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ABSTRACT

In this paper we introduce the concept of L-fuzzy syntopogenous structures in the framework of U.
Héhle, S. E.Rodabaugh L-fuzzy topology. We investigate some of their properties. The relationship
amonge L-fuzzy syntopogenous structures, L-fuzzy topology, L-fuzzy proximity and L-fuzzy uniformity
is studied.
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1 Introduction:

Ramadan et al introduced a notion of a fuzzifying syntopogenous structures as a framework of Ming-
sheng Ying fuzzifying topological spaces and a notion of a smooth syntopogenous structures as a
framework of Sostak fuzzy topology. For a fixed basis L, algebraic structures in L (quantales, MV-
algebras) are extended for a completely distributive lattice L. In this paper we establish the concept of
L-fuzzy syntopogenous structures as a unified approach to theories of (H6hle and Rodabaugh) L-fuzzy
topology , (Kim and Min) L-fuzzy proximity spaces and (Ramadan and Kim) L-fuzzy uniformity spaces.
Some fundamental properties of them are established. Finally, the relationship among L-fuzzy synto-
pogenous structures, L-fuzzy topology, L-fuzzy proximity and L-fuzzy uniformity is studied. In this article
let X be anonempty set, L = (L, <, &, ®, 0,1) be a completely distributive lattice with the least
element 0 and the greatest element 1 inL. Ly=L—{0}and L =L —{1}. Foreacha e L leta
and @ be the constant fuzzy subsets of X and X x X with value «, respectively. We denote the
characteristic function of a subset Aof X by 1y, .

2 Preliminaries:

Definition 2.1.( H6hle and Rodabaugh)

Atriple (L ,<,®) is called a strictly two-sided, commutative quantal (stsc-quantale, for short) iff it satis-
fies the following properties:

(L1) (L, ®) is a commutative semigroup.

(L2)a=a®1,foreacha € L.

(L3) @ is distributive over arbitrary joins, i.e., ( i;/l"ai) Ob= ievr(a’i ©b).
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Remark 2.2. ( H6hle and Rodabaugh)
(1) Each frame is a stsc-quantale. In particular, the unit interval ( [0,1], <, A,0,1) is a stsc-quantales.
(2) Every continuous t-norm T on ( [0,1], <, ¢) with ® = ¢ is a stsc-quantales.
(3) Every GL-monoid is a stsc-quantale.
(4) Let (L, <,®) be a stsc-quantale. For each z,y € L, we define
z—y= V {z€L |z0z<y}
Then it satisfies Galois correspondence, thatis (z©y) <z <z < (y— z).
In this paper, we always assume that (L, <, ®, 4,* ) is a stsc-quantale with an order-reversing involution
* defined by =@y = (2* ®y*)* unless otherwise specified.

Definition 2.3. ( H6hle and Rodabaugh)
A stsc-quantale (L, <,®,* ) is called a complete MV-algebra iff it satisfies the following property:
(MV) (z - y) - y=aVy, Vo,y € L  whichis defined as

z—y=V{zel|lz0z<y}, 5 =x—0.

Lemma 2.4. ( H6hle and Rodabaugh)

Let (L, <,®,®,* ) be a stsc-quantale with an order-reversing involution *. For each z,y,z € L, {y; | i €
T'} C L, we have the following properties:
Mfy<zthen (zoy)<(zoz)and (zdy) < (zd 2).
2zoy<zAy<zVy <z Dy.
() Nier i = (Vier yi)* and  Vier yi = (Nieryi)™
4) = @ (MNieryi) = Nier (T @ wi).
5) (zvy)o(z Vw)<(z Vz)V (yow) <(z®2)V (y Ow).
B)r © (z—y<yand z—y< (y—2z)—(z—2).
7)lfz* =2 —0,then z — y=y* — z*.
B)Ifz* =2 —0,then z© (z* B y*) < y*.
(9) If L is a complete MV-algebra, then
rOy=(z—-y), oy =a"—y,
(r@2)0y<z®(yo2),
2oy o (ow) <(z02)® (yOw),
2 @ (Vier ¥i) = Vier(z ® yi) and x © (Aier ¥i) = Nier (T © yi)-
All algebraic operations on L can be extended pointwise to the set LX as follows:
(1) X < piff Mz) < p(z), Vo € X.
(2) A ) (z) = Az) © plz), vz € X.
(3) (A — (@) = A(x) — u(x),Va € X.

