[ ]2Γc3Γc3c2c1c

Nc2c1cS

L

L

=

=
  (58) 

where the second form is obtained by examining (55) in the light of condition (57) and where the 

circular flip property of matrix Γ  defined by (6) is utilized. It follows that S  can be compactly 

expressed as: 

[ ]
[ ]⎩
⎨
⎧

=
Neven for           

N oddfor                   
ΓCJνcC1c

ΓCJC1c
S  (59) 
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where matrix C  is defined by: 

[ ]
[ ]⎩
⎨
⎧

−
=

Neven for           
N oddfor              

1νc3c2c
c3c2c

C
L

L ν  . (60) 

and9 

⎣ ⎦ 15.0 += Nν . (61) 

 

4.2. An Involutary Matrix P 

 One defines an elementary matrix P  of order N such that its first ν  columns are circularly even and 

its last ( )ν−N  columns are circularly odd. More specifically, matrix P  is defined as: 

N oddfor      
0
0

002

2

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

IJ
JIP  and     Neven for      

00
0200

00
0002

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

IJ

JIP  (62) 

where I  and J  are of order ( )ν−N . Matrix P  is symmetric and it can be shown to be unitary. 

Therefore 1−== PPP T  implying that P is involutary. 

 In preparation for finding the effect of premultiplying a vector by P, an arbitrary vector x  of 

dimension N will be expressed in partitioned form as: 

N oddfor  
1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

bx
axx

x
   and   Neven for  

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

bx

ax
x

νx

x

 (63) 

where the subvectors ax  and bx  are of dimension ( )ν−N . Define Pxy =  and use (62) and (63) to get: 

N oddfor           
12

2

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

+=

bxaJx
bJxaxy

x
 and         Neven for           

2

12

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+
=

bxaJx

bJxax
y

νx

x

. (64) 

Lemma 6: Let Pxy =  where x  is expressed by (63). 

                                                 
9The symbol ⎣ ⎦b  denotes the largest integer less than or equal to b .  
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a) If vector x  is circularly even, then: 

N oddfor  2
12

2

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

0
axy
x

 and Neven for  
2

2
12

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0

ax
y

νx

x

. (65) 

b) If vector x  is circularly odd, then: 

N oddfor  
2

0

2

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

bx
0y  and Neven for  

2
0

0

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

bx

0
y . (66) 

c) If the last ( )ν−N  elements of x  are zero, then y  is circularly even. 

d) If the first ν  elements of x  are zero, then y  is circularly odd. 

 

4.3. Tridiagonalization of S by a Similarity Transformation 

Lemma 7: For any matrix10 S of the form of (55) whose diagonal elements form a circularly even 

vector and for matrix P defined by (62), one gets: 

⎥⎦
⎤

⎢⎣
⎡=−

OD
EV

PSP
0

01  (67) 

where EV  and OD  are square matrices of order ν  and ( )ν−N  respectively. 

Proof: 

Case a: N is odd 

Using (62) and (59) and recalling that P  is involutary, one gets: 

( ) ( )[ ]CJΓICΓI1cSP −+=− 2
2

11 . (68) 

Premultiplying by matrix Γ  defined by (6) and using (7) and the fact that 1c1Γc = , one obtains: 

                                                 
10 This lemma is general since it does not require that the diagonal elements of S  be those of (56). 
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( ) ( )[ ]CJΓICΓI1cΓSP −−+=− 2
2

11 . (69) 

By comparing (68) and (69), one concludes that the first ν  columns of 1−SP  are circularly even and 

the last ( )ν−N  columns are circularly odd. 

Case b: N is even 

Using (62) and (59), one gets: 

( ) ( )[ ]CJΓIcCΓI1cSP −+=−
ν22

2

11 . (70) 

Premultiplying by Γ  and using the fact that 1c1Γc =  and even Nfor    νν cΓc = , one obtains: 

( ) ( )[ ]CJΓIcCΓI1cΓSP −−+=−
ν22

2

11 . (71) 

By comparing (70) and (71), one concludes that the first ν  columns of 1−SP  are circularly even and 

the last ( )ν−N  columns are circularly odd. 

 The same conclusion has been reached in cases a and b. Therefore premultiplying 1−SP  by P  will 

zero the last ( )ν−N  elements of the first ν  columns of 1−SP  by virtue of Lemma 6a and will also zero 

the first ν  elements of the last ( )ν−N  columns of 1−SP  by virtue of Lemma 6b. Thus the validity of 

(67) has been established. 

  (Q.E.D.) 

