Fayoum University
Faculty of Medicine
Anesthesiology Department

COMPARATIVE STUDY BETWEEN USING THE ENDOCAVITARY PROBE VERSUS THE LINEAR ARRAY HIGH FREQUENCY PROBE IN ULTRASOUND-GUIDED SUPRACLAVICULAR SUBCLAVIAN VEIN CENTRAL ACCESS.

A Thesis
Submitted for the Partial Fulfillment of Master Degree

IN

Anesthesiology and Surgical ICU

By Mina Mahrous Sobhy Amin (M.B.B.CH.)

Supervisors

Prof. Dr.

Mostafah Mohammed El-Said El-Hamamsy

Professor of Anesthesiology & Surgical ICU Faculty of Medicine - Fayoum University

Dr.

Hany Mahmoud Yassin

Ass.Prof of Anesthesiology & Surgical ICU Faculty of Medicine - Fayoum University

Dr.

Maged Labib Boulos

Lecturer of Anesthesiology & Surgical ICU Faculty of Medicine-Fayoum University

Faculty of Medicine Fayoum University 2017

Dedication

I would like to thank;

Myfather I my mother,

Just "For their support in every step in my life giving

everything I never waiting for anything." Actually,

without them, I would never have achieved any success.

ACKNOWLEDGEMENT

Firstly, Thank **God** for the wisdom and perseverance that he has been bestowed upon me during this research project, and indeed, throughout my life.

I wish to pay my respect and appreciation for Prof. **Dr. Mostafah**Mohammed Elsaid Elhamamsy, Professor & Chairman of Anesthesiology,
and surgical ICU department, Faculty of Medicine, Fayoum

University.for his great help, support, effort and excellent advice not only
during this work but all through my career. It was honor to me to work
under his supervision.

Many thanks to prof. Dr. Hany Mahmoud Yassin Moussa. Ass. Prof. of Anesthesiology and surgical ICU, faculty of medicine, Fayoum University. He provides the optimal conditions needed to finish this work. His effort had really added much value to the work.

I am grateful to **Dr. Maged Labib Boulos**, Lecturerofanesthesiology and surgical ICU, faculty of medicine, FayoumUniversity, for his cooperation and meticulous supervision and excellent advice.

I would like to thank all my professors, friends and staff members of anesthesia department in Fayoum University.

Mina Mahrous

2017

Contents

Contents	I
List of abbreviations	II
List of Figures	III
List of Tables	IV
Introduction	1
Review of Literature	
Chapter 1:Anatomy	3
Chapter 2:physics of Ultrasound	13
Chapter 3:Catheterization	22
Patients & Methods	37
Results	47
Discussion	54
Summary	59
References	61
Arabic Summary	78

List of abbreviations

ICA	Internal carotid artery
IJV	Internal jugular vein
L.Ns.	Lymph nodes
AJV	Anterior jugular vein
ECA	External carotid artery
SCV	Subclavian vein
EJV	External jugular vein
SUP	Superior
INF	Inferior
A.	Artery
V.	Vein
SVC	Superior vena cava
CVC	Central venous catheter
TPN	Total parenteral nutrition
I.J.	Internal jugular vein
CVP	Central venous pressure
ASA	American society of anaesthiologist
CLABSI	Central line associated blood stream infection
I.V.	Intravenous
ECG	Electrocardiogram
UK	United kingdom
US	Ultrasound
ICU	Intensive care unit
CDC	Centers of disease control
CRT	Catheter related thrombosis
CRI	Catheter related infection
MRSA	Methicillin resistant staphylococcus aureus
CRBSI	Catheter related blood stream infection
FV	Femoral vein
PZT	Lead,zirconate,titanate
APTT	Activated partial thromboplastin time
PE	Piezo-electric
MHz	Mega hertz
EC	Endo-cavitary
USA	United states of America
G.	Gauge
PWP	Posterior wall puncture
BMI	Body mass index