Definition 2.5.( H6hle and Rodabaugh)

Amap 7: LX — L is called an L-fuzzy topology if it satisfies the following conditions:
(0N 7(0)=7(1) =1,

(02) 7(1 ® p2) > 7(p1) © 7(p2), ¥ pr, o € LY.

(03) T(Vierp) > Aiert(ps) for any {ui}ier € LX.

The pair (X, 7) is called an L-fuzzy topological spaces.

Let 7, and 7, be L-fuzzy topologies on X. We say that 7, is finer than 7, (m» is coarser than 7, ), denoted
by 7 < 7, if () < (), forall X e LX.

Let (X, 7) and (Y, 2) be L-fuzzy topological spaces.
Afunction f:(X,71) — (Y, ) is called L-fuzzy continuous map if 7(A\) < 7 (f~1(\) forall X e LY.
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Definition 2.6.( H6hle and Rodabaugh)
Amap I : LX x L, — L¥ is called L-fuzzy interior operator on X iff I satisfies the following condations:
(I1)I(1,r)=1 forallre L.
(I2) I(A,r) < X forallr e L.
(I3) IfX<pandr <s, thenI(\s) < I(u,r).
I4) IAOp, ros) > I(A 1) O I(y,s).
The pair (X, I) is called L-fuzzy interior space.
The L- fuzzy interior operator I is called topological if
I(I(\r)>I(\r), YAe LX, re L.
Let I and I be two L-fuzzy iterior operators on X. We say that I, is finer than I; (12 is coarser than
I1), denoted by I, < Iy, if I,(\,7) < Iy(A\,r) forall A € LX,r € L.

Definition 2.7.(Y.C.Kim and K.C.Min)
Afunction §: LX x LX — L is called an L-fuzzy preproximity on X if it satisfies the followig axioms:
(P1)6(1,0) = 0:and §(0,1) = 0.
(P2) If A < p, then 3(A, i) < d(p, 1) and d(p, A) < (u, p).
(P3) If 6(A, p) # 1, then X\ < p*.
(P4) 6(A1 © A2, p1 ® p2) < 6(A1, p1) © (A2, p2).

An L-fuzzy preproximity space is called L-fuzzy quasi-proximity space if
(PB) 6(A,p) 2 Nyerx{d(X,7) ®6(v*, p)}-

An L-fuzzy preproximity space is called principal if

(PB) 6 (VjesAj; p) < Vies 6(Aj, p).

An L-fuzzy quasi-proximity space is called L-fuzzy proximity space if

(P) (A, p) = d(p, ).

Definition 2.8. (B.Hutton)

Let X be a set and Qx be the set of all mappings « : LX — LX such that
(1) a(0) = 0,

(2) a(p) > p,

(3) a(Vier pi) = Vier a(p).

Definition 2.9. (B.Hutton)
(1) If oy, a2 € Qx, then a; ® az € Qx where (a; ® a2)(p) = A{ ar(p) ® ag(p2) | p = p1 & ps2}.
(2)Ifa € Qx,then a~! € Qx where a=!(u) = A{\ € LY | a(\*) < p*}.

Definition 2.10.

A function U : Qx — I is called L-fuzzy quasi-uniformity on X if it satisfies for «, 8 € Qx, the following
conditions:

U) U(aep)=U(a)0U (B).

(U2) There exists a € Qx such that U (a) = 1.

(U3) U () < V{U(B) | Bo B < a}

The pair (X, U) is said to be L-fuzzy quasi-uniform space.

The L-fuzzy quasi-uniform space (X, U) is said to be L-fuzzy uniform space if it satisfies

(U)U (@) =U (ah).

