ON L-FUZZY TOPOGENOUS ORDERS

M.El-Dardery

Department of Mathematics, Faculty of Science, Faiyum University, Faiyum, Egypt

Abstract.

In this paper we study L-fuzzy topogenous orders, where L represents a
completely distributive lattice. We shall investigate the level decomposition
of L-fuzzy topogenous on X and the corresponding L-fuzzy topogenous
continuous maps. In addition, we shall establish the representation theo-
rems of L-fuzzy topogenous on X.
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1. INTRODUCTION

The concept of fuzzy topology was first define in 1968 by Chang [3]
and later redefined in a somewhat different way by Lowen [16] and by
Hutton [8]. According to Sostak[27], these definitions, a fuzzy topology
is a crisp subfamily of family of fuzzy sets and fuzziness in the concept
of openness of a fuzzy set has not been considered, which seems to be
a drawback in the process of fuzzification of the concept of topological
spaces. Therefore, Sostak introduced a new definition of fuzzy topology in
1985 [27], Later on he has developed the theory of fuzzy topological spaces
in [28]. After that, several authors [5-8,15,16,23-30] have reintroduced the
same definition and studied fuzzy topological spaces being unaware of
Sostak’s work. In [31] Zhang et al. investigated the level decomposition
of L-fuzzy topology and the corresponding L-fuzzy continuous maps also,
established the representation theorems of L-fuzzy topology. There have
been all kinds of studies about the theory of topogenous in a fuzzy set
theory (see [1,2,4,9-14,17-22|, etc.). Now in the present paper, we study
the level decomposition of an L-fuzzy topogenous and the corresponding
L-fuzzy topogenous continuous maps. In addition, we also establish some
representation theorems for L-fuzzy topogenous on X. The main results
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of this paper are several representation theorems for L-fuzzy topogenous
on X, where L represents a completely distributive lattice. Based on
the results of this paper, we have also developed representation theorems
for the category L-FP which consists of L-fuzzy topogenous orders and
L-fuzzy topogenous continuous maps.

2. PRELIMINARIES

Throughout this paper, L represents a completely distributive lattice
with the smallest element | and the greatest element T, where | # T.
We define M (L) to be the set of all non-zero V-irreducible (or coprime)
elements in L such that a € M (L) iff a < bV ¢ implies a < b or a < c. Let
P(L) be the set of all non-unit prime elements in L such that a € P(L) iff
a > b A cimplies a > b or a > c. Finally, let X be a non-empty usual set,
and L¥X be the set of all L-fuzzy sets on X. For each a € L, let a denote
a constant-valued L-fuzzy set with a as its value. Let L and T be the
smallest element and greatest element in LX, respectively. for the empty
set ¢ C L, we define A¢ = T and V¢ = L.

Defnition 2.1[29].

Suppose that a € L and A C L.

(1) A is called a maximal family of a if

(a) inf A = a,

(b) VB C L, inf B < a implies that Yz € A there exists y € B such
that y < x.

(2) A is called a minimal family of a if

(a) sup A = a,

(b) VB C L, sup B > a implies that Vx € A there exists y € B such
that y > x.

Remark 2.2.[8].

Hutton proved that if L is a completely distributive lattice and a € L,
then there exists B C L such that

(i) a =\ B, and

(ii) if A C L and a = \/ A, then for each b € B there is a ¢ € A such
that b < c.

However, ifVa € L, and if there exists B C L satisfying (i) and (ii), then
in general L is not a completely distributive lattice. To this end, Wang [23]
introduced the following modification of condition (ii),
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(ii’) if A C L and a < \/ A, then for each b € B there is a ¢ € A such
that b < c.

Wang proved that a complete lattice L is completely distributive if and
only if for each element a € L, there exists B C L satisfying (i) and (ii).
Such a set B is called a minimal set of a by Wang [31].The concept of
maximal family is the dual concept of minimal family, and a complete
lattice L is completely distributive if and only if for each element a € L,
there exists a maximal family B C L.

