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ABSTRACT 

 A fully-fledged definition for the fractional discrete Fourier transform of type IV (FDFT-IV) is 

presented and shown to outperform the simple definition of the FDFT-IV which is proved to be just 

a linear combination of the signal, its DFT-IV and their flipped versions. This definition heavily 

depends on the availability of orthonormal eigenvectors of the DFT-IV matrix G. An eigenanalysis 

is performed of a nearly tridiagonal matrix S which commutes with matrix G. An involutary unitary 

matrix P is defined and used for performing a similarity transformation that reduces S to a block 

diagonal form where the two diagonal blocks are exactly tridiagonal matrices. Moreover the 

elements of those two diagonal blocks are derived in order to circumvent the need for performing 

the two matrix multiplications involved in the similarity transformation. Orthonormal even and odd 

symmetric eigenvectors for S are generated – in terms of the eigenvectors of the two diagonal 

blocks – and proved to always be eigenvectors of G irrespective of the multiplicities of the 

eigenvalues of S. The relevance of the method contributed here is manifested in the case of a 

repeated eigenvalue of S with multiplicity 2 where a direct application of a general eigenanalysis 

procedure in any software package will not produce a pair of even and odd symmetric eigenvectors 

corresponding to this repeated eigenvalue. It should be mentioned that the almost tridiagonal matrix 

S which commutes with the DFT-IV matrix G being dealt with here is distinct from matrix S which 

commutes with the DFT matrix F dealt with in a previous paper [7]. 
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Index terms: Discrete Fourier transform of type IV (DFT-IV), fractional discrete Fourier transform 

of type IV (FDFT-IV), discrete Hartley transform, even and odd symmetric eigenvectors, a nearly 

tridiagonal matrix. 

 

I. Introduction 

 Both the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) have been 

generalized and four types have been defined [1]. Types I and IV are of prime importance since the 

time and frequency indices enter symmetrically in their definitions. Type I is the regular discrete 

transform and type IV is the main concern of the present paper. The fractionalization of any discrete 

transform necessitates a detailed eigenanalysis of the transform matrix. McClellan and Parks [2] 

followed by Dickinson and Steiglitz [3] were among the first digital signal processing researchers to 

perform an eigenanalysis of the DFT matrix F. Although Santhanam and McClellan [4] were 

pioneers in presenting a fractional DFT, it was Pei et al. [5] who presented a fully-fledged definition 

of the fractional transform. Candan, Kutay and Ozaktas [6] carried out an elegant study of the 

eigenvectors of a nearly tridiagonal matrix S which commutes with the DFT matrix F arriving at a 

common set of eigenvectors of both matrices. Their work has been recently put on a more rigorous 

foundation leading to some explicit expressions by Hanna, Seif and Ahmed [7]. Pei et al. [8] looked 

at the eigenvectors of S as only initial eigenvectors of matrix F and arrived at final superior ones in 

the sense of better approximating the Hermite-Gaussian functions. Other techniques for deriving 

orthonormal eigenvectors of matrix F have also been suggested [9-11]. 

 Turning to the DFT-IV, Tseng [12] obtained eigenvectors of its kernel matrix G by finding those 

of an almost tridiagonal matrix S which commutes with matrix G. However he did not treat the case 

of repeated eigenvalues of S where the corresponding eigenvectors – as obtained by a general 

eigenanalysis procedure in any mathematical software package – are not guaranteed to be 

eigenvectors of G. Tseng next used his results in developing a simple definition of the fractional 
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DFT-IV which can be shown to be just a linear combination of four terms; namely the signal, its 

DFT-IV and their flipped versions. 

 The main objective of the present paper is the development of a computationally efficient 

technique which is guaranteed to generate a common set of orthonormal eigenvectors of both the 

nearly tridiagonal matrix S defined in [12] and the kernel matrix G of the DFT-IV even in the 

degenerate case when matrix S has a repeated eigenvalue. More specifically matrix S will be 

reduced to a block diagonal form by means of a similarity transformation defined in terms of an 

elementary involutary matrix P. The two diagonal blocks resulting from applying the similarity 

transformation will be shown to be unreduced tridiagonal matrices and explicit expressions will be 

derived for their elements. Even and odd symmetric eigenvectors of S will be systematically 

generated and rigorously proved to always be eigenvectors of matrix G irrespective of the 

multiplicities of the eigenvalues of matrix S. Orthonormal eigenvectors of G that approximate the 

Hermite-Gaussian functions better than those of S are generated using some advanced techniques. A 

fully-fledged definition of the Fractional Discrete Fourier Transform of type IV (FDFT-IV) will be 

developed and shown to approximate the corresponding continuous fractional transform better than 

the simple definition. 

 It should be pointed out that matrix S - which commutes with the DFT-IV matrix G - defined in 

[12] and studied in detail here is quite distinct than matrix S used in [6,7] which commutes with the 

DFT matrix F. 

 In section II some properties of matrix G will be surveyed. An elementary unitary matrix  will 

be introduced in section III and employed in defining a similarity transformation for reducing 

matrix  to a block diagonal form in section

P

S 2 IV. In section V a fully-fledged version of the 

fractional DFT-IV will be developed and compared with the simple version. Some simulation 

results will be presented in section VI. 

II. The Kernel Matrix G of the DFT-IV 

                                                           
2 A part of this work was presented as a conference paper [13]. 
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 One starts by the definition of the kernel matrix G of the DFT-IV of order N [12]: 

   ,N,nk,W
N

G nk
Nnk 1  ,          

1 5.05.0
,    (1) 

where 







N
jWN

2
exp . It follows that matrix  is unitary and symmetric but not Hermitian. G

Lemma 1: Matrix G  is centrosymmetric, i.e.,  

GGJJ NN  (2) 

where  is the contra-identity matrix of order N defined by: NJ


















1

1

NJ . (3) 

Proof: By defining matrix T as  and using (1), one gets: NN GJJT 

nk

nk
N

nNkN
N

nNkNnk

G

W
N

W
N

GT

,

)5.0)(5.0(

)5.0)(5.0(

1,1,

1

1















     ,     Nnk ,,1,  . (4) 

  (Q.E.D.) 

