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Abstract—SLAM is defined as simultaneous estimation of
mobile robot pose and structure of the surrounding environment.
Currently, there is a much interest in Visual SLAM, SLAM with
a camera as main sensor, because the camera is an ubiquitous and
affordable sensor. Camera measurements formed by perspective
projection is highly nonlinear with respect to estimated states,
leading to complicated nonlinear estimation problem. In this
paper, a novel system is proposed that divides the problem into
two parts: local and global motion estimation. This division leads
to a simple linear estimation system. In the first stage, local
motion parameters (acceleration, velocity, angular acceleration
and orientation) are estimated in robot local frame. Robot
position and the scene map are then estimated in the second stage
in global frame as global motion parameters. Map is updated
at each camera frame and is represented in a relative way to
decouple robot pose from map structure estimation. The new
system simplified the map correction to a linear optimization
problem. Simulation results showed that the proposed system
converges and yields accurate results.
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I. INTRODUCTION

Localizing a robot is a basic need for several autonomous
mobile robot applications. SLAM techniques aim to solve this
problem by sensing the surrounding environment around the
robot then building a map. Afterwards, the map is used to
localize the robot in its environment. In most cases, robot
sensors measure partial information about surrounding envi-
ronment, for example landmark positions relative to the robot
in case of laser range finder or perspective projections of
landmarks on the image plane in case of camera. This fact
implies that map structure should be estimated by fusing all
partial measurements through a map correction/optimization
process. This process is highly nonlinear in Visual SLAM
systems [1] [2].

Extensive research was performed on SLAM problem.
From our point of view, there were two challenges that mo-
tivated researchers. First, localization accuracy enhancement.
This could be achieved by enhancing sensor accuracy or by
improving computational aspect of the estimation process.
Currently, there is no single sensor that gives accurate measure-
ments under all conditions and in all environments. Therefore,
sensing is usually enhanced by utilizing several sources of

information and merging them using the probabilistic frame-
work. Sensors like laser range finder, inertial sensors, GPS and
camera were usually employed in localization process [3] [4]
[5]. Considering computational aspects, localization accuracy
may be enhanced by elaborating on map representation, either
absolute or relative [6] [7] [8], or by elaborating on computa-
tional approach either Filtering or Optimization techniques [9]
[2].

Second challenge is the computational cost of SLAM
technique especially in large environments. As the map size in-
creases, two operations scale up as well: feature matching and
map optimization. Fortunately, research revealed that feature
matching can be highly accelerated by utilizing appearance
based methods [10] [11] [12]. These methods make advantage
of text-retrieval techniques by decomposing scenes into visual
words and searching for them in a vocabulary tree. On the other
side, map optimization is still a computational issue. Current
successful systems either summarize the map in a special way
[3] or perform sub map optimization [13].

In this paper, we address two aspects of SLAM problem,
accuracy and computational cost. A novel system for solving
SLAM problem is introduced which exploits both vision and
inertial sensors. The processing is divided into two stages, in
the first stage, acceleration, velocity, angular acceleration, and
orientation are estimated using EKF, while in the second stage,
robot position and absolute landmark positions are estimated.
The estimation system in the second stage is linear which leads
to optimal and computationally efficient estimation. Further-
more, map structure is decoupled from position estimation
by utilizing graph-based relative map. The map is updated
whenever new camera measurement is received. Linearisation
of the second stage with relative map representation which take
all measurements into account helps to achieve accurate robot
localization with computationally affordable map optimization.
The novel two stage pipeline leads to linearisation of the costly
map optimization, hence its solution is simpler than nonlinear
optimization methods used in the literature [13] [3].

This paper is organized as follows: Section I introduces
the current state of SLAM and proposed system. System
structure and the algorithm description are presented in section
II. Estimation of local motion is presented in section III, while
section IV describes the global motion estimation procedure.
Simulation results are presented in section V and conclusions



Fig. 1. Computational system of the proposed SLAM System.

are finally given in section VI.