Definition 2.11.
A function B : Qx — I is called L-fuzzy quasi-uniform base on X if it satisfies for o, 3 € Qx, the
following conditions:
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(UB1) B(a1) ® B(az) > V{B(B) | B < a1 @ az}.

(UB2) There exists a € 2x such that B (a) = 1.

(UB3) B () < V{B(B) | Bo B < a}.

The L-fuzzy quasi-uniform base B on X is said to be L-fuzzy uniform base if it satisfies
(UB) B (e) < V{B(B) | B<a™'}.

Theorem 2.12.
Let B:Qx — I be the L-fuzzy uniform base on X. Define Ug : Qx — I as Ug(a) = V{B(f) | f <
a}then Ug is an L-fuzzy uniformity on X.

3 L-fuzzy topogenous order and L-fuzzy topologies.

Definition 3.1.

Afunction  : LX x LX — L is called an L-fuzzy semi-topogenous order on X.if it satisfies the following
axioms:

(T1)n(1,1) =n(0,0) = L.

(T2) f n(p, A) # 0, then pu < A.

(T3) If i < pa, Ar < Athen (g, A1) < n(p, A).

Definition 3.2.
Let 7 be an L-fuzzy semi-topogenous order on X and let the mapping 7n* : LX x LX — L defined by
n*(\, 1) = n(p*, \*), YA, u € LX. Then n* is an L-fuzzy semi-topogenous order on X.

Definition 3.3
An L-fuzzy semi-topogenous order 7 is called symmetric if n = n*, that is
(T4) n(A, 1) = n(p*, X*), YA, p € LY.

Definition 3.4.

An L-fuzzy semi-topogenous order 1 is called L-fuzzy topogenous if for any A, A1, Ao, p, i1, pro € LX,
we have:
(T3) n(A1 @ Az, 1) = n(A1, 1) © n( A2, ).

(T6) n(A, 1 © p2) = n(A, 1) @ (A, p2).

Definition 3.5. An L-fuzzy semi-topogenous order 7 is called per fect if
(T7) n(VierXi, 1) = Aier n(Xi, 1), forany {u, A; [ i € T} € LY.

A perfect L-fuzzy semi-topogenous order 7 is called biper fect if

(T8) n(\, Aierpti) = Nier n(\, wi),forany {\, u; | i € T} c LX.

Theorem 3.6.
Letny,ne : LX x LY — L be a perfect L-fuzzy semi-topogenous orders on X (resp. biperfect L-fuzzy
topogenous). Define the composition 1, o, of nand n; on X by

(mom) Au)= v (mAv)©nv,um).
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Then (n; on2) is a per fect (resp.L-fuzzy topogenous, biperfect) L-fuzzy semi-topogenous order on X.

Proof:

We prove (T2) and (T7) . Let 7,10 : LX x LX — L Dbe a perfect L-fuzzy semi-topogenous orders on
X.
(T2) If (1 0 m2) (A, 1) # 0, the there exists v € LX such that (1, o m2)(\, i) > m (A, v) @ m2(v, 1) # o. It
implies A <v < pu.
(T7) Itis proved from (m om2)( Y Ai ) =V (m( Y Airv) ©ma(v, )

= A0 Y mi,v) ©n2(v, 1))

= ié\r(m om2) (i, ).

Others are easily proved.

Definition 3.7.

A fuzzy syntopogenous structures on X is a non-empty family ¥ of L-fuzzy topogenous orders on X
satisfying the following two conditions:

(S1) ¥ is directed, i.e., given two L-fuzzy topogenous orderes 1;,7, € ¥ there exists an L-fuzzy to-
pogenous order n € ¥ such that n > 7y, 79.

(S2) For every n € ¥, there exists n; € ¥ such that n < n; on;.

The pair (X, V) is called L-fuzzy syntopogenous space.

Definition 3.8.

An L-fuzzy syntopogenous structures ¥ is called L-fuzzy topogenous if ¥ consists of a single element.
In this case, ¥ = {n} is called L-fuzzy topogenous structure, dentoted by ¥ = {n} = n and (X, ¥) is
called L-fuzzy topogenous space.