Expressing G  as: 

ir GGG j  (5) 

it follows from the above lemma that both  and  are centrosymmetric. rG iG

Definition 1: Vector u  is even symmetric if 

uJu  . (6) 

Definition 2: Vector  is odd symmetric if v

vJv  . (7) 

It should be noticed that if N is odd, then the middle element of  will vanish. v
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Lemma 2: If vectors u  and  are respectively even and odd symmetric and  is a centrosymmetric 

matrix, then: 

v A

a) u  and  are orthogonal. v

b)  and  are respectively even and odd symmetric. Au Av

Proof: 

a) Equations (6), (7) and (3) imply that3:    vuvJuJvJuvuvu 2 ,,  HHHH  

where the fact that IJ 2   has been used. Hence 0, vu . 

b) The centrosymmetric condition (2) and Definition 1 above imply that: 

. Therefore Au  is even symmetric. By the same token, one gets 

 implying that Av  is odd symmetric. 

     AuJuJAJAuJ 

  AvAvJ 

 (Q.E.D.) 

 Tseng [12] showed that: 

NJG 2   (8) 

and that the 4 distinct eigenvalues of G are: 

   4,,1 ,     1
  kj k

k . (9) 

 Although the DFT-IV matrix G and the DFT matrix F have the same set of 4 distinct 

eigenvalues, they have completely different eigenvectors. The eigenvectors of G are either even or 

odd symmetric [12] and those of F are either circularly even or odd [2]. Consequently the results 

reported here are distinct than those reported in [6,7]. 

III. An Involutary Unitary Transformation Matrix P 

 One starts by defining an elementary square Matrix  as: P

                                                           
3 The superscripts T, *, H respectively denote the transpose, the complex conjugate and the Hermitian transpose (i.e. the 
complex conjugate transpose). 
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N oddfor      2
2

1

11

11




























IJ

JI

P  (10-a) 

and 

Neven for      
2

1














IJ

JI
P  (10-b) 

where the integer   is given by4: 

 N5.0 . (11) 

 It follows that the first   columns of P are even symmetric and the last  N  columns are odd 

symmetric. Being real, symmetric and unitary, it follows that matrix P satisfies: 

1 PPPP HT . (12) 

Consequently P is an involutary matrix because IP2  . A direct inspection reveals that matrix P 

defined above is distinctly different than its counterpart used in [6,7]. 

 In order to prepare for finding the effect of premultiplying a vector by , an arbitrary vector  

will be expressed in partitioned form as: 

P x

N oddfor      


















b

a

x

x

x x      and      (13) Neven for      









b

a

x

x
x

where the subvectors  and  are of dimension ax bx  N . By defining vector y  as: 

Pxy   (14) 

equations (10) and (13) result in: 

N oddfor      
2

1

1

1


























ba

ba

xxJ

2

xJx

y






x      and     Neven for      

2

1













ba

ba

xxJ

xJx
y



  (15) 

                                                           

 b4 The symbol  denotes the smallest integer larger than or equal to b. 
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Lemma 3: Let vectors x  and y  be related by (14). 

a) If x  is even symmetric, then: 

N oddfor      2

2

2

1


















0

x

y
a

x      and     Neven for      
2

2

1










0

x
y a . (16) 

b) If x  is odd symmetric, then: 

N oddfor      

2

0
2

1




















bx

0

y      and     Neven for      
22

1











bx

0
y . (17) 

c) If 0xb  , then y  is even symmetric. 

d) If 0xa   and 0x , then y  is odd symmetric. 

Proof: 

a) Here ab Jxx   and consequently aba xJxx 2 . Equation (16) follows immediately. 

b) Here a  and only for odd N : 0b Jxx  x . Consequently 0Jxx ba  , 

bx  and (17) follows immediately. bx 2aJx 

c) and d) The proof follows from the definition of even and odd symmetric vectors. 

  (Q.E.D.) 

Parts (a) and (b) of the above lemma imply that if  is even (odd) symmetric, then almost the 

second (first) half of 

x

y  vanishes. Parts (c) and (d) are respectively the converse of parts (a) and (b). 

IV. Tridiagonalization of a Nearly Tridiagonal Matrix S  

 A nearly tridiagonal matrix S  which commutes with the DFT-IV matrix  will be reduced to an 

exactly tridiagonal matrix by a similarity transformation defined in terms of matrix  of last 

section. The elements of the two diagonal blocks resulting from the similarity transformation will be 

derived. Orthonormal even and odd symmetric eigenvectors of matrix S  will be generated and 

G

P
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proved to be eigenvectors of any centrosymmetric matrix which commutes with matrix S . This 

holds irrespective of the multiplicities of the eigenvalues of . S

 Matrix S  is defined as [12]: 





































N

N

s

s

s

s

11

11

1

1

11

11

1

2

1







S  (18) 

where 

  Nn
N

nsn ,,1 ,         12cos2 





 


. (19) 

It follows that: 

Nnss nnN ,,1 ,          1   (20) 

and consequently vector s  defined by: 

 T
Nss 1s   (21) 

is even symmetric. A direct inspection reveals that matrix S defined above in accordance to [12] is 

distinctly different than that defined in [6] (Eq (16) in [6]) and used in [7] (Eq (55) in [7]) in two 

aspects. First the diagonal elements are different. Second the two elements in the upper right and 

lower left corners are -1 here and +1 in [6, 7]. It follows that the two matrices have different sets of 

eigenvectors and the contribution of the present paper is distinct than that of [7]. 