Theorem 1: For any matrix S  of the form of (55) whose diagonal elements form a circularly even 

vector11, the two matrices EV  and OD  appearing in (67) are symmetric tridiagonal and are given 

explicitly by: 

                                                 
11 The theorem is general since it does not require that the diagonal elements of S  be those of (56). 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

−

=

δνγ
γν

ν

s
s

s

s
s

s

11
121

1
1

131
122

21

OO

OOEV  , (72) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

−+

=

Ns
Ns

s
s

1
111

1
1

121
11

OO

OO
ν

δν

OD  (73) 

where 

⎩
⎨
⎧=

Neven for      2
N oddfor          1

γ    and   
⎩
⎨
⎧=

Neven for     0
N oddfor      1

δ . (74) 

Proof: 

Case a: N is odd 

Based on (62) and (55) and by virtue of (64) and Lemma 6, one gets:  

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−−

−+−−−

−−+−−
−−−−−−−−−

+++
+−

−

=

Nss
Nss

ss
ss

ss
ss

Nss
Nss

s

1|120
111|131

121|111
111|11

|
111|11

121|111
111|131

1|122
2|212

2

1

νν
νν

νν
νν

PS  . (75) 

Postmultiplying (75) by PP =−1  and utilizing the key fact (57) together with the transposed form of 

(65) and (66), one obtains:  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

−+

−−−−−−−−−
+

−

=−

Ns
Ns

s
s

s
s

s
s

s

1|
111|

121|
111|

|
|11
|111
|131
|122

|21

1

ν

ν

ν
ν

PSP  . (76) 

Therefore the matrices EV  and OD  are given respectively by (72) and (73) with 1=γ  and 1=δ  in 

agreement with (74).  

Case b: N is even 

Based on (62) and (55) and by virtue of (64) and Lemma 6, one gets:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−−

−+−−−

−+−−

−−−−−−−−−−

+−

+−

−

=

Nss
Nss

ss
ss

s

ss
ss

Nss
Nss

s

1|120
111|131

121|121
11|011

|
2|22

11|211
121|121

111|131
1|122

2|212

2

1

νν
νν

ν

νν
νν

PS  . (77) 

Postmultiplying (77) by 1−P  and utilizing (57) together with the transposed form of (65) and (66), one 

obtains:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+

+

−−−−−−−−−−

−

−

=−

Ns
Ns

s
s

s

s

s
s

s

s

1|
111|

121|
11|

|
|2

|211

|121
|131
|122

|21

1

ν

ν

ν

ν

ν

PSP  . (78) 
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Therefore the matrices EV  and OD  are given respectively by (72) and (73) with 2=γ  and 0=δ  in 

agreement with (74). 

  (Q.E.D.) 

4.4. The Common Modal Matrix of S and F 

 The modal decompositions12: 

1−= 1M1Λ1MEV      and     1−= 2M2Λ2MOD  (79) 

combined with (67) result in: 

11 −Λ=− MMPSP  (80) 

where 

⎟
⎠
⎞

⎜
⎝
⎛

=
2Λ0

01Λ
Λ        and       ⎟

⎠
⎞

⎜
⎝
⎛

=
2M0

01M
M . (81) 

Consequently the modal decomposition of S is: 

1−Λ= QQS           where          PMQ = . (82) 

Lemma 8: The modal matrix Q of matrix S given by (82) is always a modal matrix of F irrespective of 

the multiplicities of the eigenvalues of S. 

Proof: It was shown in [12] that the maximum multiplicity of any eigenvalue λ  of S  can be 2. If λ  is 

a simple eigenvalue of S , then the corresponding eigenvector will also  be an eigenvector of F  since 

S  and F  commute [12]. It remains to consider the case when λ  is an eigenvalue of S  with multiplicity 

2. Since the matrices EV and OD given by (72) and (73) are unreduced tridiagonal matrices, the 

eigenvalues of each of them are distinct [24]. Based on (81) and (82) matrix S can have an eigenvalue 

of multiplicity 2 only if one element of 1Λ  happens to equal one element of 2Λ . In that case one of 

the two corresponding eigenvectors of S - to be denoted by u - will be circularly even and the other 

one - to be denoted by v - will be circularly odd based on Lemma 6(c,d). Since u Su λ= , v Sv λ=  and 

exploiting the commutativity of S  and F , one gets: ( ) ( )Fu FuS λ=  and ( ) ( )Fv FvS λ= . This implies that 

Fu  and Fv  are eigenvectors of S  corresponding to the same λ . Consequently they can be expressed as 

linear combinations of u  and v  as follows: 

                                                 
12 The matrix 2M  in (79) should not be confused with the matrix 2M  appearing in (22) and (45). 



 19

vuFu 21 αα += , (83) 

vuFv 21 ββ += . (84) 

Premultiplying the above two equations by Hv  and Hu  respectively and applying Lemma 2, one gets 

02 =α  and 01 =β ; and consequently uFu 1α=  and vFv 2β= . Therefore u  and v  are also eigenvectors 

of F . 

  (Q.E.D.) 

 The algorithm for generating the desired modal matrix common to both S and F can be summarized 

in the following steps: 

1) Given matrix S of (55), generate the matrices EV and OD using (72) and (73). 