Let a(a) denote the union of all maximal families of a. Likewise, let (3(a)
denote the union of all minimal sets of a. Finally, let a*(a) = a(a)N P(L)
and 3*(a) = [(a) N M(L). One can easily see that both a(a) and o*(a)
are maximal sets of a. Likewise, both (3(a) and $*(a) are minimal sets of
a. Also, we have a(T) = ¢. and B(L) = ¢.

Definition 2.3. (Katsaras [9])

A binary relation n on L is an L-semi-topogenous order on X, if it
satisfies the following axioms:

(T1) (T,T), (L, 1) €1,

(T2) If (\, ) €, then A < p,

(T3) If A\ < A1, u1 < p and (A1, p1) €n, then (A, p) € n,

An L-fuzzy semi-topogenous order is called

(I) L-fuzzy topogenous if

(T4) (AV p,y) € niff (A, v) €n, (1,7) €1

(T5) (A, pAy) € niff (A, 1) €n, (A7) €.

(II) Perfect if

(T6) (A\i, ) € for any {u, A; | i € A} C L™ implies (\/;cp Xi, ) € 1,

(I1I) Co-perfect if

(T7) (A, s) € for any {p;, A | i € A} € L™ implies (X, \;ep i) € 1,

(IV) Biperfect if it is perfect and biperfect.

As in (Shi [23-25] and Wang [29]) we give the following Lemma:

Lemma 2.4.
Fora € L and a map n: L x LX — L, we define

Moy = {(\ p) € LX x L* | np(A, p) > a}

and
nt ={(\p) € L¥ x LX | a ¢ a(n(\, 1)}

Let 1 be a map from LX x L to L and a,b € L. Then
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(1) a € B(b) = ny) C njay; @ € a(b) = nl*h L.

((2)) a<b<s fla) C B(b) < B*(a) C 5*(0) & ab) C ala) & a*(b) C
(3) a(Nien @) = Usen @lai) and B(Vcp ai) = Ujen B(ai) for any
sub-family {a;}ien C L

3. LEVEL DECOMPOSITION OF AN L-FUZZY TOPOGENOUS

Definition 3.1[13].

A mapn: LX x LX — L is called an L-fuzzy semi-topogenous order on
X if it satisfies the following conditions:

(FT1) n(T,T)=n(L L) =T,

(FT2) If n(A\, ) # L, then A < p,

(FT3) If A < A1, pn < p then (A1, 1) < n(A, p).

An L-fuzzy semi-topogenous order is called

(I) L-fuzzy topogenous if

(FT4) n(AV ) = (A7) An(ps ),

(FT5) n(A, A y) 20X, 1) An(r, ).

(II) Perfect if

(FT6) n(Ven Xis 1) = Niea 1(Aiy ), for any {p, Ai | i € A} € LX.

(I1I) Co-perfect if

(FT7) (A Njea #4) = Niea 1(Ai, ), for any {\, p; | i € A} € LX.

(IV) Biperfect if it is perfect and biperfect.

The pair (X, n) is said to be an L-fuzzy topogenous space. Just as an L-
topogenous on X is an ordinary subset of LX x LX, an L-fuzzy topogenous
on X is a fuzzy subset of LX x LX.

Remark 3.2.
(1) If n : 2% x 2% — I where I = [0, 1] such that the above conditions
hold respectively, we call it a fuzzifying topogenous on X in a sense [17].
(2) We easily show that every L-fuzzy topogenous order is a Katsaras’s
fuzzy topogenous order [9)].

Theorem 3.3.

Let n be a map n : LX x LX — L. Then the following conditions are
equivalent:

(1) n is an L-fuzzy topogenous on X.

(2) Va € M(L), njq) is an L-topogenous on X .

(3) Va € L, !9 is an L-topogenous on X.

(4) Va € P(L), 0l is an L-topogenous on X.
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proof. (1) = (2): this part is obvious.
(2) = (1): (FT1) For each a € M(L), we have (T,T) € 1, and

n(T,T) > a. Accordingly,

n(T,T) > \/{alae ML)} =T.

Thus, n(T,T) = T. Similarly n(L, L) =T.