 Let the columns of matrix S  be denoted by , i.e., nc

 
  123321

N1

cJcJcJccc

ccS

NNN






  (22) 

where the second form is obtained by (18), (20) and (3). Consequently matrix  can be expressed 

in partitioned form as: 

S
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 
 




 
Neven for            

N oddfor      1




CJJC

CJJC
S

N

Nc
 (23) 

where matrix C  is defined by: 

 
 



 

Neven for       

N oddfor      1

ν

ν

ccc

ccc
C

21

21




 (24) 

Lemma 4: Let S  be any matrix5 of the form of (18) whose diagonal elements form an even 

symmetric vector and let  be the transformation matrix defined by (10), then P











OD

EV
PSP

0

01  (25) 

where EV  and OD  are square matrices of order   and  N  respectively. 

Proof: 

Case a: N is odd 

Using (12), (23) and (10), one gets: 

    12
2

1


  CJJIcCJISPSP ν
1

NNNN 

IJ 2 

. (26) 

Premultiplying both sides of the above equation by the contra-identity matrix  and utilizing the 

fact that  and the column  is even symmetric, one obtains: 

J

νc

    . (27) 12
2

1


  CJJIcCJISPJ ν
1

NNNNN

By comparing (26) and (27) and calling to remembrance (6) and (7), one concludes that the first   

columns of SP  are even symmetric and the last  N  columns are odd symmetric. 1

Case b: N is even 

Using (12), (23) and (10), one gets: 

                                                           
S5 This lemma does not require that the diagonal elements of  be given by (19). 
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    CJJICJISP 1
NNNN 

2

1  . (28) 

Premultiplying both sides by , one gets: NJ

    CJJICJISPJ 1
NNNNN 

2

1
 . (29) 

By comparing (28) and (29), one concludes that the first   columns of  are even symmetric 

and the last 

1SP 

 N

1SP  P

 columns are odd symmetric. 

 The same conclusion has been reached whether N is odd or even. Therefore by virtue of parts (a) 

and (b) of Lemma 3, premultiplying  by  will zero the last  N  elements of the first   

columns and the first   elements of the last  N  columns. Hence the validity of (25) is 

established. (Q.E.D.) 

 

Theorem 1: 

 Let S  be any matrix of the form of (18) whose diagonal elements form an even symmetric 

vector6 and let  be the transformation matrix defined by (10), then the two diagonal blocks  

and OD  appearing in (25) are symmetric tridiagonal matrices that are given explicitly by: 

P EV

                                                          




















































s

s

s

s

s

s

1

2

3

2

1

1

11

1

1

11

11

11




EV  , (30) 

 
S6 This Theorem does not require that the diagonal elements of  be given by (19). 
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

































11

11

1

1

11

1

1

2

1

s

s

s

s






 

OD  (31) 

where 








Neven for             1

N oddfor           2      ,        and     . (32) 





Neven for         1

N oddfor          0




 


Neven for          

N oddfor      1






The proof is given in Appendix A. 

Generation of Orthonormal Eigenvectors for Matrix : S

1. The real symmetric tridiagonal matrices EV  and OD  given by (30) and (31) are unreduced 

in the sense that all elements lying on the first upper (or lower) diagonal are nonzero. 

Consequently the eigenvalues of each matrix are distinct [14]. Therefore each matrix will 

have a complete set of orthonormal eigenvectors. More specifically 

           and           (33) 1 111 MΛMEV 1 222 MΛMOD

where  and  are real diagonal matrices and  and  are real unitary modal 

matrices. 

1Λ 2Λ 1M 2M

2. The eigendecomposition of the block diagonal matrix 1PSP  of (25) is given by: 

  (34) 11   MMPSP

where 

           and           (35) 









2

1

Λ0

0Λ
Λ 










2

1

M0

0M
M

and the modal matrix  is unitary. M

3. The eigendecomposition of matrix S  is: 
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           where          . (36) 1 QQS PMMPQ 1  

The modal matrix  of S  is unitary since (36) and (12) imply that . 

Based on the block diagonal form of matrix  given by (35) and the relation , one 

concludes – by virtue of parts (c) and (d) of Lemma 3 - that the first 

Q IPMPMQQ  HHH

PMQ M

  eigenvectors of  are 

even symmetric and the last 
S

N

A S

S

 eigenvectors are odd symmetric. 

4. The eigenvalues of S  are those of the matrices EV  and OD . Since each of the latter two 

matrices has distinct eigenvalues, this proves that the maximum algebraic multiplicity of any 

eigenvalue of S  is 2; a fact that was mentioned without a proof in [12]. Since the 

multiplicity will be 2 only when a diagonal element of 1Λ  happens to equal a diagonal 

element of 2Λ , one concludes that one of the eigenvectors of S  corresponding to this 

repeated eigenvalue will be even symmetric and the other one will be odd symmetric. It 

should be emphasized that the orthonormality of the eigenvectors of S  given by the columns 

of the unitary modal matrix Q  holds irrespective of the multiplicities of the eigenvalues. 

The procedure presented here for generating Q  is computationally efficient since matrix M  

is generated by computing the modal matrices 1M  and 2M  of the two tridiagonal matrices 

EV  and OD  having almost half the size of matrix S . 

Orthonormal Eigenvectors for Matrix : G

Lemma 5: The modal matrix  given by (36) – of any matrix S  having the form of (18) and whose 

diagonal elements form an even symmetric vector

Q

7 – is always a modal matrix of any 

centrosymmetric matrix  that commutes with  irrespective of the multiplicities of the 

eigenvalues of . 