II. SYSTEM OVERVIEW

The proposed system is shown in Fig. 1. The relative map
representation is utilized, in which the map is represented as
a graph with landmarks as vertices and displacement vectors
between different landmarks as edges. In this graph, the edges
are used as state variables that are estimated and considered
independent from the robot pose and from each other. This
enables separate estimation of each edge vector, and hence
simplifies the map update. The edge map is used for the map
update, then for localization it is converted into landmark
map. Pseudo-code for this algorithm is shown in algorithm
1. The processing can be divided into four steps: 1) Local
motion estimation. In which a vision sensor is employed
besides inertia sensors including an accelerometer, gyroscope,
and magnetometer to estimate acceleration, velocity, angular
velocity ,orientation and map landmarks 3-D positions relative
to local frame using EKF. 2) Update of edges in map graph.
The results of local motion estimation are used to update
edges of the map graph. Edge measurements in the global
frame are calculated from estimated 3-D relative positions of
landmarks plus estimated orientation. The map edges are up-
dated whenever any new measurement is received, hence there
is no information loss, thanks to relative map representation.
3) Map correction/optimization. An optimization criterion
is used to reduce the map inconsistency. Using this criteria
the edge map is converted to point map where each point is
the position of a landmark. Map correction is only performed
infrequently due to its computational load. It will be shown
later that this process is equivalent to the solution of a linear
system. 4) Global motion estimation. Given estimated robot
velocity as input, 3-D estimated positions of landmarks as
measurements and optimized point map, the robot position is
estimated through a simple linear process.

Algorithm 1 Pseudo code of proposed SLAM algorithm
1: function ROBOT MOTION AND EDGE MAP ESTIMATION

PROCESS
2: for every new frame do
3: Start local motion estimation.
4: Add newly appearing landmarks to state.
5: Remove disappeared landmarks from state.
6: Local motion EKF correction step.
7: Local motion EKF prediction step.
8: Output estimated velocity and relative landmark

positions.
9: Start global motion estimation.

10: Correct seen map edges using results of the first
stage.

11: New robot position EKF prediction step.
12: Robot position EKF correction step.
13: end for
14: end function
15: function MAP CORRECTION PROCESS
16: for every frame in N frames do
17: Use edge map as input
18: Calculate solution for landmark positions
19: Calculate covariance matrix for landmark positions
20: end for
21: end function

III. LOCAL MOTION ESTIMATION

In this stage, vision and inertial sensors are employed to ac-
quire information about the robot motion and the surrounding
environment. It is assumed that the camera and inertial sensors
frames of reference are coincident with robot local frame.
The acceleration measured using an accelerometer includes
gravity acceleration vector in addition to motion acceleration,
to obtain motion acceleration only gravity should be subtracted
vectorially from accelerometer reading. A very good estima-
tion of orientation should be maintained to avoid interference
of gravity. The angular velocity is measured using 3-axis
gyroscope. Orientation of the robot is obtained by combining
gyroscope, accelerometer, and magnetometer readings. Usage
of magnetometer may be problematic because of magnetic
field interference caused by magnetic field sources like electric
motors. here we neglect interference. Usage of inertial sensors
together with a camera requires pre-calibration to determine
the relative transformation between the camera and inertial
sensors. The work done by [14] illustrates how to achieve
this calibration. Inertia sensors reading usually contains some
slowly growing bias. It is assumed that the sensors are initially
calibrated and hence there is zero initial bias. The slowly
changing biases are modelled as being states of the system.

A. Estimation Model

The goal of the first stage is to estimate local motion
parameters, namely acceleration a, velocity v, angular velocity
ω, orientation quaternion q, landmark positions in local frame
H1 H2 ... Hn and sensor biases ab, ωband Mb

Instead of Cartesian parametrization for landmarks, another
representation which we call H-parametrization is utilized. It is



related to Cartesian parametrization by the following relations:
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(1)

The H-parametrization has been employed to enhance esti-
mation accuracy. Using inverse depth for feature parametriza-
tion of features enables it to be better represented as proba-
bilistic Gaussian random variable as discussed in [15].

The robot local motion parameters and local-frame land-
mark positions evolve according to the following prediction
model:

a(k) = a(k − 1)− ω × a(k − 1) + na (2)
v(k) = v(k − 1) + a(k − 1) ∗ δt

− ω × v(k − 1) ∗ δt+ nv (3)
ω(k) = ω(k − 1) + nω (4)
q(k) = q(k − 1) ∗ qε ∗ nq (5)