(FT2) Directly from (T2).
(FT3) Let A\, Ay, 1,10 € LX with A\ < Ay, pu1 < p. Clearly, when

n(A1, 1) = L, we have n(A1, 1) < n(A, p).Otherwise if n(Ay,pu1) > L,
then for each (A1, 1) > a, we have (A1, 1) € ny). Consequently, we
have n(\, i) € njq) or n(A, ) > a. This further implies that

N ) = \a € M(L) | n(h, m) = a} = n(As, ).

(FT4) Let \, i,y € LX. Clearly, when n(\,7y) A n(u,y) = L, we have
nAV p1,y) = n(A,v) An(p,y) Otherwise if n(A,v) A n(p,y) > L then
for each n(\,v) An(u,y) > a, we have n(\,v) > a and n(p,y) > a or
n(A,7y) € e and n(p,y) € nyq). Consequently, we have (A V p,y) € g

and so (A V u,v) > a This further implies that

NV i,7) = \f{a € M(L) | n(A ) A7) > a} =n(\7) An(p, 7).
(F'T5) Similar to (FT4).

(1) = (3):
(T1) Ya € L, since n(T,T) =n(L,L) = T, and a(T) = ¢, we have

a¢a(T)=an(T,T)) =aln(L,L)). Thus (T,T),(L,L)c nl

(T2) Directly from (FT2)
(T3) Let A\, A1, pu1, 0 € LX with A < A\, g < pand (A, ) € nlod.

Then
a & a(n(Ai, 1)) D aln(i, p))

Hence (\, u1) € nlal.
(T4) Let (X, 7), (1,7) € 0. Then a & a(n(X,7)) and a & a(n(p,7)).

Hance

a & a(m(X, 7)) Uam(p,y)) =a@my) An(p, ) D anAV p,7y).
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Furthermore, since a & a(n(\V p,7)), we have (AV p,v) € nll,
(T5) Similar to (T4).

(3) = (4): this part is obvious.

(4) = (1):
(FT1) Ya € P(L), it is clear that (T,T) € nl?. Thusa & a(n(T,T)).
Then o*(n(T,T)) = ¢ and

NI = Ne"(n(T.I)=T.

Similarly n(L, L) =T.

(F'T2) Directly from (T2).

(FT3) Let A\, A1, p1, 0 € LY with X < Ay, py < p. Clearly, when
n(A1, 1) = L, we have n(A1, 1) < n(A, p).Otherwise if n(Ay,pu1) > L,
then for each a € P(L) and a & a(n(\1,p1)),we have (A1, 1) € nlal,
Consequently, we have (\, 1) € 1% hence a ¢ a(n(\, 1)).Accordingly, we
have o (n(A1, p1) D o (n(A, 1) or n(A1, pa) < n(A, 1)

(FT4) Let \, i,y € LX. Clearly, when n(\,7y) A n(u,y) = L, we have
AV w,y) > n(\ ) An(p,y) Otherwise if n(\,~v) A n(u,~y) > L, then for
each a € P(L) and a & a(n(A,v) An(p,v)) = a(n(A,v) Ualn(y,v)), we
havea & a(n(X,v)) and a & a(n(u, 7)), implise n(A, ) € 0l and n(u,~) €
nl?l and so n(AV u,7) € nl hence a & a(n(AVu,7)). Accordingly, we have

(A, ) An(psy) D a*(n(AV 7)), or n(AV p,y) = n(A,v) An(p, 7).
(F'T5) Similar to (FT4).

Theorem 3.3.

Let n be a map n : LX x LX — L be an L-fuzzy topogenous on X.
Then the following conditions are equivalent:

(1) n is an L-fuzzy biperfect topogenous on X.

(2) Va € M(L), njq) is an L-biperfect topogenous on X.

(3) Va € L, n'¥ is an L-biperfect topogenous on X.

(4) VYa € P(L), 0l is an L-biperfect topogenous on X.

proof. (1) = (2): this part is obvious.