Proof: 

If   is a simple eigenvalue of S , then the corresponding eigenvector will also be an eigenvector of 

 by the commutativity of S  and  [15]. It remains to consider the case when A A   is an eigenvalue 

of  with multiplicity 2. Let u  and  be respectively the corresponding even and odd symmetric 

eigenvectors, i.e., 

S v

uSu   v  and Sv  . Exploiting the commutativity of  and , one gets S A

   Au AuS   and   AvAvS   . This implies that  and  are eigenvectors of  Au Av S

                                                           
S7 This lemma does not require that the diagonal elements of  be given by (19). 
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corresponding to the same  . Consequently they can be expressed as linear combinations of u  and 

 as follows: v

vu 21Au   , (37) 

vu 21Av   . (38) 

Premultiplying the above two equations by  and  respectively and applying Lemma 2, one 

gets 

Hv Hu

02  and 01 . Consequently uAu 1  and vAv 2 . Therefore  and  are also 

eigenvectors of . (Q.E.D.) 

u v

A

trix S  - defined by (18) and (19) – that have been proved to also be eigenvectors of ma G . 
                                        

Corollary: The modal matrix Q  given by (36) of matrix  defined by (18) and (19) is always a 

modal matrix of the kernel matrices G and H of the discrete Fourier transform of type IV and the 

discrete Hartley transform of type IV respectively. 

S

Proof: 

The kernel matrix  of the DHT-IV is defined by: H

ir GG H

G

ma

 (39) 

where the matrices  and  are defined by (5). According to Lemma 1 matrix  is 

centrosymmetric and the matrices G  and G  have the same property by virtue of (5). It follows 

from (39) that matrix  will also be centrosymmetric. Since each of the centrosymmetric matrices 

 and H  commutes with S  [12], the proof is immediately established

rG

H

iG G

trix 
                  

r i

8. 

V. Fractional Transforms 

 By shifting the Hermite-Gaussian functions by half a sample, sampling them and rearranging the 

samples after reversing the signs of those lying on the negative time axis, Tseng [12] showed that 

the resulting samples form vectors that are approximate eigenvectors of the DFT-IV matrix G . On 

the other hand, starting by the second order differential equation satisfied by the Hermite-Gaussian 

functions and discretizing it after shifting the independent variable by half a sample, Tseng proved 

that the solution of the resulting second order difference equation is given by the eigenvectors of 

 
S

S

8 Although Lemma 5 does not require that the diagonal elements of matrix  be given by (19), the corollary does 
require that because the commutativity of G and S and of H and S was proved in [12] under the assumption that the 
diagonal elements of  are given by (19). 
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Consequently the exact orthonormal eigenvectors obtained in the last section approximate t e 

Hermite-Gaussian functions to some extent. One objective of the present section is to get final exact 

orthonormal eigenvectors of G  that better approximate the Hermite-Gaussian functions than the 

eigenvectors of matrix S  to be referred to as the initial exact eigenvectors. The superior final 

eigenvectors will be taken as a basis for developing a fully-fledged definition of the fractional DFT-

IV (FDFT-IV) that will be next compared with the simple definition given in [12]. The results will 

be extended to define a fully-fledged Fractional DHT-IV (FDHT-IV). 

h

(A) A Fully-Fledged Fractional DFT-IV 

 key formula [12]: 

(40) 

where vector 

 Tseng derived the following approximate

  n
n

n j uGu   

nu  is obtained by shifting the Hermite-Gaussian function of order n by half a sample, 

sampling it and rearranging the samples after reversing the signs of those lying on the negative time 

axis. Formula (40) indicates that nu  is an approximate eigenvector of matrix G  corresponding to 

the exact eigenvalue  nj  recalling that G  has only the 4 distinct eigenvalues given by (9). Since 

the unitary matrix G der N has only  linearly independent eigenvectors, one should select a 

set of indices Nnnn ,,, 21   such that the corresponding vectors Nk ,,1 , 
knu  will be 

adopted as the approximate ite-Gaussian-like eigenvectors of G . The selection is guided by 

the following two factors: 

 The eigenvalues 

 of or


N

Herm

  kn  , 

nera

e 

Nkj ,,1  should satisfy the multiplicities requirement (given by 

ge lly be small in order to reduce the approximation error. 

ces to the 

k approximate eigenvectors of  will be grouped as the columns of 4 

Eq. (10) in [12]). 

 The indices should 

 Therefore the set   should be as given in Table 1 which upon examination redu

concise format of Table 2. 

 The Hermite-Gaussian-li G

matrices kU  corresponding to the 4 distinct eigenvalues k  of G  given by (9). The procedure for 

obtaining orthonormal Hermite-Gaussian-like exact eigenvectors of G  that approximate the 

Hermite-Gaussian functions better than the eigenvectors of matrix S  is as llows: 

 

fo

a) Generate the real m atrix Q of matrix  (defined by (18) and (19)) according to (36) odal m S

and group its columns into 4 matrices 4,,1 , kkV  according to the corresponding 
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eigenvalues k  of matrix G  that commutes with S . These exact eigenvectors will be taken 

as only initial ones. 

b) Generate real approximate Hermite-Gaussian-like eigenvectors of G  and group them into 4 

matrices kU . 

c) For each eigenspace compute final real exact eigenvectors to form the columns of 4 matrices 

kÛ  by applying either the Gram-Schmidt Algorithm (GSA) in the manner explained in [8] 

or the Orthogonal Procrustes Algorithm (OPA) delineated in [16] and applied in [8]. 

 

 One should mention that the eigenspaces 4,  , ,1kEk  corresponding to the 4 distinct 

eigenvalues of  have been dealt with separately since eigenspaces corresponding to distinct 

eigenvalues of a unitary matrix are orthogonal [17]. 