Xi(k − 1) = Txyz(Hi(k − 1)) (6)
Xi(k) = Xi(k − 1)− v(k − 1) ∗ δt

− ω ×Xi(k − 1) ∗ δt+ nx (7)
Hi(k) = TH(Xi(k)) , i=1, 2, ..., N (8)

where Txyz is the transformation from H parametriza-
ton to xyz parametrization and TH is the transformation
from xyz parametrization to H parametrization, Xi is xyz-
parametrization of each landmark, Hi is H-parametrization of
each landmark, qε is Rotation quaternion corresponding to the
rotation vector ωδt, it is the amount of rotation in δt time and
Rθ is Rotation matrix that represents total orientation of the
robot. Equation 7 represents the change in landmark positions
from frame k-1 to frame k. Although the landmarks are
stationary by assumption, it is needed to transform them from
local frame k-1 to local frame k. This is done by observing
that, if the robot moves with velocity v and rotates with angular
velocity ω, The landmarks will look for an observer attached
to the robot as if it moves with velocity −v and angular
velocity −ω. Since H-parametrization is employed for the
landmarks, they should be transformed to xyz-parametrization
then evolved using estimated v and ω then transformed back
to H-parametrization.

The inertial and vision sensors measurements are modelled
by the following measurement equations.

am(k) = a(k) +Rθ ∗ g + ab + va (9)
ωm(k) = ω(k) + ωb + vω (10)
Mm(k) = Rθ ∗Mo +Mb + vM (11)

yi = CameraProj(X(k)) (12)

where am, ωm, and Mm are accelerometer, gyroscope
and magnetometer measurements respectively, ab, ωb, and
Mb are Accelerometer, gyroscope and magnetometer biases
respectively, Mo is Earth’s magnetic field, yi for i=1, 2, ... , n
are 2-D vectors that represent measured image coordinates of
landmarks, na, nv , nω , nq and nx are process noise, va, vω
and vM are Measurement noise. Equation 12 is the camera
measurement equation, where CameraProj is the nonlinear
projection function. All estimated parameters are expressed in
local frame except orientation which is expressed in global

frame. Given the camera intrinsic parameters matrix K, This
function may be written as

y =

[
1 0 0
0 1 0

]
∗K ∗X

[ 0 0 1 ] ∗K ∗X
(13)

EKF is utilized for the estimation and combining various
sensor measurements.

B. Landmark initialization

The landmarks are initialized such that their uncertainty
region is almost in the depth direction. For each new land-
mark, its projection on image plane [u v]T of the camera and
measurement uncertainty covariance matrix Quv are known.
Its initial mean Hinit and covariance Qinit are assigned as
follows.

Xinit = K−1

[
u
v
1

]
(14)

hinit1 = h1initial hinit2 =
yinit
xinit

hinit3 =
zinit
xinit

(15)

Hinit =

[
hinit1
hinit2
hinit3

]
(16)

K−1 =

[
1 0 0
0 s22 s23
0 s32 s33

]
(17)

=

[
1 01x2

02x1 S

]
(18)

Qinit =

[
q11initial 01x2

02x1 SQuvS
T

]
(19)

where K is intrinsic camera parameters matrix. There are two
parameters h1initial and q11initial which represent mean and
variance of landmark depth respectively. These values could
be chosen arbitrarily to any reasonable value. A reasonable
range for h1initial is from 0.5 to 2 and for q11initial is from
0.5 to 1. As the robot moves the true depth is resolved and
uncertainty decreases. The depth direction is X-direction.

IV. GLOBAL MOTION ESTIMATION

Given the estimation of orientation from the first stage, then
robot position and map can be computed in the second stage.
Excluding orientation from our estimation model, it turns into
a linear estimation problem. Two tasks are performed in global
motion problem:

1) Estimation of robot absolute position from velocity
input and measured landmark positions given the
map.

2) Correction of map structure from landmark measure-
ments.

In several SLAM systems the two problems were solved
together [9] because there is a dependency between absolute
landmark position and robot pose. To alleviate this problem,
the map is represented as a connected graph of landmarks
in which the landmarks are the vertices and the relative



Fig. 2. An edge viewed from two robot poses.

displacement vectors between landmarks are the edges as
shown in Fig.2. Since orientation is estimated in the first stage,
it is possible to measure the edge vector in absolute frame
directly and the edge vectors measurement are independent
from the robot position. Instead of correcting the whole map
whenever measurements are added to the map, it is only
needed to update independent edges in the scene. But absolute
landmark positions are still needed, The landmark absolute
positions are calculated from map graph edges. This process
will be formulated and solved as an optimization problem. The
last problem to be considered is the absolute referencing. The
map conversion process will yield only relative position of
landmarks. To disambiguate the absolute position problem, it
is required to have reference landmarks which may be selected
from the first scene. A good algorithm for the determination
of all other absolute positions can be found in [7].