2) Find the modal decomposition of EV and OD according to (79) where the eigenvalues of each 

matrix are arranged in descending order. (See [13] for the reason of this arrangement). 

3) Form matrix M according to (81). 

4) Compute the target modal matrix Q using (82). 

 

5. A Comparative Simulation Study 

 

5.1. The T and S Matrix Methods for the Evaluation of the Eigenvectors 

 The modal matrix of the Grünbaum matrix T of order13 11=N  is computed according to (52) and 

is given in Table 1 where the bottom two rows list the eigenvalues of T and F corresponding to the 

common set of eigenvectors. Since a vector of length N of samples of the Hermite-Gaussian functions 

of order m  is an approximate eigenvector of matrix F of order N corresponding to the exact 

eigenvalue ( )mj−  as delineated in [4], the eigenvalues of F are to be next arranged as 

( ) Nmj mn ,,1 , L=−  where the set of indices { }mn  is given by { }1,2,1,0 −− NNL  for odd N and by 

{ }NN ,2,1,0 −L  for even N. Rearranging the columns of matrix M of (52) to consecutively 

correspond to repeated cycles of the ordered set { }jj ,1,,1 −−  of distinct eigenvalues of matrix F, one 

obtains matrix V shown in Table 2 starting from matrix M shown in Table 1. Rearranging the diagonal 

                                                 
13 The order 11=N  was selected because it is large enough to allow the illustration of the eigenstructure of the matrices 
and small enough to allow the inclusion of the corresponding modal matrices within the page limits. 



 20

elements of matrix FΛ  of (54) accordingly, one gets the diagonal matrix D. The final modal 

decomposition of F is given by 
HVDVF =  (85) 

and the kernel matrix of the discrete fractional Fourier transform (DFRFT) of order a  (corresponding 

to an angle of rotation a 5.0 πα = ) – according to the definition proposed in [19,4,5,13,14] – is given 

by: 
Haa VVDF ≡ . (86) 

 The modal matrix Q of the nearly tridiagonal matrix S of order 11=N  is computed according to 

(82) and is given in Table 3 where the bottom two rows list the eigenvalues of S and F corresponding 

to the common set of eigenvectors. Rearranging the columns of Q to get matrix V in the manner 

explained above, one gets Table 4. 

 A desired feature to be sought in developing the DFRFT is to have it resemble its continuous 

counterpart, namely the FRFT and the way for satisfying this requirement is to make the columns of 

the unitary modal matrix V in (86) as close as possible to samples of the Hermite-Gaussian functions. 

In order to compare the eigenvectors of the matrices T and S from that perspective, the Euclidian 

norms of the error vectors between the columns of matrix V and the approximate eigenvectors (i.e. the 

samples of the Hermite-Gaussian functions) are computed and plotted in Fig. 1 for 256=N . It should 

be mentioned that the kth column of matrix V is compared with the Hermite-Gaussian function of 

order kn  for Nk ,,1 L=  where the set of indices { }kn  has been introduced above. Figure 1 clearly 

shows the relative merit of the eigenvectors of matrix S compared to those of matrix T. The reason 

behind this result is that matrix S was generated in [13] in the context of discretizing the second order 

differential equation satisfied by the Hermite-Gaussian functions while matrix T was only weakly 

shown in [6] to be related to the Hermite operator in the limit as ∞→N . Since samples of the 

Hermite-Gaussian functions become a poor approximation of the eigenvectors of matrix F for large 

values of N [4,5], the approximation error tends generally to increase with the order k. 

 The first two columns of Table 5 list the computation time in seconds of the eigenvectors of the two 

matrices for different values of the order N of the matrix where the computation was carried out on a 

Pentiuum 4 PC. It is obvious that the S matrix method has the extra merit of being more 

computationally efficient than the T matrix method. The reason behind this finding is that the S matrix 

method is implemented by decomposing the problem into two subproblems of almost half the size of 

the original problem as expressed by (67). Since the estimated computation time of an algorithm 

running on a PC is affected by the unavoidable system related tasks running concurrently in the 

background, the times listed in Table 5 are reliable mainly for large values of N. The conclusion is that 

the S matrix method takes approximately half the time required by the T matrix method. 
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5.2. Other Methods for the Evaluation of the Eigenvectors 

 In addition to the T and S matrix methods for the computation of Hermite-Gaussian-like 

eigenvectors of the DFT matrix F, three other methods have been included in the comparative 

simulation study; namely: 

1. The orthogonal procrustes algorithm (OPA) where the eigenvectors of matrix S are taken as 

initial ones and final superior ones are computed collectively for each eigenspace separately 

[4]. 

2. The algorithm based on an alternative implementation of the OPA by the direct utilization of 

the orthogonal projection matrices on the eigenspaces of matrix F without having to first find 

initial orthonormal bases for those spaces [27]. 

3. The Direct Batch Evaluation by constrained Optimization Algorithm (DBEOA) which is quite 

distinct algorithmically from – despite being theoretically equivalent to – the OPA [28]. 