G

 The modal decomposition of matrix G  is: 

HUDUG ˆˆ  (41) 

where U  is the unitary modal matrix: ˆ


N21 nn uuU ˆˆˆ  nû  (42) 

and 

    Nnn jjdiag  ,1 D , . (43) 

The kernel of a fully-fledged definition of the fractional discrete Fourier transform of type IV 

(FDFT-IV) of order a  (corresponding to an angle of rotation  ) is defined by: 

HÛ
α

π
α

πa DUGG ˆ
22

  (44) 

where 

   Nnjnjdiag  , 1   
α

π

2
a DD

a

exp,exp  . (45) 

The order of the transform  and the angle of rotation   are related by 

2

a . It should be 

mentioned that although matrix  of (43) has only 4 distinct diagonal elements given by (9), matrix 

 as defined by (45) can have up to N distinct diagonal elements. Consequently the definition of 

the kernel of the FDFT-IV given by (44) and (45) is a fully-fledged one. 

D

aD

In general the FDFT-IV of a time-domain signal represented by vector  is given by: x

xGX





2

 . (46) 

(B) A Simple Fractional DFT-IV 

 15



 Instead of exploiting the possible variability of the diagonal elements of  Tseng [12] 

proposed a simple definition for the fractional DFT-IV based philosophically on confining those 

diagonal elements to the following 4 specifically selected values corresponding to the 4 distinct 

diagonal elements of : 

aD ,

D

  111  aa , (47-a) 

       
 jjj aa  exp5.0exp
2

2 , (47-b) 

       
 2expexp1
2

3 jjaa   , (47-c) 

       
 jjj aa exp5.0exp
2

4  . (47-d) 

This restricted simple choice of the values of the diagonal elements of  allows  to be 

expressed as a power series in G given by: 

aD aG













3

0

1

00

2

)()()(
k

k
k

N

k

k
k

k

k
k abc GGGG 


 . (48) 

The second equality in the above formula is a consequence of Cayley-Hamilton theorem [17] and 

the third equality is due to the fact that  which follows from (8). Substituting (44) and (41) 

respectively in the left and right hand sides of (48) and exploiting the unitarity of the modal matrix 

, one gets: 

IG 4

Û





3

0

2

)(
k

k
ka DD 


 . (49) 

In Appendix B it will be shown that the 4 coefficients in the above formula are given by: 

    cos exp15.0)(0 ja  , (50-a) 

    sin exp15.0)(1 jja  , (50-b) 

    cos 1exp5.0)(2  ja , (50-c) 

    sin exp15.0)(3 jja  . (50-d) 
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Substituting (48) in (46) and utilizing (8), one gets: 

JGxJxGxxX )()()()( 3210  aaaa  . (51) 

The above formula implies that the simple definition of the FDFT-IV reduces to just a linear 

combination of the signal, its DFT-IV and their flipped versions. 

 It should be emphasized that the kernel matrix 



2

G  of the fully-fledged definition of the FDFT-

IV given by both (44) and (45) cannot be expressed as a power series in G. The reason is that such 

an expression would lead to the second and third equalities in (48) and consequently to (49). Since 

the diagonal matrix on the R.H.S. of (49) has only 4 distinct diagonal values while that appearing on 

the L.H.S. can have up to N distinct diagonal values in the case of the fully-fledged definition, one 

faces a contradiction. In fact the fully-fledged definition of the FDFT-IV is by far richer than the 

simple one. In the simulation section, it will be shown that the former is able to approximate the 

corresponding fractional continuous transform better than the latter. 

(C) A Fully-Fledged Fractional DHT-IV 

The kernel matrix H of the DHT-IV defined by (39) was shown to have only the two distinct 

eigenvalues  whose multiplicities are given by Fact 11 in [12]. 1

In order to find out how vectors  (appearing in (40)) can serve as approximate eigenvectors of 

matrix H, one starts by substituting (5) in (40) to get: 

nu

    nnir uuGG njj  . (52) 

In order to equate the real and imaginary parts, one should consider the cases of even and odd  

separately. 

n

For even n , (52) results in: 

  nnr uuG nj , (53-a) 

0niuG . (53-b) 

Adding the above two equations and using definition (39) for matrix H, one gets: 

  nn uHu nj . (54) 

For odd , (52) leads to: n

0nruG , (55-a) 

  nni uuG 1 nj . (55-b) 
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By addition, one gets: 

  nn uHu 1 nj . (56) 

Equations (54) and (56) for even and odd n  respectively can be compactly expressed as: 

 
 

 ,4 ,2 ,0 ,          
11











n
j

j
n

n

nn

nn

uHu

uHu
. (57) 

The above formula implies that for even n , the vectors  and  are approximate eigenvectors 

of matrix H  of order N corresponding to the same exact eigenvalue 

nu 1nu

 nj  which has only two 

possible values . The selection of the set of indices 1  Nn,n1 ,  of the approximate 

eigenvectors  should satisfy the multiplicity requirement of the eigenvalues (as given by Fact 11 

in [12]). This leads to Table 3 for the values of the index n to be used in (57) and the set 

knu

  of 

indices. A careful examination of Table 3 shows that: 

 1 , ,2 ,1 ,0  N . (58) 

Consequently the corresponding diagonal matrix of exact eigenvalues is given by: 























































  ,)4(

2
exp,)4(

2
exp,)2(

2
exp,)2(

2
exp,)0(

2
exp,)0(

2
exp


jjjjjjDiagD . (59) 

 The Hermite-Gaussian-like approximate eigenvectors of H will be grouped as the columns of 2 

matrices  corresponding to the 2 distinct exact eigenvalues of H. The procedure for generating 

orthonormal Hermite-Gaussian-like exact eigenvectors of H  that serve as a good approximation to 

the Hermite-Gaussian functions is given below: 

kU

 

a) Generate the real modal matrix of matrix S  (defined by (18) and (19)) according to (36) and 

group its columns into 2 matrices 2 ,1 , k  according to the two distinct eigenvalues 1kV   

of matrix H  that commutes with S . These exact eigenvectors will be taken as only initial 

ones. 

b) Generate approximate Hermite-Gaussian-like eigenvectors of H  and group them into 2 

matrices 2 ,1 ,  according to the corresponding exact eigenvalues 1 .  kkU

c) For each eigenspace compute final exact eigenvectors to form the columns of 2 matrices 

2 ,1 ,  by applying either the Gram-Schmidt Algorithm or the Orthogonal Procrustes 

Algorithm. 