An L-fuzzy syntopogenous structures ¥ is called perfect (resp. biperfect, symetric etc.) if each L-fuzzy
topogenous order n € W is perfect (resp. biperfect, symetric etc.)

Proposition 3.9.

Let n be L-fuzzy topogenous order on X. Define a mapping I, : LY x L; — LX as
L\ 1) = Vv{u € LX | n(u, \) > r}.Where

N L,(L,r)=1, Vr e L.

(2) I,(A\,7) < A\ Vr e Ly.

B)If X< p then L,(\,7) < I,(p,7),Vr € Ly

(4) In()\l © /\277‘) = In(/\lar) © In()\‘ly T‘).
(5) ]n(j\e/r)‘ﬁ r) > j\e/l"[n()\j’ r).

(6) In(ln()\vr)-,"') = ],7()\,7”).

Then I, is a topological operator on X.

Proof:
(1) Since n(1,1) =1, I,(1,r) =1, Vr € L.
(2) Since n(p, A) #0, p < X implies I,,(A,7) < A
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(3) and (5) are easily proved.
(4) From (3), we have I,(A\; © A2, 7) < I)(A1,7) © Iy (A2, 7).

Conversely, suppose there exist A;, Ao € LX andr € L suchthat I,(A\ ® X2, 1) # I,(A1,7) O L,( A2, 7).
There exist z € X and ¢ € Ly such that I,(A; © Ao, 7)(x) <t < Iy(A1,7)(x) © Iy(Ae, ) ().

Since I,,(\;,7)(z) > t, for each i € {1,2}, there exist y; € L™ with n(u;, A;) > r such that

I,(h,)(@) < i) > ¢,

On the other hand, since by (T6) and (T3) we have

N1 © piz, A1 © X2) = 11 © pa, A1) © (g © pa, Az) > 01, Ar) © n(pa, Az) >

Itimplies I,,(A © A2, 7)(z) > (u1 © p2)(x) > t. Itis a contradiction.

(6) Since I,,(A,7) < A, Iy(I,(A\,7),r) < L,(\, 7). Suppose I,,(I,(A,r),r) # I,(A,r). There exist z € X
and r €]0,1[ such that I,,(I,(\,7),7)(z) < t < L,(\,r)(x). Since I,(\,r)(z) > t, there exists u € LX
with n(p, A) > 7 such that I,,(\,r)(x) > pu(z) > t. Since (X,n) is a fuzzy topogenous space, by (S2) of
Definition 3.7, there exist  such that , < non. Itfollows r < n(u, A) < nen(u, A). Since nen(p, A) > r,
there exist p € LX such that n © n(u, ) > n(u, p) © n(p, ) > r. Hence u < I,(p,7), p < I,(\, 7). Thus
I,(I,(\r),7)(x) > p(x) > t. Itis a contradiction.

Theorem 3.10.
Let (X, 7) be a fuzzy topogenous space. Defineamap 7, : LX — Lby 7,(\) =sup{r € Li | I,(\,r) =
A}. Then 7, is an L-fuzzy topology on X induced by 7.

Proof:

(O1) Since I,,(0,r) =0and I,,(1) = 1, for all r € Ly 7,(0) = 7,,(1) = 1.

(02) Suppose there exist A1, A2 € LX and r € (0,1) such that 7,(A © A2) <t < 7,y(A1) © 7, (X2).
Since 7,,(A1) >t and 7,,(\2) > t, there exist 1,73 > t such that \; = I,,(\;, r;), i = 1,2.Putr = r, ©ry.By
Theorem 3.9 (4), we have I;,(A\ © A, 1) = I(A1,7) © In(Aa, 1) > Iy(A1,71) © In(A2,72) = A1 © Ag. From
Theorem 3.9(2), we have (A ©® Ag,7) < A\ © Ay and so I,;(A; ©® A2,7) = A1 ©® 2. Consequently
7, (A1 ® A2) > r > t. Itis a contradiction. Hence, 7,,(A1 © A2) > 7,(A1) © 75;(A2).