 The computation time in seconds of the above three algorithms are given in the last three columns 

of Table 5 where the above two implementations of the OPA – i.e. the first two methods listed above - 

are denoted by OPA (1) and OPA (2) respectively. The above three methods were essentially derived 

using the same minimization criterion and set of constraints and consequently are supposed to produce 

identical outputs in the absence of roundoff error which is unavoidable. It has been practically found 

that for values of the order N of matrix F as large as 256 there is no noticeable difference in the 

outputs of the three algorithms. However for larger values of N, the discrepancy between the outputs 

becomes noticeable. Figure 1 has a plot of the Euclidian norms of the approximation error vectors for 

the OPA (1) in addition to the T and S methods for 256=N . As expected the OPA (1) has a better 

degree of approximation than both the T and S methods. 

 In order to assess the accuracy of the numerical computation, the orthonormality error matrix 

defined as ( )IVV H −  - which is theoretically zero – is computed for each of the five methods; namely 

the T and S methods together with the above three algorithms. The maximum absolute value of the 

elements of the orthonormality error matrix as well as its Frobenius norm are calculated and given in 

Tables 6 and 7 respectively. An examination of these two tables shows that the orthonormality error is 

negligible for the T method, S method and OPA (1) for all values of N while for the OPA (2) and 

DBEOA this error is negligible only for 256≤N . Therefore although the OPA (2) and DBEOA have 

the merit of being faster than the first three methods listed in Table 5 as evidenced by that table, they 

do not have the numerical robustness for large values of N enjoyed by the first three methods as 

testified by Tables 6 and 7. Since section 5.1 has pointed out the superiority of the S method to the T 

method, the comparison among the 5 methods can be narrowed down to that between the S method 

and the OPA (1). One should say that the S method has the merit of being faster than the OPA (1) as 
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evidenced by Table 5 and the OPA (1) has the advantage of having a lower approximation error14 

than the S method as testified by Fig. 1. 

 

5.3. The DFRFT 

 The DFRFT – with its kernel defined by (86) and modal matrix V computed using each of the T 

method, S method and OPA (1) – of the discrete time unit sample signal ][nδ  is calculated for the set 

of angles ππππα  5.0 and  48.0 , 45.0 , 3.0=  radians for 65=N  and plotted in Figs. 2-4 where the solid 

and dashed lines represent the real and imaginary parts respectively. The continuous FRFT of the 

continuous-time unit impulse – selected as a test signal only because of its simplicity - is given by: 

( )[ ] ( ) παα
π

αδ α  of multiple anot  is   if      cot
2

exp
2

cot1,0
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−
==

ujjuKtFRFT  (87) 

where ( )utK ,α  is the kernel of the transform. Figure 5 shows the plot of the above equation - using an 

increment of Nu /2π=∆  where 65=N  - for the same set of angles used for the DFRFT. Since the 

angle πα 5.0=  corresponds to the classical transform, namely the Fourier transform in the 

continuous-time case and the DFT in the discrete-time case, (87) was scaled by the factor N/2π  

before plotting so that it will coincide with the DFRFT of ][nδ  when πα 5.0= . By comparing Figs 2-

4 with Fig 5 it is obvious that Figs 3 and 4 better resemble Fig 5 than does Fig 2. This observation 

furnishes more evidence that the S method is superior to the T method. 

 It should be emphasized that the DFRFT computed using a modal matrix V – evaluated by any of 

the five methods included in this comparative simulation study – is a chirp fractional transform 

(CFRT) rather than a weighted fractional transform (WFRT) according to the terminology of [21] 

because in all cases the kernel of the transform is given by (86) following the fully-fledged definition 

adopted in [19,4,5,13,14] which is regarded as a CFRT definition. 

 

6. Conclusion 

 An investigation of the eigenstructure of both Grünbaum tridiagonal matrix T and Dickinson-

Steiglitz nearly tridiagonal matrix S – which commute with the DFT matrix F – is made with the 

objective of obtaining Hermite Gaussian like eigenvectors of matrix F. For matrix T, two orthonormal 

eigenvectors pertaining to its only repeated eigenvalue of multiplicity two – and common to both T 

and F matrices – are algebraically derived. For matrix S which can be tridiagonalized by a similarity 

transformation defined in terms of an involutary matrix P, explicit expressions are derived for the 

elements of the two tridiagonal submatrices resulting from the transformation in order to circumvent 

                                                 
14 The approximation error plotted in Fig. 1 should not be confused with the orthonormality error given by Tables 6 and 7. 



 23

the need for performing the two matrix multiplications involved in the transformation. Although 

matrix T seems to have the merit of being tridiagonal and does not need the tridiagonalization step, the 

simulation results have shown that the computation time of the eigenvectors of matrix S is shorter than 

that of matrix T. More importantly the eigenvectors of matrix S have been found to be more Hermite-

Gaussian-like than those of matrix T. Consequently the discrete fractional Fourier transform 

developed using the eigenvectors of matrix S has been found to better approximate its continuous-time 

counterpart than that developed using the eigenvectors of matrix T. 