ˆ kkU

 

 The modal decomposition of H  is: 
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HUDUH ˆˆ  (60) 

where 

 1N10 uuuU  ˆˆˆˆ   (61) 

and D  is given by (59). 

The kernel of a fully-fledged definition of the fractional discrete Hartley transform of type IV 

(FDHT-IV) of order a  is: 

H
α

π
α

πa UDUHH ˆˆ
22

  (62) 

where 

            ,4exp,4exp,2exp,2exp,0exp,0exp

2




 jjjjjjDiag D . (63) 

 

VI. Simulation Results 

 

(A) The Eigenvectors of the DFT-IV Matrix 

 Orthonormal eigenvectors of the kernel matrix of the DFT-IV are generated by each of the 

following three methods: 

1) The S method where the eigenvectors of matrix S are computed in the manner delineated in 

section IV. 

2) The Orthogonal Procrustes Algorithm (OPA). 

3) The Gram-Schmidt Algorithm (GSA). 

 One should mention that even for the second and third methods, one should start by applying the 

S method in order to generate initial eigenvectors as stated in section V-A. Since the target is to 

approximate the Hermite-Gaussian functions, one computes the approximation error vectors defined 

as the difference between the exact eigenvectors (the columns of matrix Q of (36) for the S method 

and the columns of matrix  appearing in (41) for the OPA and GSA) and the approximate 

eigenvectors (vectors  appearing in (40)). The norms of the approximation error 

vectors are plotted in Fig. 1 for  for each of the above three methods. The eigenvectors are 

numbered as n . Since eigenvectors of G corresponding to the eigenvalues 

Û

,1 Nnn , , u

18N

N,,1 j  are 

even symmetric and those corresponding to 1  are odd symmetric [12], the norms of the 
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approximation error vectors corresponding to each set are separately plotted and are shown in Figs. 

2 and 3. An inspection of Figs. 1-3 reveals that the OPA and GSA outperform the S method as 

expected. 

 The computation time of the eigenvectors for each of the three methods is recorded and given in 

Table 4 for several values of the order N of matrix G. It is obvious that either the GSA or the OPA 

has a longer computation time than the S method9. This is the minor cost that one should incur in 

return for getting a smaller approximation error. 

 In order to assess the numerical stability of the three methods, one should compute the 

orthonormality error matrix defined by: 

IUUE  ˆˆ H  (64) 

where  is any unitary matrix, e.g. a modal matrix of the DFT-IV matrix G. In the absence of 

round off error - which is unavoidable - matrix E is identically zero. The maximum element in 

absolute value as well as the Frobenius norm of matrix E - corresponding to the modal matrix of G 

as evaluated by the three methods under consideration - are computed and given respectively in 

Tables 5 and 6 for several values of the order N. A quick examination of these two tables shows that 

for the S method and the OPA the orthonormality error

Û

10 is negligible for all values of the order N. 

However for the GSA, the orthonormality error begins to be significant for values of N starting 

from 256. The plot of Fig. 1 for N = 18 is repeated in Fig. 4 for N = 512. Comparing the 

performance of the GSA and OPA, one notices that the OPA has the merit that the maximum error 

is smaller while the GSA has the merit that the threshold value of m (the serial number of the 

eigenvector) - where the approximation error becomes sensible - is larger. Moreover the spurious 

fluctuations near the end of the GSA plot are due to the numerical inaccuracy of the computation 

                                                           
9 The computation is performed on a PC where some system related tasks are unavoidably concurrently taking place. 
This interprets the unexpected decrease in the computation time of the GSA for N = 32 compared to its value for N = 18 
and that of the OPA for N = 64 compared to its value for N = 32. The same remark holds for the S method for N = 32 
compared to N = 18. In general the estimated computation time is only reliable for large values of the order N. 
10 The orthonormality error and the approximation error are two quite distinct concepts. 
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manifested by the larger orthonormality error occurring for N = 512 as can be seen in Tables 5 and 

6. 

 

(B) The Transform of the Unit Impulse 

 The continuous FRactional Fourier Transform (FRFT) with an angle of rotation   [18] is 

defined by: 






 dtutKtyuY ),()()(   (65) 

where the transform kernel is given by: 

   
   
















































2 of multiple a is  if                                                            

2 of multiple a is   if                                                                  

 of multiple anot  is  if        coseccot
2

exp
2

cot1

,

22

ut

ut

ut
ut

j
j

utK  (66) 

A Generalized FRactional Fourier Transform (GFRFT) can be defined by (65) where the transform 

kernel is given by: 

 

      

 
   


























































2 of multiple a is  if                                                         

2 of multiple a is   if                                                                
 of multiple anot  is   if                                                                      

coseccot
2

exp
2

cot1

,

00

2
0

2
0

ut

ut

uutt
uutt

j
j

utK  (67) 

In order for the above continuous transform to parallel the DFT-IV, the two parameters  and  

appearing in (67) will be taken as  and 

0t 0u

Tt 5.00   5.00u  where T and  are respectively the 

sampling intervals in the time and frequency domains. Since the scope of the frequency spectrum 

that the DFT can cover is 



T/2 , the frequency spacing of the DFT is 
TN

2
 . From (65) and (67) 

one concludes that the GFRFT of an impulse is given by: 