The estimation system consists of the following states: 1)
Robot position. 2) Map edge vectors. 3) Landmarks absolute
positions. The first two states represent independent set of
states. On the other side, landmark absolute positions are
dependent on edge vectors. Robot position is computed by
simple integration of velocity. Edge measurements yeij can be
calculated from relative landmark positions yi(k + 1). The
system can be described by the following equations:

Xr(k + 1) = Xr(k) + v(k) ∗ δt (20)
yi(k + 1) = RTθ (Li(k + 1)−Xr(k + 1)) (21)
yeij(k + 1) = yj(k + 1)− yi(k + 1)

= RTθ (Lj(k + 1)− Li(k + 1))

= RTθ eij(k) (22)

where: Xr(k) is robot position, eij(k) is edge vector
connecting landmark i to landmark j, Li(k) is Landmark i
position. where i=1, 2, ... , Nl, v(k) is velocity input from
first stage, yi(k) are landmark measurements from first stage,
yeij(k) are edge measurement of eij(k), Rθ is robot rotation
matrix.

Equations 20 and 21 are used to estimate robot position
given the landmarks absolute positions Li, i=1, 2, ..., Nl.
Kalman Filter (KF) is employed in state estimation. Since the
system is linear the application of KF will be straightforward.

It is assumed in this section that mean XL and covariance ma-
trix PL of map landmarks are known. Of course they need to be
calculated from map graph. This calculation will be presented
in section IV-1. The map is updated at each new landmark
measurement. Landmark measurements are converted to edge
measurements as shown in Equation 22.

1) Map optimization: Map optimization is the process of
calculating landmark positions and covariance matrices given
a map graph with known edge vectors.

Due to measurement noise the edge graph will generally
be inconsistent. The edge vectors will disagree on the location
of a point that has several incident edges on it. To extract
the landmark positions, an optimization criteria that minimizes
the inconsistency error is needed. The total map inconsistency
error E, is defined as the sum of all inconsistency errors for
all edges.

E =
1

2
ΣNl
i=1ΣNl

j=1,j 6=i(Lj − Li − eij)
TSij(Lj − Li − eij)

(23)

where we define Sij = P eij
−1.

Once edge vectors eij are known, the next step is to
optimize with respect to landmark variables Li, i=1, 2, ..., Nl.
The error E is differentiated with respect to Lk where k=1,
2, ..., Nl, and the result is set equal to zero. This leads to a
matrix equation which is the result of optimization process.

AL = B (24)

Where A, L, and B are defined by:

L =
[
LT

1 L
T
2 ...L

T
Nl

]T
(25)

A =


(Σ

i=Nl
i=1,i 6=1S1i) −S12 ... −S1Nl

−S21 (Σ
i=Nl
i=1,i6=2S2i) ... −S2Nl

...

−SNl1 −SNl2 ... (Σ
i=Nl
i=1,i 6=Nl

SNli)


(26)

B =


Σ

i=Nl
i=1,i 6=1S1iei1

Σ
i=Nl
i=1,i 6=2S2iei2

...

Σ
i=Nl
i=1,i 6=Nl

SNlieiNl

 (27)

Equations 24 to 27 show that map optimization is equiva-
lent to solving a linear system of equations, But it is noted that
the matrix A is singular with nullity of three, this represents
three translation degrees of freedom expected for relative map
representation.

2) Solution of map optimization problem: Since matrix A
is singular, one more constraint is needed to reach a unique
solution. A reference point constraint is added, which means
that it is assumed that there is a point in the map whose
position is perfectly known. Last landmark position LNl

is
chosen as the reference landmark. We add this constraint as:
LNl

= Lref . The last row in matrix A represents redundant
equation. This redundant equation is replaced with constraint
equation, then the new system will be:



AdL =Bd (28)

Where Ad and Bd are modified A and B matrices. The
resulting system of equations is deterministic linear system
which can be solved for L1, L2, ..., LNl−1.

3) Determination of covariance matrix: Equation 28 will
yield the mean estimation of landmark positions. But, it is
also needed to determine the covariance matrix QL of the
landmarks. This is needed in robot position estimation.