 

Appendix A 

(Proof of Lemma 5) 

 Applying Gerschgorin circle theorem, one concludes that all eigenvalues of 2T  of (9) are contained 

in the interval [ ]ba,  with 

{ }111 −−≤≤
−−= iiiNi

Mina ββα  (A-1) 

{ }111 −−≤≤
++= iiiNi

Maxb ββα  (A-2) 

where 010 == −Nββ . (See [26, pp. 500-502 and p. 538] ). 

For 22 −≤≤ Ni , (10)-(13) result in: 

( ) ( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )[ ]

0
/cos/sin2/sin/sin/cos2

/sin/1sin/1sin/sin/sin/cos2
2

2
1

=
−=

−−+−=−− −

NNiNiNiN

NiNiNiNiNiNiii

πππππ

ππππππββα

(A-3) 

For 1=i : 

( ) ( ) ( ) ( )
0

/2sin/sin/sin/cos2 2
011

=

−=−− NNNN ππππββα  (A-4) 

For 1−= Ni : 

0101211 =−−=−− −−− ββαββα NNN . (A-5) 

Therefore the above three equations together with (A-1) imply that 0=a . 

Similarly one gets: 

( ) ( ) 22     /sin/cos4 2
1 −≤≤=++ − NiNiNiii ππββα . (A-6) 

( ) ( ) /sin/cos4 2
011 NN ππββα =++ . (A-7) 

101211 ββαββα ++=++ −−− NNN . (A-8) 

The above three equations together with (A-2) imply that: 

( ) ( ){ }NiNb /sin Max/cos4 2

1-Ni1
ππ

≤≤
=  (A-9) 

More specifically 
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( )
( ) ( )( )⎩

⎨
⎧

≥
=

3N and odd is N if     2/cos/cos4
even is N if             /cos4

2 NN
N

b
ππ

π
 (A-10) 

Therefore for all finite values of N the eigenvalues of 2T  are contained in the half closed interval 

)4,0[ . The same applies to matrix T of (8) since 1T  has only one eigenvalue equal to zero. 

 

References 

[1] Dym, H. and McKean, H.P., Fourier Series and Integrals. Academic Press, San Diego, 
California, 1972. 

 
[2] J.H. McClellan and T.W. Parks, "Eigenvalue and eigenvector decomposition of the discrete 

Fourier transform," IEEE Transactions on Audio and Electroacoustics, vol. AU-20, pp. 66-74, 
March 1972. 

 
[3] B. Santhanam and J.H. McClellan, "The discrete rotational Fourier transform," IEEE 

Transactions on Signal Processing, Vol. SP-44, No. 4, pp. 994-998, April 1996. 
 
[4] S.-C. Pei, M.-H. Yeh and C.-C. Tseng, "Discrete fractional Fourier transform based on 

orthogonal projections," IEEE Transactions on Signal Processing, vol. SP-47, pp. 1335-1348, 
May 1999. 

 
[5] S.-C. Pei, C.-C. Tseng and M.-H. Yeh, "A new discrete fractional Fourier transform based on 

constrained eigendecomposition of DFT matrix by Lagrange multiplier method," IEEE 
Transactions on Circuits and Systems, Part II: Analog and Digital Signal Processing, Vol. 46, 
No. 9, pp. 1240-1245, September 1999. 

 
[6] F.A. Grünbaum, "The eigenvectors of the discrete Fourier transform: A version of the Hermite 

functions," Journal of Mathematical Analysis and Applications, Vol. 88, pp. 355-363, 1982. 
 
[7] S. Clary and D.H. Mugler, "Shifted Fourier matrices and their tridiagonal commutors," SIAM 

Journal of Matrix Analysis and Applications, Vol. 24, No. 3, pp. 809-821, 2003. 
 
[8] B. Santhanam and J.G. Vargas-Rubio, "On the Grünbaum commutor based discrete fractional 

Fourier transform," Proceedings of the IEEE International Conference on Acoustics, Speech and 
Signal Processing, 2004, pp. II 641 - 644. 

 
[9] J.G. Vargas-Rubio and B. Santhanam, "The centered discrete fractional Fourier transform and 

linear chirp signals," Proceedings of the 2004 IEEE 11th Digital Signal Processing Workshop 
and the 3rd IEEE Signal Processing Education Workshop, August 1-4, 2004, pp. 163-167. 

 
[10] J.G. Vargas-Rubio and B. Santhanam, "On the multiangle centered discrete fractional Fourier 

transform," IEEE Signal Processing Letters, Vol. 12, No. 4, pp. 273-276, April 2005. 
 
[11] J.G. Vargas-Rubio and B. Santhanam, "An improved spectrogram using the multiangle centered 

discrete fractional Fourier transform," Proceedings of the IEEE International Conference on 
Acoustics, Speech and Signal Processing, 2005, pp. IV 505 - 508. 