(O3) Suppose there exist a family {\; € LX | j € T} and r € (0,1) such that 7,, ‘(evr)\j) <t< jérT”()\j)'

J
Since /\ 'rn(/\,») > t, foreach j € T, there exists r; > ¢ such that \; = I,,(\;,r;). Putr = /\ r;. By The-
orem 2 9(5) we have I, (\/ Aj, ) > \/I (AJ r) > \/[ ()\],r]) = v A;. Consequently, T,, (v)\ y>r >t

is a contradiction. Hence T (v)\ ) > _/\Frn()\ )-
Jj€ ’

Definition 3.11.
Let (X,n:) and (Y, 72) be L-fuzzy topogenous spaces. A function f : (X,n;) — (Y,n2) is said to be L-
fuzzy topogenous continuous if 2 (A, 1) < 1 (F~1(A), 71 (p)), YA, p € LY.

Theorem 3.12.

Let (X,m), (Y,n2) and (Z,n3) be L-fuzzy topogenous spaces. If f : (X,n1) — (Y,n2) and g : (Y,n2) —
(Z,ns3) are L-fuzzy topogenous continuous, then go f : (X,n1) — (Z,n3) is L-fuzzy topogenous contin-
uous.

Proof:
It follows that, for each A\, € L%, m((go £)7 (A\), (g0 )1 (w) = m(F~ g™ (\), f g™ (1)) >
72097 (N g~ (1) = ma(X, ).
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Theorem 3.13.

Let (X,n:1) and (Y,n2) be L-fuzzy topogenous spaces. Let f: (X,n) — (Y, n2) be topogenous contin-
uous. Then it satisfies the following statements:

(1) S~ (Lo (7)) < Ly (F (), 7). for each p € LY.

(2) f:(X,7,) — (Y,7,,) is a fuzzy continuous.

Proof:
() F T () = fFH(Vp € LY [ma(p, ) > 7)) = V{f 1 (p) € L¥ | m2(p, 1) > 1)

SV € LY m(fHp), f7H () > ry S VN e LY [ (N f (W) > 7} = Ly (F (), r).
(2) It is easily proved from Theorem 3.10.

Definition 3.14.

Let (X; ,m:)icr be a family of L-fuzzy topogenous spaces. Let X be a set and for each i € T, f;
:X — X, be a function. The initial structure 7 is the coarsest L-fuzzy topogenous on X with respect to
which for each i € T, f; is an L-fuzzy topogenous map.

Theoreom 3.15.

Let (X; ,m:):er be a family of L-fuzzy topogenous spaces. Let X be asetandforeachi e, f; : X — X,
a mapping. We define amap n : LX xLX — Lon X by n(\, u) = v{ﬁk ié/rm(ﬁ(Aj), f(up)}, where
for every finite families {\; | A = Vi_;A;} and {py | = AJL;px}. Then '

(1) Amap f: (Y,n) — (X,n) is topogenous continuous iff each f; o f : (Y,7) — (X,n) is topogenous
continuous.

(2) 7y = Tier T (na)

(3) If (X; ,m:)ier is symmetric for each i € I, then (X, n) is symmetric.

Proof:

(1) Necessity of composition condition is clear since the composition of topogenous continuous maps
is topogenous continuous.

Conversely, suppose that f is not topogenous continuous map. Then there exists A, € L~ such
that 7(f~1(N\), 1 (w)) < r < n(\, ). Since n(\, u) > r, therefore there are finite families (X;), (1%)
such that X = VI_ A; , = Ay, and n(X, i) > ]/\k i;/rm(f"()‘f)’ f7(wg)) > r. It follows that for any
Jk, there exists ij. € T' such that n;,, (fi,.(Aj), f7, (u;)) > r. On the other hand, since f; o f is
topogenous continuous and £i(f(f*(\1))) < fi(Ay),ls0, 7 < A i, (fie (M), £5, (1) < A (fi 0
P i), Fi 0 N7 RD) < ol G, 7 k)

=1(f~1(N\), f~(u)). ltis a contradiction.