 
    




 

 of multiple anot  is  if cosec cot
2

exp
2

cot1

),0()()(

00

2
0

2
0





























uut
uut

j
j

uKtGFRFTuY

 (68) 

In the special case of no fractionalization, i.e.  5.0 , the above equation reduces to: 
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  exp
2

1
)( 005.0 uujtuY 

  . (69) 

Discretizing the frequency variable u according to: 

  Nkkuk ,,1 ,     1   (70) 

one obtains: 

  Nk
N

kjuY k ,,1 ,     
2

1
exp

2

1
5.0 














 




 . (71) 

 On the other hand the DFT-IV of a discrete-time impulse is obtained using (1) by assuming a 

time-domain vector   and finding the corresponding frequency-domain vector as: T001 

Nkk
N

j
N

Gy kk ,,1 ,     
2

1
exp

1
1, 














 


. (72) 

Equations (71) and (72) indicate that the continuous transform should be scaled by 
N

2
 in order 

for the transforms of the continuous and discrete unit impulses to be identical in the absence of 

fractionalization. Figures 5 and 6 respectively show the fully-fledged and simple FDFT-IV of a 

discrete-time unit impulse for angles of rotation 
2

  and  
8

3
 ,

4
 ,

8

   using a transform order N = 

18. Figure 7 shows the GFRFT of a continuous-time unit impulse as given by (68) and scaled by the 

factor 
N

2
 for the same set of angles. In Figs 5-7, the solid line represents the real part and the 

dashed line represents the imaginary part. By examining the three figures, one notices that in the 

absence of fractionalization, i.e.  5.0 , parts (d) are identical as expected. In the presence of 

fractionalization, i.e.  5.0 , it is obvious that the plots in parts a, b, c of Fig. 6 - pertaining to the 

simple fractional transform - are quite lacking in variation and consequently they serve as a poor 

approximation of their counterparts in Fig. 7 pertaining to the continuous transform. On the 

contrary, parts a, b, c of Fig. 5 - pertaining to the fully-fledged fractional transform - have enough 

variations and consequently serve as a better approximation of their counterparts in Fig. 7 than 

those pertaining to the simple fractional transform. 

 

VII. Conclusion 

 An eigenanalysis of an almost tridiagonal matrix S which commutes with the DFT-IV matrix G 

has been presented. By means of a similarity transformation defined in terms of a unitary matrix , 

matrix S has been reduced to a block diagonal form where the two diagonal blocks are symmetric 

P
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exactly tridiagonal matrices and explicit expressions have been derived for the elements of those 

matrices in order to circumvent the need for performing the two matrix multiplications required for 

obtaining the transformed matrix . Even and odd symmetric eigenvectors of S are 

systematically generated – in terms of the eigenvectors of the two diagonal blocks – and proved to 

always be eigenvectors of matrix G irrespective of the multiplicities of the eigenvalues of S. The 

importance of the method of the present paper stems from the fact that a brute force application of a 

general eigenanalysis routine available in any software package will not generate one even and  one 

odd symmetric eigenvectors to correspond to an eigenvalue of S of multiplicity 2. Moreover since 

the two diagonal blocks are of almost half the order of matrix S, the technique of the present paper 

has the extra merit of computational efficiency. 

1PSP

 Eigenvectors of matrix G that approximate the Hermite-Gaussian functions better than those of 

matrix S have been generated by applying either the orthogonal procrustes algorithm (OPA) or the 

Gram-Schmidt algorithm (GSA). Those superior eigenvectors have been taken as basis for defining 

a fully-fledged version of the fractional DFT-IV. 
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Appendix A 
 

(Proof of Theorem 1) 
 

Case a: N is odd 

From (26), one gets: 

 321
1 AaAPSP  



 (A-1) 

where the  1 N  submatrices  and  and the column vector  are given by: 1A 3A 2a

 CJIPA NN1 
2

1  , (A-2) 

Pca2  , (A-3) 

  1NN3 CJJIPA  
2

1
. (A-4) 

It is straightforward to show that: 






















11

11

NN

IJ

JI

JI




2 , (A-5) 


























11

11

NN

IJ

JI

JI




0 . (A-6) 

The above two equations together with (10-a) lead to: 

 



















00

JI

JIP
11

NN 2
2

1


, (A-7) 

 



















 11

NN

IJ

00

JIP



0
2

1
. (A-8) 

Substituting (A-7) and (24) in (A-2), one gets: 
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




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



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



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
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



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






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

































 



0

00

JI

A
11

1

2

1

1

1

11

11

1

1

1

1

1

11

1

2 1

3

2

1

1

3

2

1




s

s

s

s

s

s

s

s









. (A-9) 

Substituting (A-8) and (24) in (A-4), one gets: 




























































































 




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11

1

1

1

1

1

1

1

1
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1

0

1

2

3

1
1

3

2

1

s

s

s

s
s

s

s

s














0

IJ

00

A

11

3 . (A-10) 

Substituting (10-a) in (A-3) and calling to remembrance the definition of  as the c  th column of 

matrix S as given by (22) and (18), one gets: 

















































0

0

0

0

Pa2

0

2

1

1

 ss . (A-11) 

Substituting (A-9), (A-10) and (A-11) in (A-1), one gets: 
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
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
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









































11|

11|

1|

1|

1|

|

|2

|21

|1

|1

|11

|11

1

2

3

1

1

3

2

1

s

s

s

s

s

s

s

s

s















1PSP . (A-12) 

By comparing (A-12) and (25), one concludes that (30) and (31) hold with 2 , 0  and 

1 . 

