Study of the Ameliorative Effect of Naltrexone/Bupropion, Liraglutide or Food Restriction On β -Cell Regeneration and Insulin Resistance in Obese Diabetic Male Albino Rats

Thesis

Submitted for Partial Fulfilment of the Requirement of the Master Degree in Physiology (Basic medical sciences)

By

Reem Ahmed Omar Hammad

(M. B, B. Ch.)

Under supervision of

Prof. Dr. Amani Mohamed El-Amin Ali

Professor of Medical Physiology and Head of Physiology Department Faculty of Medicine, Fayoum University

Dr. Ahmed Magdy Abdel Rahman El Ebiary

Lecturer of Medical Physiology Faculty of Medicine, Fayoum University

Dr. Dina Hamdy Mohamed Merzeban

Lecturer of Medical Physiology Faculty of Medicine, Fayoum University

Faculty of Medicine – Fayoum University 2024

ABSTRACT

Background: insulin resistance, characterized by impaired cellular response to insulin, plays a central role in the development of type 2 diabetes mellitus and obesity.

Aim of work: The aim of this work is to assess the effects of naltrexone/bupropion on body weight, β -cell regeneration, cardiovascular outcomes and the mechanism by which they can affect some selected parameters. Also, to compare the effect of naltrexone/bupropion on these parameters with both caloric restriction and liraglutide in obese type 2 diabetic male albino rats.

Methodology: This study is a comparative study which was conducted in the animal house of faculty of medicine, Fayoum university, Egypt. It

الدراسات العليا

2

included 50 male albino rats who were divided into 5 groups; group I: normal control group in which rats continued on standard commercial chow diet, group II: obese diabetic control group, group III: caloric restricted group in which rats subjected to dietary restriction of about 50% of the food intake of normal control group, group IV: (NTX+BUP) treated group (by a ratio of 1 NTX / 10 BUP, orally) and group V: liraglutide treated group (0.3mg/kg/day, S.C). Body weight, blood pressure, fasting glucose, fasting insulin, β -arrestin-1 were measured. Body mass index (BMI), homeostatic model assessment of insulin resistance (HOMA-IR) and of beta-cell function (HOMA- β) were calculated. Hematoxylin and eosin (H&E), anti-insulin antibodies and Ki-67 staining for histopathology of the pancreas was done.

Results: The results demonstrated significant improvement in insulin resistance, serum lipid profile and systolic blood pressure across all intervention groups compared to obese diabetic control group (P<0.05). Weight reduction was significantly higher in treatment with (NTX+BUP) treated group than liraglutide treated group and insignificantly higher than caloric restriction group. β -cell regeneration (assed through Ki-67 and anti-insulin Abs) was significantly higher in liraglutide treatment than caloric restriction and (NTX+BUP) treated groups however caloric restriction group was significantly higher than (NTX+BUP) treated group regarding β -cell regeneration. There were no statistically significant differences between treated groups according serum insulin level, serum lipid profile, HOMA-IR, HOMA- β , systolic blood pressure, diastolic blood pressure and mean arterial blood pressure (MAP) or atherogenic indices. There was no significant correlation between β -arrestin-1 and serum glucose, serum insulin, HOMA-IR or HOMA- β . There was a positive correlation between MAP and atherogenic index of plasma (AIP). Conclusion: our study highlights the potential benefits of (NTX+BUP), liraglutide and caloric restriction in ameliorating insulin resistance and

الدراسات العليا

promoting weight loss in diabetic obese male albino rats. Furthermore, (NTX+BUP) promising effect on glycemic control and systolic blood pressure reduction suggesting potential therapeutic approach for weight reduction in obese hypertensive diabetic patients but its role in β -cell regeneration was minor.

Keywords: Naltrexone/Bupropion, Liraglutide, Caloric restriction, β -cell regeneration, Obesity, Type 2 diabetes, Rats.