(2) Suppose first, 7, £ Wierm =13, There exist A € L¥ and r € (0,1) such that 7,(A) > r >

Hiepfffl(m)(A)iThere exists ry € Lo with g > r such that A = I, (A, r).Itimplies X\ = I,,(\, ) = V{n €

LX | n(p, A) > ro}.Since n(u, A) > ro, there a finite families {1, | 1 = Vi_ p;} and {Ax | A = A7 A}

such that 7(u, A) = A v (mi(fi(ks), f7(AF)) > . i.e, for all j, k, we have v (ni(fi(u), fi (X)) > ro- It
IR 2 2

follows that for any j, k, there exists an i;;; € I such that fijkl(T]i]k)(Hj7 Ak) = iz (fig (13), 175, (AR)) > To.

Itimplies If;;(mjk.)()\kﬂ“o) > p;.Thus, A > /\ZL:1{V§L:1I,£;;(7M>(Akw7’0)} > p.Putp;,, =1, (A 70),

A= I\ o) = V{m € LX [ n(p, ) > 1o} = VAN, (ViZy iy, )}

Since ]fiji(m]k)(’\’“’m) = ]fiji("i]k)(lf;,iww)(/\k’TO)’TO)’ Tfi;i(n%)(p,;w) > ro > r. It implies I;er

rffl(m)(/\) > 1o > r. Itis a contradiction.

Second the proof of 7, > IL;cr TE1 () is similar to first.

(3) For every finite families {\; | A = V7_ A} and {u, | = AJL, ik},

—1
1,k(711]k)
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M) = VA, V(O SR} =V A, Y E ). S i) = VA, V(). 7)) =

n(*, X) = n°(X, ).
By the above Theorem, we can define the subspaces and products in the obvious way.

Definition 3.16.

Let (X,n) be an L-fuzzy topogenous structures and A be a subset of X. The pair (A,7,4) is said to be
a subspace of (X, n) if it is endowed with the initial L-fuzzy topogenous structures with respect to the
inclusion map.

Definition 3.17.

Let X be the product IT;ca X; of the family {(X;,n;) | i € A} of L-fuzzy topogenous structures. An initial
L-fuzzy topogenous structures n = ®n; on X with respect to all projections m; : X — X; is called the
product L-fuzzy topogenous structure {n; | i € A} and (X, ®n;) is called the product L-fuzzy topoge-
nous structure.

Corollary 3.18.

Let (X;,7:)ica be a family of L-fuzzy topogenous structures. Let X = II,caX; be a set and for
eachi € A, m; : X — X, a mapping. The structure n = ®n; on X is defined by n(\,pu) = A
{]\/k ié\Ani(ﬂ'i(/\j),’ﬂ'i(’lLk))} where for every finite families (;), (ux) such that A = V7_ \; and p =
VL e, Then:

(1) n is the coarsest L-fuzzy topogenous on X with respect to which for each : € A, 7; is an L-fuzzy
topogenous map.

(2) Amap f : (Y,7) — (X,n) is an L-fuzzy topogenous map iff each m; o f : (Y,7) — (X;, n;) is an
L-fuzzy topogenous map.

Proposition 3.19.

(1) Let (X, ) be the L-fuzzy(resp. symmetric) topogenous space and let the mapping &, : LX xLX — L
defined by 6, (p, A) = n*(u, A*), YA, u € L. Then 4, is the L-fuzzy quasi-proximity (resp. L-fuzzy
proximity) on X.

(2) Let 0 be the L-fuzzy quasi-proximity (resp. L-fuzzy proximity) on X and let the mapping 4, :
LX x LX — L defined by ns(u, \) = 6*(u, \*), Y\, u € LX. Then ns is the L-fuzzy (resp. symmet-
ric) topogenous space.

(3)n=mns, and 6, = 4.

Proof:
It is easily proved.

4 L-fuzzy quasi-uniform spaces and L-fuzzy syntopogenous.

Definition 4.1.

Let W be a fuzzy biperfect syntopogenous structure on X. A function S : ¥ — L is called L-fuzzy
syntopogenous structure on X satisfying for n,n,7, € ¥, the following conditions:

(ST1) There exists n € ¥ such that S(n) = 1.