(2) = (1):

(FT6) Let {u,\; | i € A} C L*. Then for each a € M(L) and
a < N;ean(Ais 1), we have n(\i, ) > a and (i, i) € ny, for each i € A.
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The proof follows because (\/;c p Ais 1) € 1q) and

n(\ Aiow) =\ H{ae M(L) |a < A\ n(i, ) = N\ 0 w).

i€A i€A i€A

(FT7) Let {u;,\ | i € A} Cc L*. Then for each a € M(L) and
a < Njean(A, i), we have n(X, ;) > a and (X, j1;) € niq) for each i € A.
The proof follows because (A, \,ca 1) € 1q) and

n N\ ) = \ae MEL) [a< N\ o)} = N\ n\ ).

i€A i€A i€A

(1) = (3):
(T6) Let (\i, 1) € nl¥. Then a ¢ a(n(X\;, 1)) for each i € A and

a¢U Ais 1) (/\ n(Ai, 1)) \/)‘uﬂ

1EA 1EA 1EA

Consequently, we have a & a(n(\;ea Ais 1) or (Ve Ais i) € 7l
(T7) Let (A, ;) € nl. Then a ¢ a(n(\, pi)) for each i € A and

a ¢ |Jammw) =al \ nO,m) D amO, ) w)

i€A i€A i€A

Consequently, we have a & a(n(A, N\;ea 1)) or (A, Njea 1) € 0l
(3) = (4): this part is obvious.

(4) = (1):

(FT6) Let {p,\; | i € A} € L*. Obviously if \;cn n(Ai, ) = L, then
N(VieaXist) = Njean(Xi,p). Suppose now that N\;cxn(Xip) > L.
Then Va € P(L) and a & a(\;ca 1(Ni, 1)) = U;ea @(n(Ai; ). It follows
that a ¢ (a(n(\i,p)) for each i € A implies (\j, 1) € ¥ for each i € A
and s0 (\;ca Ai, 1) € nl?l. Hence

o (n(\/ M) € @ ( N\ n(ri, w))-

i€A 1EA
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Therefore
i€EA 1EA
(FT7) Let {ps, A | i € A} € LX. Obviously if \;cp n(A, i) = L, then

N\ Niea ti) = Njean(Xi, ). Suppose now that ;e o n(A ps) > L.
Then Va € P(L) and a & a(N\;ca 1\, 1)) = Ujen @(n(A, i) It follows

that a ¢ (a(n(\, p;)) for each i € A implies (X, ;) € ' for each i € A
and s0 (X, \;ca i) € 0. Hence

o (A N ) € @ (N n( ).

IEA 1I€EA

Therefore
O N\ ) = N\ nh ).
i€A 1EA
We can now state the following decomposition theorem of L-fuzzy to-
pogenous. The proof is straightforward and therefore omitted.

Theorem 3.4..
Let n be an L-fuzzy topogenous on X. Then

n=\(arng) = V @Anw) = N\@vi)= A (avy')

acL a€M(L) acL a€P(L)

Corollary 3.5..
Let n1 and n2 be L-fuzzy topogenous’s on X, then the following condi-
tions are equivalent:

(1) m = n2.
(2)Va € Lymi,, = N2y, -
(3) Ya € M(L):nl[a] = M2 -
(4) Ya e Ll =l
(5) Va € P(L),n" = .
Theorem 3.6.
Let n be an L-fuzzy topogenous on X, then
(1) a € L, nja) = Npesa) Mb)-
(2)Va € M(L), 0 = ﬂbeﬁ*(a) Mp) -
(3) a € L, 1 = Nyeam 1.
(4) Va € P(L), nll = Nacas(a)beP(L) 0.
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Proof.

(1)By Lemma 2.4, we have that VYa € L,nia) C (Nyep(a)np)- To show
that 1y, O mbeﬁ(a) ), we take (X, p) € LX x L™ and (X, p) € ﬂbeﬁ(a) M) -
Notice that Vb € 3(a),n(\, p) > b. Hence n(X,p) > \/ {b| b€ B(a)} = q,
which implies that (X, p) € 1jq]-

(2) The proof is similar to (1).