For the determination of QL, the landmark positions L1,
L2, ...,LNl

are treated as Gaussian random variables with mean
L1, L2, ..., LNl

. The edges eij are treated as Gaussian random
variables with mean eij .

The covariance QL is defined as:

QL = E[(L− L)(L− L)T ] (29)

But we have
L = Ad

−1Bd

Substituting this value of L in equation 29 and after some
mathematical manipulation, it can be proved that:

QL =

[
A−111 0(3Nl−3)x3

03x(3Nl−3) 03x3

]
(30)

Having landmark positions L and landmark covariance matrix
QL, all information required for robot position estimation is
available.

V. SIMULATION RESULTS

A synthetic environment was prepared to test the algorithm,
where the true robot trajectory is generated as smooth piece-
wise cubic polynomial curves. Landmarks were abstracted
as randomly distributed points in a square area of 40x40 m
area and 4 m height. Hypothetical camera and inertial sensors
were attached to the robot. It was assumed that the camera
provides 30 frames per second and delivers consecutive stream
of images. Perfect feature matching is assumed. Attached
accelerometer, gyroscope, and magnetometer supply Gaussian
modelled noisy measurements at the same rate of the camera.
System parameters are summarized in Table I.

TABLE I. SIMULATION PARAMETERS

Parameter Value
Camera resolution 1024x1024 pixel
Camera viewing angle 120 degree
Std. of point landmark projection in image plane: 1 pixel
Std. of accelerometer noise: 0.05 m/s2

Std. of gyroscope noise: 0.2 deg/s
Std. of magnetometer noise: 0.5 mgauss

The robot estimates its 3-D motion variables while follow-
ing the path. True and estimated motion variables are recorded
during simulation for later accuracy evaluation.

The error metric at each time sample is defined by:

Error = ‖xtrue − xestimated‖2 (31)
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Fig. 3. True versus estimated velocity and orientation during first motion
scenario.

The root mean square error (RMSE) during the whole
trajectory is defined by:

RMSE =

√
1

N
Σi‖xitrue − xiestimated‖2 (32)

Fig.3(a) and Fig.3(b) present the true versus estimated
velocity (x-direction) and orientation (yaw angle), respectively.
The RMSE error of each motion variable is listed in Table II.

TABLE II. RMSE ERROR OF LOCAL MOTION VARIABLES

motion variable RMSE
acceleration 0.0868 m/s2

velocity 0.0441 m/s
angular velocity 0.3405 deg/s
orientation 0.0585 deg

The ground truth/estimated path of the robot is shown
in Fig.4 for a robot moving on circular path with constant
velocity. Initially, the reference point is not visible to the robot,
so it estimates position by only integrating velocity input.
Once the reference point becomes visible, the map correction
process is executed every fixed number of camera frames, in
this motion scenario, the position RMSE error was 0.2445 m.

The ground truth/estimated path of the robot for a highly
dynamic path with many rotations and in wide area is shown in
Fig.5. Position error depends on map correction rate, therefore
results at different map correction rates are presented in Table
III, the RMSE position error for cases of 5, 20, 50 and 200
correction rate is presented.
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TABLE III. RMSE POSITION ERROR

Map optimization frequency RMSE
every 5 frames 0.1368 m
every 20 frames 0.1883 m
every 50 frames 0.2095 m
every 200 frames 0.2030 m

VI. CONCLUSIONS

In this paper, a novel system for solving SLAM problem
was presented. It was shown how to break the problem into
two simpler problems, local motion estimation and global
motion estimation. It had been shown that the two problems
of robot position estimation and map structure estimation can
be decoupled. The main advantage of this architecture is that
the computationally expensive process of correcting the map is
now linear and that there is no need to skip any camera frame
or any other sensory information. It is possible to perform map
correction over long periods without affecting long-term map
accuracy.

Estimation of local motion is a complex nonlinear esti-
mation process but is independent from the mapping process,
so its computational cost will depend only on the number of

features detected in the scene, hence nearly constant. The most
computationally expensive process is map optimization. For
full information matrix A, the optimization will require O(N3)
time , where N is the total number of landmarks stored in the
map. On the average, due to its structure, matrix A will be
sparse with M number of entries in each row where M is
the average number of landmarks appearing in single camera
image. By using sparse matrix solvers, the time cost can be
reduced to O(NM2). Our future work is to enhance the map
optimization procedure by making it incremental instead of
global optimization to the whole map that is computationally
expensive.
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