Body Math  (ST2) S(n1) © S(n2) < V{S(n) | n1,n2 < n}.

Body Math ~ (ST3) S(n) < V{S(n) | m om <n}.

Body Math The pair (X, S) is said to be L-fuzzy syntopogenous space.
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Body Math The L-fuzzy syntopogenous space (X, S) is said to be L-fuzzy symmetric syntopogenous
space if it satisfies
Body Math  (ST) S(n) < V{5(0) | ¢ =z n°}.

Lemma 4.2.
For every a € Qx,we define n, : LY x LX — L as
1,if A>«a
Na(p, A) =19 . ()
0, otherwise.

Then it satisfies the following properties:

(1) The map 71, € ¥ is a biperfect L-fuzzy topogenous order.
(2) If o < B, then ng < 1q.

(3)If 3 < a1 © g, then na,, Na, < np.

(4) For each a € Qx, we have i}, = n,-1.

(5)IfBoB < a,thenngong > nq.

Lemma 4.3.
Let ¥ be a fuzzy biperfect syntopogenous structure on X where for each 7 € ¥, the range of 1 is finite.
We define o, (1) = A {A € LX | n(u, A) > 0}. Then it satisfies the following conditions:
(1) oy € 0.
(2)Ifn < ¢and o, € T, then a¢ < a,.
(3)Ifv,{ <nand a;,a, € ¥, then a,, < a; © .
(4) ayys = () ~L.where ()7 (p) = A {A € L¥ | oy, (\*) < p*}
and a,s (1) = A {x € L¥ | n(A*, u*) > 0}.
(5) For each «,, € 1x, there exists a; € Qx such that a; © a¢ < ay,.

(6) ayy, = av.
Theorem 4.4.

Let S : ¥ — L be L-fuzzy syntopogenous structures (resp. L-fuzzy symmetric) on X where for each
n € ¥ the range of  is finite. Define Bs : Qx — L as Bs(a,) = V{S(n) | n induces o, }. Then

(1) Bg is L-fuzzy quasi-uniform (resp. L-fuzzy uniform) base on X.

(2) If B: Qx — L is L-fuzzy quasi-uniform base on X, then Bg, = B.

Theorem 4.5.

Let (X, S) be L-fuzzy syntopogenous space. The mapping Cs : LX x L; — LX | is defined by Cs(\,7) =
Ap | m(Ap) > 0,S(n) > r}. For each A\, A1, A2 € LX and r,71,79 € L1, we have the following
properties:

(1) Cs(0,7) = 0.

(2) A < Cs(A, 7).

(3) If Ay < Agthen Cs(A1,7) < Cs(Ag, 7).

)
(4) CS()\I (&) )\2,7”) = Cs()\l,r) (<) Cs()\Q,’V').
(5) If ry < ro, then Cs()\,’f‘l) < CS()\,TQ).
(6) Cs(Cs(A,7),7) = Cs(A, 7).

Proof:

(1) Since 7(0,0) = 1, for S(n) = 1,Cs(0,7) = 0.

(2) Since A < u forn(A, 1) > 0 we have A < Cg(A, 7).
(3) and (5) are easily proved.
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(4) First Cs(A\1 @ A2, 1) > Cs(A1,7) @ Cs(Ag,r), it is obvious from (3).