(3)By Lemma 2.4, we have that Ya € L,n!l* C ﬂa@(b)n[b]. To show
that nl*l o ﬂa@(b)n[b], we take (A, p) € LX x LX and (), p) € ﬂa@(b)n[b].
Notice that Yb € L and a € «(b), it follows that b ¢ a(n(A,p)). We
prove by contradiction as follows. Suppose that a € a(n(A,p)). Notice
that n(\.p) = A{b | b € a(r(xp)} and a(n(rp) = U{a(®) | b €
a(n(A, p))}. There must exist b € a(n(A, p)) such that a € a(b). But this
is impossible.

(4) The proof is similar to (3).

Remark 3.7.

(1) b € B(a) implies b < a, where b < is way-below relation [6], i.e.
b < a if and only if for every up-directed set S in L, \/ S > a implies that
there exists s € S such that s > b;

(2) If a € M(L), then b € 3*(a) if and only if b < a.

(3) Ya € M(L), nja) = Mbep= M) < Ma] = Npcapers(r) M-

Proof.

(1) Since ((a) is a minimal set of a, from Definition 2.1, we have that
for every up-directed set S in L, if \/ S > a, then Vb € (3(a) there exists
s € S such that s > b. It follows that b < a.

(2) Let a € M(L) and b < a. From Theorems 1.3.6 and 1.3.8 in [15]
and Definition 2.1, we know that (3*(a) is both an up-directed set and
a lower set, and \/ 3*(a) = a. Hence, there exists b € [(*(a) such that
a>b >b. In other words, b € 3*(a). Conversely, if b € §*(a), then since
G*(a) C B(a) and b € $*(a) implies b € B(a). It follows that b < a.

(3) It is obvious.

Theorem 3.8.
Let {n[a] | a € M(L)} be a family of L-topogenous’s on X. Then the
following conditions are equivalent:

(1) There exists an L-fuzzy topogenous n on X such that 1, = 1, for
each a € M(L).
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(2) Ya € M(L), na = ﬂbeﬁ*(a) -

Proof. (1) = (2): This holds because of Theorem 3.5.

(2) = (1): Let n =V enr(ry(@Ana). Obviously, we have 1 C 1y4). For
any (X, p) € nyg), we have n(X, p) > a and \/ {b € M(L) | (\,p) €Em} > a.
Next, since [3*(a) is a minimal family of a, for each b € (3*(a), there
exists b € M(L) such that b > b and (\,p) € 1, C m. Therefore,
ﬂbeﬁ*(a) b = TNa-

Similarly, we can state the following theorems.

Theorem 3.9. Let {n, | a € P(L)} be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous n on X such that nl® = g, for
each a € P(L).

(2) ¥a € P(L), 1 = Naeae (o) M-

Theorem 3.10. Let {na | a € L} be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous n on X such that 1, = 1, for
each a € L.

(2) Va € L7 Ta = mbeﬁ(a) b -

Theorem 3.11. Let {na | a € L} be a family of L-topogenous’s on X.
Then the following conditions are equivalent:

(1) There exists an L-fuzzy topogenous n on X such that nl® = n, for
each a € L.

(2) Va € L7 TNa = maEOz(b) -

4. REPRESENTATION THEOREMS OF L-FUZZY TOPOGENOUS’S

Let LT[X] denote the family of all L-topogenous’s on X. Let LFT[X]
denote the family of all L-fuzzy topogenous’s on X. The order relation on
LFT[X] is defined as follow:

Vi, me € LET[X],m < m2 & V(A p) € LX x LX m(\, p) <n2(N, p).

Theorem 4.1.
(LFT[X],=) is a complete lattice. In fact, it is a complete sub-meet-

semilattice of LE™ %L , I.e. closed under the N of LE XX
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Proof. Let X be a set. Define two maps 1 : LX x LX — L as follows:

(. p) T, ifAx=_Lorp=T,
oA P) = 1, otherwise,
T, ifX <p,
A\ p) = -
mp) { 1, otherwise.

Clearly, we have no,n1 € LFT[X], and they are the smallest element and
the greatest element in (LFT[X],=%), respectively. Next, let {n; | i €

A} C LFT[X] and 1 = /\f;A ni. Obvious n € LFT[X]. Accordingly,
(LFT[X],=) is a complete lattice.