List of Figures

	Figure	page
Fig. 1	The anterior and posterior triangles of the neck	3
Fig. 2	Muscles of the neck	4
Fig.3	Axillar and subclavian vein.23	10
Fig.4	Structures adjacent to subclavian vein and first rib.2	10
Fig.5	Internal jugular vein.23	12
Fig.6	SonoSite probes	18
Fig.7	Time gain compensation (TGC) controls	19
Fig.8	In-plane needle insertion and corresponding	20
	ultrasound image	
Fig.9	Out-of-plane needle insertion and corresponding	21
	ultrasound image	
Fig.10	A right subclavian CVC was inserted in the	29
	emergency department	
Fig.11	CXR showingPneumothorax after insertion	30
Fig.12	central line catheter set	39
Fig.13	PHILIPS HD 11 model from PHILIPS Company	39
Fig.14	Artistic rendition of the location and placement of	40
	theendocavitary probe and the needle during the	
	supraclavicularultrasound-guided approach	
Fig.15	Long axis view of the subclavian vein	41
Fig.16	Ultrasound-guided Supraclavicular Approach for	42
	Subclavian Vein Cannulation	
Fig.17	Candidate using maximal barrier methods during	43
	catheterization process	
Fig.18	US image showing longitudinal axis of SCV	44
Fig.19	Needle puncturing SCV	44
Fig.20	Confirmation of wire place by US	45
Fig.21	Central line fixation	45
Fig.22	Difference in number of skin pricks according to	50
	study group	
Fig.23	Difference in number of attempts for venous access	51
Fig.24	Difference in time needed for venous access	52

List of Tables

	Table	page		
Table (1)	Choice of the transducer	18		
Table (2)	Socio-demographic characteristics of	47		
	patients in both groups			
Table (3)	Difference in blood indices between	48		
	study groups			
Table (4)	Comparison between study groups	48		
	regarding bleeding profile			
Table (5)	Cannulation at first attempt in both	49		
	groups			
Table (6)	Difference in number of skin pricks	50		
	according to study group			
Table (7)	Difference in number of attempts for	51		
	venous access			
Table (8)	Difference in time needed for venous	52		
	access			
Table (9)	Difference in Posterior wall puncture	53		
	(PWP) in both groups			
Table (10)	Difference in Complications in both	53		
groups				

Summary

Central venous catheterization is often performed for fluid infusion inpatients with poor peripheral access, hemodynamic monitoring administrate only meant to be given via a central line and infusion of irritable or hypertonic solutions and for hemodialysis.

Using the ultrasound method found to have a higher success rate and a decreased incidence of mechanical complications as compared with the landmark one.

Advantages of the supraclavicular approach by endocavitary probe techniqueover the linear arraytechnique include the small footprint of the probe allows for direct visualization of SC cannulation.

Aim of this study was to compare supraclavicular approach by endocavitary probe technique versus linear array high frequency probe technique.

To fulfill this aim, this study had been carried out on 60 adult patients presented forsurgical ICU in Fayoum University hospital.

Patients had been classified into 2 equal groups each of 30 patients.

Group (A): catheter will be inserted using the endocavitary (EC) probe.

Group (B): catheter will be inserted using the linear array high frequency probe.

Exclusion criteria included, Patients younger than age of 18, Patients with (Severe lung disease (e.g. emphysema), Vascular malformations, Chest wall deformities, Fracture clavicle, Infection at site of injection, Coagulopathy INR > 1.5, Tumor extension into right atrium, Fungating tricuspid valve vegetation.

In this study, there was a significant difference regarding Cannulation at first attempt, Time needed attempts for venous access, Number of attempts for venous access between the two groups as (p-value = 0.044), (p-value = 0.0001), (p-value = 0.038) respectively.

There was no significant difference between the two groups regarding number of skin pricks as (*p-value* =0.068).

There were no significant difference between the two groups regarding occurrence of pneumothorax, hematoma, pneumothorax, catheter-related blood stream infection, and mal position.