 



 25

[12] B.W. Dickinson and K. Steiglitz, "Eigenvectors and functions of the discrete Fourier transform," 
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-30, pp. 25-31, 
February 1982. 

 
[13] Ç. Candan, M.A. Kutay and H.M. Ozaktas, "The discrete fractional Fourier transform," IEEE 

Transactions on Signal Processing, vol. SP-48, pp. 1329-1337, May 2000. 
 
[14] Candan, Ç., The discrete fractional Fourier transform, M.S. Thesis, Bilkent University, Ankara, 

Turkey, 1998. 
 
[15] L.J. Barker, C. Candan, T. Hakioglu, M.A. Kutay and H.M. Ozaktas, "The discrete harmonic 

oscillator, Harper's equation and the discrete fractional Fourier transform," Journal of Physics A: 
Mathematical and General, vol. 33, pp. 2209-2222, March 2000. 

 
[16] L.J. Barker, "The discrete fractional Fourier transform and Harper's equation," Mathematika, vol. 

47, pp. 281-297, 2000. 
 
[17] Magdy Tawfik Hanna, Nabila Philip Attalla Seif and Waleed Abd El Maguid Ahmed, "Hermite-

Gaussian-Like Eigenvectors of the Discrete Fourier Transform Matrix Based on the Singular 
Value Decomposition of its Orthogonal Projection Matrices," IEEE Transactions on Circuits 
and Systems, Part I: Regular papers, Vol. 51, No. 11, pp. 2245-2254, November 2004. 

 
[18] H.M. Ozaktas, O. Arikan, M.A. Kutay and G. Bozdaği, "Digital Computation of the Fractional 

Fourier Transform," IEEE Transactions on Signal Processing, Vol. 44, No. 9, pp. 2141-2150, 
September 1996. 

 
[19] S.-C. Pei and M.-H. Yeh, "Improved discrete fractional Fourier transform," Optics Letters, Vol. 

22, No. 14, pp. 1047-1049, July 15, 1997. 

  
[20] G. Cariolaro, T. Erseghe, P. Kraniauskas and N. Laurenti, "A unified framework for the 

fractional Fourier transform," IEEE Transactions on Signal Processing, Vol. 46, No. 12, pp. 
3206-3219, December 1998. 

 
[21] G. Cariolaro, T. Erseghe, P. Kraniauskas and N. Laurenti, "Multiplicity of fractional Fourier 

transforms and their relationships," IEEE Transactions on Signal Processing, Vol. 48, No. 1, pp. 
227-241, January 2000. 

 
[22] T. Erseghe, P. Kraniauskas and G. Cariolaro, "Unified Fractional Fourier Transform and 

Sampling Theorem," IEEE Transactions on Signal Processing, Vol. 47, No. 12, pp. 3419-3423, 
December 1999. 

 
[23] Borevich, Z.I. and Shafarevich, I.R., Number Theory, English translation by Greenleaf, N..  

Academic Press, New York, N.Y., 1966. 
 
[24] Parlett, B.N., The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J., 1980. 
 
[25] Wilkinson, J.H., The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965. 
 
[26] Atkinson, K.E., An Introduction to Numerical Analysis. John Wiley & Sons, New York, 1978. 
 



 26

[27] Magdy Tawfik Hanna, Nabila Philip Attalla Seif and Waleed Abd El Maguid Ahmed, " Hermite-
Gaussian-Like Eigenvectors of the Discrete Fourier Transform Matrix Based on the Direct 
Utilization of the Orthogonal Projection Matrices on its Eigenspaces,"  IEEE Transactions on 
Signal Processing, Vol. 54, No. 7, pp. 2815-2819, July 2006. 

 
[28] Magdy Tawfik Hanna, "Direct Batch Evaluation of Optimal Orthonormal Eigenvectors of the 

DFT Matrix," IEEE Transactions on Signal Processing, Vol. 56, No.5, pp. 2138-2143, May 
2008. 

 
 
 
 
 



 27

Table 1: The common modal matrix of the matrices T and F of order 11=N . 
Eigenvectors of matrix T 