To facilitate further illustration, let us define the following classes:

U[X]={F:L— LT[X] | Va € L,F(a) = Nueam)F(b) }

Up[X]={F:L— LT[X]|VYa€ L,F(a) = Npepa)F(a)}
Unp)[X] ={F: M(L) — LT[X] | Ya € M(L),F(a) = Myep(a)F(b)}

Upy[X] = {F : P(L) — LT[X] | Va € P(L), F(a) = Ngea-n)F(b)}

In addition, let us define the following order relations within the classes
ULX], UL[X],Un(r)[X] and Up () [X]:

F\,F, e UF[X],F, =f F, & Va € L,Fy(a) C Fy(a)

Fl,FQ € UL[X],Fl =<r Iy & Va € L,Fl(a) C Fg(a)

Fl,FQ € UM(L)[X],Fl jM(L) Fy & Va € M(L),Fl(a) C Fg(a)

Fl,FQ € UP(L)[X],Fl jp(L) Fy & Va € P(L),Fl(a) C Fg(a)



12 ON L-FUZZY TOPOGENOUS ORDERS

Theorem 4.2.

(UF[X], =5), (ULIX],25), (Unny[X], 2arry) and (Upry[X], Zpw))
are complete lattices. Obviously, (UF[X], <) and (UL[X], =) are com-
plete sub-meet-semilattices of the lattice (LT[X])¥ (i.e., closed under the
A of (LT[X))Y, when {F; | i € A} € UL[X], F = \;&\ F; be defined
as VYa € L,F(a) = (\ea Fila), (Un(r)[X], 2nm(r)) is a complete sub-
meet-semilattices of the lattice (LT[X])™F), and (Up(r)[X]), Zp(r)) is a
complete sub-meet-semilattices of the lattice (LT[X])F1).

Proof Va € L, let us define Fi(a) = {(A\,p) | A = L,p = T} and

Fr(a) = {(\p) | A < p}. Clearly, we have F(a), Fr(a ) € UL[X], and
they are the smallest element and the greatest element in (U*[X], <L),

respectively. Next, let {F; |i € A} C U[X] and F = /\f;A F;. Since

=N Fa@=) () Eo= () NE®= () FO).

(ISTAN i€A aca(b) aca(b) i€EA aca(b)

it follows that F' € UL[X]. Accordingly, (UF[X], <L) is a complete lattice.
The same argument can be used to prove the rest of the theorem.

The following representation theorem of L-fuzzy topogenous follows
naturally.

Theorem 4.3.

The map f : LFT[X] — UL[X],n — F, (for every a € L and F,(a) =
nlel is an isomorphism in the category of complete meet-semilattices and
f~UMX]) — LFT[X],F —nr = N\,c.(aV F(a)).

Proof.
For each n € LFT|[X], it is easy to verify that

Fy(a)=nT= () o= () F©®)

aca(b) a€a(b)

a€EL

Hence, F, € UF[X]. Next, by Theorems 3.3, 3.4 and Corollary 3.5, it
suffices to show that f is an injection. Since (X, p) ¢ (np)l iff

a((nr(A,p) = |J al(a v F(a =J{ala) la€ L, (A p) ¢ F(a)}

a€EL
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iff there exists a € L such that ¢ € a(a) and (A, p) ¢ F(a) iff (A, p) ¢
Neca(a) Fa) = F(c), we have Fy,.(c) = ngf] = F(c). This shows that
F,. = F. It follows that f is a surjection as well as a bijection, and

f~:UMX] - LFT[X],F —nr = /\ (aV F(a))
a€EL

Next, let ni,m2 € LFT[X] and {n; | i« € A} C LFT[X]. Then it
is straightforward to show that f(n:) <% f(ne) when n1 =< ny. Hence

F(Nicani) = /\f;A f(n;) and the proof is complete.
The following Theorem follows directly from the above proof.

Theorem 4.4.

The map f : LFT[X| — Upy[X],n — F, (for every a € P(L)
and Fy(a) = nlel is an isomorphism in the category of complete meet-
semilattices and f~ : Up(p)|X] — LFT[X],F + np = /\aeP(L)(ng(a)).