Case b: N is even 

From (28), one gets: 

 21 BBPSP 1  (A-13) 

where the N  submatrices  and  are given by: 1B 2B

 CJIPB NN1 
2

1  , (A-14) 

  CJJIPB NN2 
2

1
. (A-15) 

It is straightforward to show that: 














IJ

JI
JI NN , (A-16) 

















IJ

JI
JI NN . (A-17) 

The above two equations together with (10-b) lead to: 

  









00

JI
JIP NN



2

1
, (A-18) 
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  










 IJ

00
JIP NN

2

1
. (A-19) 

Substituting (A-18) and (24) in (A-14), one gets: 




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

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. (A-20) 

Substituting (A-19) and (24) in (A-15), one gets: 
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
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B2 . (A-21) 

Substituting the above two equations in (A-13), one gets: 










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



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











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









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1|

1|

11|

|11

|1

|1
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1

2

3

3

2

1

s

s

s

s

s

s

s

s




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




1PSP . (A-22) 

By comparing (A-22) and (25), one concludes that (30) and (31) hold with 1 , 1  and   . 
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  (Q.E.D.) 

 

Appendix B 

(Derivation of (50)) 

 

 By equating the diagonal elements of both sides of (49) using the 4 distinct eigenvalues of D 

(given by (9)) on the R.H.S. and the corresponding specifically selected fractional powers (given by 

(47)) on the L.H.S., one gets: 

 
 
  






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

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
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


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









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

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j

j

a

a

a

a

jj
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1

)(

)(

)(

)(
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11

1111

3

2

1

0

. (B-1) 

By interchanging the second and third rows, the above equation can be compactly expressed as: 

 
 
  






































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



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
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a
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A  (B-2) 

where 












CC

BB
A , (B-3) 












11

11
B , (B-4) 








 


j

j

1

1
C . (B-5) 

Matrix A of (B-3) can be expressed as: 




















II

II

CO

OB
A . (B-6) 

and it is straightforward to show that: 

2I
II

II

II

II




















. (B-7) 

From the above two equations, one concludes that the inverse of A is given by: 








































11

11

1

1
1
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CB

2

1

CO

OB

II

II

2

1
A . (B-8) 

Using (B-4), (B-5) and (B-8), one obtains the following unique solution of (B-2): 
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 . (B-9) 

By algebraic manipulation, one directly gets (50). 
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Table 1: The set of indices of the eigenvectors of the DFT-IV matrix G  Nnn ,,1  

N 
Nnnn ,,, 21   

4m    14,24,,2,1,0  mm  

4m+1    14,14,,2,1,0  mm  

4m+2  14,4,,2,1,0 mm  

4m+3    34,14,,2,1,0  mm  

 

Table 2: A concise form for the set of indices  Nnn ,,1  of the eigenvectors of matrix G 

 
N 

Nnn ,,1   

Odd , N, N, , , 2210   
Even 12210 , N-, N, , , 

 
Table 3: The set of indices of the eigenvectors of the DHT-IV matrix H  Nnn ,,1  

N The value of n in (57) 
Nnnn ,,, 21   

4m    24,44,,2,0  mm    14,24,,3,2,1,0  mm  

4m+1   mm 4,24,,2,0       mmm 4,14,24,,3,2,1,0   

4m+2   mm 4,24,,2,0    14,4,,3,2,1,0 mm  

4m+3  24,4,,2,0 mm     24,14,4,,3,2,1,0  mmm  

 
Table 4: The computation time (in seconds) of the eigenvectors. 

 
N S method GSA OPA 
18 0.015625 0.046875 0.015625 
32 0.000000 0.015625 0.031250 
64 0.015625 0.062500 0.015625 
128 0.062500 0.093750 0.062500 
256 0.343750 0.437500 0.406250 
512 3.359375 5.109375 4.796875 
1024 29.171875 47.359375 42.484375 
2048 230.093750 383.937500 365.156250
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Table 5: The maximum orthonormality error. 
 

N S method GSA OPA 
18 1.33227E-15 6.66E-16 1.9984E-15 
32 1.88738E-15 8.88E-16 2.22045E-15
64 1.9984E-15 4.37E-15 2.88658E-15
128 5.10703E-15 2.33E-11 3.55271E-15
256 6.66134E-15 0.526586 3.77476E-15
512 8.88178E-15 0.999515 4.77396E-15
1024 9.32587E-15 0.994361 7.32747E-15
2048 1.53211E-14 0.998968 1.19904E-14

 
Table 6: The Frobenius norm of the orthonormality error matrix. 

 
N S method GSA OPA 
18 2.71163E-15 2.24E-15 4.67783E-15
32 6.11936E-15 3.97E-15 9.034E-15 
64 1.04443E-14 1.62E-14 1.55815E-14
128 2.2952E-14 3.38E-11 2.83594E-14
256 4.31009E-14 1.017684 5.20255E-14
512 8.36262E-14 18.56104 9.72064E-14
1024 1.67385E-13 50.52326 2.00532E-13
2048 3.29626E-13 148.6696 4.20158E-13
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Fig. 1: The norm of the approximation error vectors between the exact and approximate 

eigenvectors for N = 18. 
(all eigenvectors) 
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Fig. 2: The norm of the approximation error vectors between the exact and approximate 

eigenvectors for N = 18. 
(for only the even symmetric eigenvectors) 
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Fig. 3: The norm of the approximation error vectors between the exact and approximate 

eigenvectors for N = 18. 
(for only the odd symmetric eigenvectors) 
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Fig. 4: The norm of the approximation error vectors between the exact and approximate 

eigenvectors for N = 512. 
(all eigenvectors) 
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Fig. 5: The fully-fledged FDFT-IV of a discrete-time impulse for N = 18. 
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Fig. 6: The simple FDFT-IV of a discrete-time impulse for N = 18. 
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Fig. 7: The (scaled) GFRFT of a continuous-time impulse for N = 18. 
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