0.8067 0.591 0 0 0 0 0 0 0 0 0 
0.1869 -0.2551 0.5636 0.5827 -0.4102 -0.241 -0.1177 -0.0481 -0.0161 0.0042 -0.0007
0.1869 -0.2551 0.3464 0.075 0.3277 0.5288 0.4936 0.3328 0.1693 -0.0637 0.0156 
0.1869 -0.2551 0.2157 -0.1387 0.383 0.1861 -0.234 -0.5084 -0.4903 0.2961 -0.1075
0.1869 -0.2551 0.1196 -0.2389 0.2632 -0.1492 -0.3973 -0.1156 0.3718 -0.5543 0.3469 
0.1869 -0.2551 0.0385 -0.2802 0.0916 -0.3247 -0.1729 0.3393 0.3039 0.3178 -0.6065
0.1869 -0.2551 -0.0385 -0.2802 -0.0916 -0.3247 0.1729 0.3393 -0.3039 0.3178 0.6065 
0.1869 -0.2551 -0.1196 -0.2389 -0.2632 -0.1492 0.3973 -0.1156 -0.3718 -0.5543 -0.3469
0.1869 -0.2551 -0.2157 -0.1387 -0.383 0.1861 0.234 -0.5084 0.4903 0.2961 0.1075 
0.1869 -0.2551 -0.3464 0.075 -0.3277 0.5288 -0.4936 0.3328 -0.1693 -0.0637 -0.0156
0.1869 -0.2551 -0.5636 0.5827 0.4102 -0.241 0.1177 -0.0481 0.0161 0.0042 0.0007 

Eigenvalues of matrix T 
0 0 0.0587 0.1327 0.274 0.4865 0.791 1.2072 1.7584 2.4711 3.3749 

Eigenvalues of matrix F 
1 -1 -j 1 j -1 -j 1 j -1 -j 

 
Table 2: Matrix V corresponding to the modal matrix of T of order 11=N . 

Matrix V corresponding to the eigenvectors of matrix T 
0.8067 0 0.591 0 0 0 0 0 0 0 0 
0.1869 0.5636 -0.2551 -0.4102 0.5827 -0.1177 -0.241 -0.0161 -0.0481 -0.0007 0.0042 
0.1869 0.3464 -0.2551 0.3277 0.075 0.4936 0.5288 0.1693 0.3328 0.0156 -0.0637
0.1869 0.2157 -0.2551 0.383 -0.1387 -0.234 0.1861 -0.4903 -0.5084 -0.1075 0.2961 
0.1869 0.1196 -0.2551 0.2632 -0.2389 -0.3973 -0.1492 0.3718 -0.1156 0.3469 -0.5543
0.1869 0.0385 -0.2551 0.0916 -0.2802 -0.1729 -0.3247 0.3039 0.3393 -0.6065 0.3178 
0.1869 -0.0385 -0.2551 -0.0916 -0.2802 0.1729 -0.3247 -0.3039 0.3393 0.6065 0.3178 
0.1869 -0.1196 -0.2551 -0.2632 -0.2389 0.3973 -0.1492 -0.3718 -0.1156 -0.3469 -0.5543
0.1869 -0.2157 -0.2551 -0.383 -0.1387 0.234 0.1861 0.4903 -0.5084 0.1075 0.2961 
0.1869 -0.3464 -0.2551 -0.3277 0.075 -0.4936 0.5288 -0.1693 0.3328 -0.0156 -0.0637
0.1869 -0.5636 -0.2551 0.4102 0.5827 0.1177 -0.241 0.0161 -0.0481 0.0007 0.0042 

Eigenvalues of matrix F 
1 -j -1 j 1 -j -1 j 1 -j -1 

 
Table 3: The common modal matrix of the matrices S and F of order 11=N . 

Eigenvectors of matrix S 
0.6609 -0.4994 0.4494 -0.3157 -0.1097 -0.0113 0 0 0 0 0 
0.4854 0.0869 -0.3384 0.3391 0.1636 0.0254 0.5343 -0.4058 0.2145 0.0616 -0.0054
0.2061 0.4968 -0.0473 -0.305 -0.3264 -0.0944 0.4274 0.3068 -0.4248 -0.2048 0.0278 
0.0583 0.321 0.3543 -0.0405 0.4286 0.2876 0.1717 0.4352 0.2652 0.4447 -0.1142
0.0128 0.1248 0.3232 0.2994 0.027 -0.538 0.0476 0.2202 0.4212 -0.3988 0.3359 
0.0029 0.0485 0.2287 0.3884 -0.4198 0.3439 0.0088 0.0573 0.1607 -0.3122 -0.611 
0.0029 0.0485 0.2287 0.3884 -0.4198 0.3439 -0.0088 -0.0573 -0.1607 0.3122 0.611 
0.0128 0.1248 0.3232 0.2994 0.027 -0.538 -0.0476 -0.2202 -0.4212 0.3988 -0.3359
0.0583 0.321 0.3543 -0.0405 0.4286 0.2876 -0.1717 -0.4352 -0.2652 -0.4447 0.1142 
0.2061 0.4968 -0.0473 -0.305 -0.3264 -0.0944 -0.4274 -0.3068 0.4248 0.2048 -0.0278
0.4854 0.0869 -0.3384 0.3391 0.1636 0.0254 -0.5343 0.4058 -0.2145 -0.0616 0.0054 

Eigenvalues of matrix S 
-0.5312 -2.3481 -3.5059 -4.148 -4.9833 -6.4835 -1.5175 -3.0735 -4.2984 -5.6418 -7.4688

Eigenvalues of matrix F 
1 -1 1 -1 1 -1 -j j -j j -j 
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Table 4: Matrix V corresponding to the modal matrix of S of order 11=N . 
 