Theorem 4.5.

The map f : LFT[X] — Ur[X],n — F, (for every a € L and F,(a) =
Na) Is an isomorphism in the category of complete meet-semilattices and
f~:UMX]) — LFT[X],F —nr = N\,c.(aV F(a)).

Proof.
For each n € LFT|[X], it is easy to verify that

Fy(a) = = m ] = m £, (b)

bepB(a) bepB(a)

a€EL

Hence, F,, € Ur[X]. Next, by Theorems 3.4 and Corollary 3.5, it suffices
to show that f is an injection. It is proved easily that (X, p) € (nr)(q iff

nr((Ap)) =\ (@A F(a) —\/{al (\p)eFla)} >

a€EL

iff (because of Lemma 2.4)

U 8a) =80\ {al (\p) € Fa)}) > B(e)

(Asp)eF(a)
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On the other hand, we can prove

(np) EF(@= () Fla)evach).hpeFa e |J 6o ﬁ(C)I
a€pf(a) (Ap)EF(a)
Clearly, Va € B(), (A, p) € F(a) = U per(a) B(@) D Usepe) = B(0).
Conversely, for each d € B(c) C U p)er(a) (@), then there exists a € L
such that d € fB(a) and (A, p) € F(a) = (yep(q) F(b). It show that
(A, p) € F(d). So, we conclude that (A, p) € (nF)g & (A, p) € F(c), ie,
Fy.(c) = ()i = F(c). This shows that F;, = F. It follows that f is a

nr
surjection as well as a bijection, and

f~ULIX] = LFTIX],F —np = \/ (a A F(a))
a€L
Next, let mi,n2 € LFT[X] and {n; | i € A} C LFT[X]. Then it
is straightforward to show that f(n1) =< f(ne) when n; < n2. Hence
L
F(Nicani) = /\ijEA f(n;) and the proof is complete.

The following Theorem follows directly from the above proof.
Theorem 4.6.

The map f : LFT[X] — Upyr)[X],n — F, (for every a € M(L)
and F,(a) = ny, is an isomorphism in the category of complete meet-
semilattices and [~ : Uyyp)[X] — LFTX],F = nr =\ cpp)(a A
F(a)).

5. L-FUZZY CONTINUOUS TOPOGENOUS MAPS

Definition 5.1.

Let (X,m1) and (Y, n2) be two L-fuzzy topogenous orders. Let f : X —
Y beamap. f:(X,m)— (Y,n2) is called L-fuzzy topogenous continuous
map if for every (), p) € LY x LY we have

m(f~ ), 17 (p) = m2(X, p),
where f~(A\) = Ao f.

From Definition 5.1, obviously, f : (X,n1) — (Y,n2) is an L-fuzzy
topogenous continuous if and only if Va € M (L), f : (X,n1,) — (Y, n2,)
is an L-topogenous continuous map.

Excepting this, we have the followings equivalent conditions:
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Theorem 5.2.

Let (X,n1) and (Y,n2) be L-fuzzy topogenous orders and f : X — Y
be a map. Then the following conditions are equivalent:

(1) f:(X,m) — (Y,n2) is an L-fuzzy topogenous continuous map.

(2)Va € M(L), f:(X,m,) — (Y,n2,) is an L-topogenous continuous
map.

(3)Va e L, f: (X, nga]) — (Y, néa]) is an L-topogenous continuous map.

(4) Va € P(L), f: (X,n) = (V5 is an L-topogenous continuous
map.

Proof. (1) = (2): This part is obvious.

(2) = (1): V(\,p) € LY x LY, a € M(L) such that a < (X, p), we
have (A, p) € ngy,, and (f~(A), f~(p)) € m,, by the continuity of f :
(X,m,) — (Yiney,). Accordingly, ni(f~(A), f~(p)) = a for each Va €
M(L) 0 M(n2(X, p)), where M(nz2(\, p)) = {a € M(L) | a <na(\,p)}. It
follows that n1(f(A), [~ (p)) = V M(n2(X, p)) = n2(A, p).