Second, suppose there exist A1, \s € LX and r € L; such that

CS()\l @ Aa, r) }é Cs(/\l,’!’) (&) Cs()\g, T)A

There exist x € X and ¢ € L such that
Cs(M @ A2, 7)(2) >t > Cs(A1,7)(2) ® Cs(A2,7)(2). (4)
Since Cs(\;,7) < t, for each i € {1,2}, there exist n; € LX with S(n;) > r and 5(\;, ;) > 0 such that
Cs(Ai,r)(x) < pi(z) < t. On the other hand, since S(n1) ® S(n2) > r, By (ST2) of Definition 4.1, there
exists n with n > n; and S(n) > r such that (A & Ao, 11 ® p2) > n(Ai, 1 & p2) © (A, w1 & pa) >
N(A1, 1) © (A, p2) = m(Ar, ) © n2(A2, p2) > 0.
Hence Cs(A\1 @ Ao, 7)(z) < (u1 @ p2)(z) < t. It is a contradiction for the equation (A).
(6) Suppose there exist A € LX and r € L; such that Cs(Cs(\,7),7) £ Cs(A,7).There exist z € X
and ¢t € (0,1) such that Cs(Cs(A,7),r)(x) >t > Cs(A, 7)(z).Since CS()\,v)(, ) < t, there exists y € LX
with S(n) > r and n(A, u) > 0 such that Cs(X,7)(z) < u(z) < t. On the other hand, since S(n) > r
, by (ST3) of Definition 4.1, there exist ¢ € ¥ such that ¢ o ((\, 1) > 0,there exists p € LX such
that (A, p) ® C(p,p) > 0. It implies Cs(\,7) < p,Cs(p,7) < p. Hence Cs(Cg(A,7),r) < p. Thus,
Cs(Cs(A,r),r)(x) < p(z) < t. Itis a contradiction.

Theorem 4.6.
Let (X, S) be L-fuzzy syntopogenous space. Define a map 75 : LX — L by 7s(\) = V {r € L, |
Cgs(N*,r) = A*}. Then g is L-fuzzy topology on X induced by S.

Definition 4.7.
Let (X, S1) and (Y, S2) be two L-fuzzy syntopogenous spaces. The mapping f : (X,S51) — (Y, 52) is

said to be syntopogenous continuous if for each ¢ € ¥y, there exists n € ¥x with n(f~1(n), F71(N) >
¢(p, A) such that S2(¢) < S1(n).

Theorem 4.8.

Let (X, S1) and (Y, S3) be two L-fuzzy syntopogenous spaces. Let f : (X, S;) — (Y, S2) be syntopoge-
nous continuous map. Then we have the following properties:

(1) If the ranges of n and ¢ are finite sets for each n € Ux and { € ¥y then [ : (X,Us,) — (Y, Us,) is
L-fuzzy quasi-uniform continuous where Ug, is generated by Bg, for i € {1,2}.

(2) £(Cs, (A7) < Cs, (F(N), 7).

(3) Cs, (f (1), 7) < f~(Cs, (7))

4) f: (X,71s,) — (Y, 7s,) is a fuzzy continuous map.

Proof:
(1) We show that Bs, (ac) < Bs, (£ (ac)).Since f~(ac)(\) = S~ (ac)(f(N). and = (ag)(f(N) =
LA A{p | C(fFN),p) > 0}) = A {fp) | C(f(N),p) > 0}. Since f is syntopogenous continuous, for
each ¢ € Wy, there exists n € U x with n(f~1(f(X)), F~1(p)) > C(f(N), p) such that S;(n) > S>(¢). Since
1O 1) = 0l ) £ 0), £ (@) (V) = an(A). Itimplies Bs, (£~ (ac)) = Bs, (o) > Bs, (ac).
(2) Suppose there exist A € LX and r € L, such that f(Cs, (A, 7)) £ Cs,(f(\),7). There existy € Y
and t € Ly such that f(Cs, (A, 7))(y) >t > Cs,(f(A),7)(y). Since f~1({y}) = ¢, provides a contradic-
tion that f(Cs, (\,7))(y) = 0, f~*({y}) # p,and there exists = € f~({y}) such that f(Cs, (A, 7))(y) >
Cs, (A, 1)) (x) >t > Cs, (f(N),r)(f(x)). Since Cs, (f(N),r)(f(x)) < t, there exists { € ¥y with S3(¢) > r
and ¢(f(A),u) > 0 such that Cs, (f(A),7)(f(z)) < u(f(xz)) < t. On the other hand, since f is synto-
pogenous, for each ¢ € Wy, there exists n(f~(f(\)), f~ (1)) > C(f(N), ) such that Sy () > Sa(¢) > r.
It implies Cs, (A, 7))(2) < f~1(u)(x) < t. It is a contradiction.
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(3) and (4) are obvious.
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