Matrix V corresponding to the eigenvectors of matrix S 
0.6609 0 -0.4994 0 0.4494 0 -0.3157 0 -0.1097 0 -0.0113 
0.4854 0.5343 0.0869 -0.4058 -0.3384 0.2145 0.3391 0.0616 0.1636 -0.0054 0.0254 
0.2061 0.4274 0.4968 0.3068 -0.0473 -0.4248 -0.305 -0.2048 -0.3264 0.0278 -0.0944 
0.0583 0.1717 0.321 0.4352 0.3543 0.2652 -0.0405 0.4447 0.4286 -0.1142 0.2876 
0.0128 0.0476 0.1248 0.2202 0.3232 0.4212 0.2994 -0.3988 0.027 0.3359 -0.538 
0.0029 0.0088 0.0485 0.0573 0.2287 0.1607 0.3884 -0.3122 -0.4198 -0.611 0.3439 
0.0029 -0.0088 0.0485 -0.0573 0.2287 -0.1607 0.3884 0.3122 -0.4198 0.611 0.3439 
0.0128 -0.0476 0.1248 -0.2202 0.3232 -0.4212 0.2994 0.3988 0.027 -0.3359 -0.538 
0.0583 -0.1717 0.321 -0.4352 0.3543 -0.2652 -0.0405 -0.4447 0.4286 0.1142 0.2876 
0.2061 -0.4274 0.4968 -0.3068 -0.0473 0.4248 -0.305 0.2048 -0.3264 -0.0278 -0.0944 
0.4854 -0.5343 0.0869 0.4058 -0.3384 -0.2145 0.3391 -0.0616 0.1636 0.0054 0.0254 

Eigenvalues of matrix F 
1 -j -1 j 1 -j -1 j 1 -j -1 

 
Table 5: The computation time (in seconds) of the eigenvectors. 

N T Method S Method OPA (1) OPA (2) DBEOA 
37 0.046875 0.046875 0.015625 0 0.03125 

128 0.109375 0.0625 0.0625 0.03125 0.03125 
256 0.484375 0.296875 0.375 0.1875 0.1875 
512 4.78125 2.40625 2.921875 1.265625 1.1875 

1024 36.29688 18.46875 22.84375 8.25 8.25 
2048 282.1875 149.3594 198 76.42188 73.67188 

 
Table 6: Maximum orthonormality error. 

N T Method S Method OPA (1) OPA (2) DBEOA 
37 1.14631E-14 2.10942E-15 2.5535E-15 2E-15 3.54E-15 

128 8.34721E-13 5.44009E-15 3.9968E-15 8.09E-13 4.85E-10 
256 1.28672E-11 4.66294E-15 3.3307E-15 1.03E-08 0.00778 
512 2.86842E-11 6.21725E-15 6.6613E-15 0.067112 0.269404 

1024 3.61431E-10 1.06581E-14 5.9952E-15 0.095463 0.733461 
2048 3.94696E-09 1.34337E-14 1.5099E-14 0.096422 0.379373 

 
Table 7: Frobenius norm of the orthonormality error matrix. 

N T Method S Method OPA (1) OPA (2) DBEOA 
37 2.94927E-14 6.96041E-15 9.13158E-15 1.6E-14 1.87E-14 

128 1.90672E-12 2.31327E-14 2.8328E-14 1.21E-11 2E-09 
256 3.50961E-11 4.33601E-14 5.19285E-14 1.63E-07 0.043024 
512 5.83399E-11 8.3416E-14 9.77425E-14 2.843433 4.185355 

1024 8.07624E-10 1.65572E-13 1.99409E-13 6.324341 16.83342 
2048 1.02527E-08 3.24143E-13 4.13468E-13 19.08835 14.13938 
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Fig. 1: Norm of the error vectors between the exact and approximate eigenvectors for N =256. 
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Fig. 2: The DFRFT (based on the eigenvectors of matrix T) of a discrete-time impulse. (N = 65) 
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Fig. 3: The DFRFT (based on the eigenvectors of matrix S) of a discrete-time impulse. (N = 65) 
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Fig. 4: The DFRFT (based on the OPA (1)) of a discrete-time impulse. (N = 65) 



 31

-40 -20 0 20 40
-0.2

-0.1

0

0.1

0.2
(a) alpha = 0.3 pi

-40 -20 0 20 40
-0.2

-0.1

0

0.1

0.2
(b) alpha = 0.45 pi 

-40 -20 0 20 40
-0.2

-0.1

0

0.1

0.2
(c) alpha = 0.48 pi 

-40 -20 0 20 40
-0.05

0

0.05

0.1

0.15
(d) alpha = 0.5 pi 

 
Fig. 5: The (scaled) FRFT of a continuous-time impulse. (N = 65) 
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