(1) = (8): Y(\,p) € LY x LY, since m(f~(N), [~ (p)) = m2(A, p), it
follows from Lemma 2.4 that a ¢ a(m(f~(\), f~(p))) when Ya € L, if
a ¢ a(nz(N, p)). In other words, if (A, p) € nga], then (f~(\),f"(p)) €
nﬁ“]. Thus f : (X, nga]) — (Y, néa]) is a fuzzy topogenous continuous map.

(3) = (4): This is obvious. (4) = (1): For Va € P(L) and (\,p) €
LY x LY, if a ¢ a(nz2(\,p). then (X, p) € ns”. Thus (f~(\),f~(p)) €
nt™ by the continuity of f : (X,ni") — (V,nl™). In other words, a ¢

a(m(f= ), £=(p)) and o* (1 (f~ (N), £ (p))) C a*(n2(\, p)). It follows
from Lemma 2.4 that

m(f~ (), 7 (p) = m2(As p)

Hence the proof is completed.

Definition 5.3.

Let (X,m1) and (Y, n2) be two L-fuzzy topogenous orders. Let f : X —
Y be amap. f:(X,n1)— (Y,n2) is called L-fuzzy topogenous open map
if for every (A, p) € LY x LY we have

n2(f~(A), f(p) = m(A p),
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Theorem 5.4.

Let (X,n1) and (Y,n2) be L-fuzzy topogenous orders and f : X — Y
be a map. Then the following conditions are equivalent:

(1) f:(X,m) — (Y,n2) is an L-fuzzy topogenous open map.

(2)Va€ M(L), f:(X,m,) — (Y,n2,) is an L-topogenous open map.

(3)Vae L, f: (X, nga]) — (Y, nga]) is an L-topogenous open map.
(4) Ya € P(L), f: (X, 5}y = (v, 5\")) is an L-topogenous open map.

Proof. (1) = (2): This part is obvious.

(2) = (1): For a given (\,p) € LY x LY if n1(\, p) = L then clearly,
772(]0_)()‘):]0_)(/))) > 771()\,[)),- If 771()\,[)) > L then since 771()\,[)) =
V M(n1(A, p)), we have na(f7(A), f7(p)) = a for each a € M(n(A, p).
Hence

n2(f~ (N, f7 () = \Hala € M p)} =m(A p).

(1) = (3): V(\, p) € LY x LY . From part (1) of the theorem and Lemma
2.4, we have a(n2(f~(N), f~(p)) C a(m(A p)). It follows that a ¢
ama(f~(N), f~(p))) iffor each a & a(n1(\, p)). In other words,(f~ (M), f~(p)) €l}
néa] if for each (), p) € nga] for each a € L. Hence statement (3) holds.

(3) = (4): This is obvious.

(4) = (1): For Ya € P(L) and (\,p) € LY x LY, from part (4) of
the theorem if a ¢ a(ni(\, p)), then a ¢ a(n2(f~(N),f~(p))). Thus
a*(m2(f~(N), f7(p) € a*(m(A,p)). We have from Lemma 2.4 that
2(f~(N), f~(p)) > m (A, p),. Hence the proof is completed.

Definition 5.5.

Let (X,m) and (Y,n2) be two L-fuzzy topogenous orders. Let f :
X — Y beamap. f:(X,m)— (Y,n2) is called an L-fuzzy topogenous
homeomorphism if f is bijective and f and f— are L-fuzzy continuous
maps.

Theorem 5.6.

Let (X,n1) and (Y,n2) be L-fuzzy topogenous orders and f : X — Y
be a bijective map. Then the following conditions are equivalent:

(1) f:(X,m)— (Y,n2) is an L-fuzzy topogenous homeomorphism .

(2) Va € M(L), f: (X,m) — (Y,n2,) is an L-topogenous homeo-
morphism .

(3)Va € L, f: (X, nga]) — (Y, néa]) is an L-topogenous homeomorphism
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(4) Ya € P(L), f: (X,n) = (v,n}") is an L-topogenous homeomor-

phism .
Proof. It follows from Definitions 5.1, 5.3, 5.5 and Theorems 5.2 and 5.4.
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