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1 Introduction

Šostak [19] introduced a new definition of L-fuzzy topology as the concept of the degree of the
openness of a fuzzy set. It is an extension of [0, 1]-topology defined by Chang [3]. Höhle and

Šostak [8] substituted a lattice L ( GL-monoid, cqm-lattice) for the unit interval or the two-point
lattice 2 = {0, 1} in the definitions of [0,1]-(fuzzy) topologies and [0,1]-fuzzy closure spaces in
[3,4,6,10,12]. Kim and Min [11] studied L-fuzzy preproximities and L-fuzzy topologies where L is
a strictly two-sided, commutative quantale lattice having a strong negation.

In this paper, we introduce the notions of L-fuzzy topoenous orders and investigate some of
properties. We investigate the relationships among L-fuzzy topoenous orders, L-fuzzy topologies
and L-fuzzy interior operators.

These structures are extensions of [0, 1]-(fuzzy) topogenous and [0, 1]-(fuzzy) interior operators
in [1,2,13-17].

2.1 Preliminaries

Throughout this paper, let X be a nonempty set and L = (L,≤,∨,∧, 0, 1) a complete lattice
where 0 and 1 denote the least and the greatest elements in L. If a ≤ b or b ≤ a for each a, b ∈ L,
then L is called a chain. A lattice L is called order dense if for each a, b ∈ L such that a < b, there
exists c ∈ L such that a < c < b. For each α ∈ L, let α denote the constant fuzzy subset of X with
value α and L0 = L − {0}.

Definition 2.1. [7,8,11]. A complete lattice (L,≤,�) is called a strictly two-sided, commutative

quantale (scq-lattice , for short) iff it satisfies the following properties

(L1) (L,�) is a commutative semigroup.

(L2) x = x � 1, for each x ∈ L and 1 is the universal upper bound.

(L3) � is distributive over arbitrary joins, i.e.

(
∨

i∈Γ

ri) � s =
∨

i∈Γ

(ri � s).
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Definition 2.2. [7,8,11]. Let (L,≤,�) be a scq-lattice. A mapping n : L → L is called a strong

negation , denoted by n(a) = a∗, if it satisfies the following conditions:

(N1) n(n(a)) = a for each a ∈ L.

(N2) If a ≤ b for each a, b ∈ L, then n(a) ≥ n(b).

Remark 2.3.[11]. The following lattices (L,≤,�,∗ ) from (1) to (3) are scq-lattices with a strong
negation ∗.

(1) Every completely distributive lattice (L,≤,∧,∨,∗ ) with a strong negation ∗ where � = ∧. (
In particular, the unit interval ([0, 1],≤,∧,∨,∗ ) with a strong negation a∗ = 1−a for each a ∈ [0, 1])
(ref.[12]).

(2) Every continuous t-norm ([0, 1],≤, t,∗ ) coincided with � = t and a strong negation ∗

(ref.[7,21]).

(3) A MV-algebra (L,≤,�,∗ ) with a strong negation ∗.(ref. [7,21])

In this paper, we assume that (L,≤,�,∗ ) is a scq-lattice with a strong negation ∗.

Lemma 2.4. [7,11,21]. For each x, y, z ∈ L, {yi | i ∈ Γ} ⊂ L, we have the following properties.

(1) If y ≤ z, (x � y) ≤ (x � z) and x � y ≤ x ∧ y.

(2)
∧

i∈Γ
y∗i = (

∨

i∈Γ
yi)

∗ and
∨

i∈Γ
y∗i = (

∧

i∈Γ
yi)

∗.

(3) If L is a complete MV-algebra, x � (
∧

i∈Γ
yi) =

∧

i∈Γ
(x � yi).

All algebraic operations on L can be extended pointwise to the set LX , where X is a set, as
follows: for all x ∈ X and λ, µ ∈ LX ,

(1) λ ≤ µ iff λ(x) ≤ µ(x);

(2) (λ � µ)(x) = λ(x) � µ(x).

Definition 2.5 [8,11]. A function T : LX → L is called an L-fuzzy topology on X if it satisfies
the following conditions:

(O1) T (1) = T (0) = 1.

(O2) T (λ1 � λ2) ≥ T (λ1) � T (λ2), ∀λ1, λ2 ∈ LX .

(O3) T (
∨

i∈Γ
λi) ≥

∧

i∈Γ
T (λi), ∀{λi}i∈Γ ⊂ LX .

The pair (X, T ) is called an L-fuzzy topological space.

Let (X, T1) and (Y, T2) be L-fuzzy topological spaces. A function f : (X, T1) → (Y, T2) is said
to be L-fuzzy continuous if T2(µ) ≤ T1(f

−1(µ)), ∀µ ∈ LY .

Definition 2.6 [8,11]. A map I : LX × L0 → LX is called an L-fuzzy interior operator on X iff
I satisfies the following conditions:

(I1) I(1, r) = 1, ∀r ∈ L0.

(I2) I(λ, r) ≤ λ, ∀r ∈ L0.

(I3) If λ ≤ µ and r ≤ s , then I(λ, s) ≤ I(µ, r).

(I4) I(λ � µ, r � s) ≥ I(λ, r) � I(µ, s).

The pair (X, I) is called an L-fuzzy interior space.

An L-fuzzy interior space (X, I) is called topological if

I(I(λ, r), r) ≥ I(λ, r), ∀λ ∈ LX , r ∈ L0.

Theorem 2.7 [8,11]. Let (X, I) be an L-fuzzy interior space. Define a map TI : LX → L by

TI(λ) =
∨

{r ∈ L | λ ≤ I(λ, r)}.

Then TI is an L-fuzzy topology on X induced by I.
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3. L-fuzzy topogenous orders and L-fuzzy interior operators

Definition 3.1. A function η : LX × LX → L is called an L-fuzzy topogenous order on X, if it
satisfies the following axioms: for any λ, λ1, λ2, µ, µ1, µ2 ∈ LX ,

(T1) η(1, 1) = η(0, 0) = 1,
(T2) if η(λ, µ) 6= 0, then λ ≤ µ,
(T3) if λ ≤ λ1, µ1 ≤ µ then η(λ1, µ1) ≤ η(λ, µ),
(T4) η(λ1 � λ2, µ1 � µ2) ≥ η(λ1, µ1) � η(λ2, µ2).

Definition 3.2. An L-fuzzy topogenous order η is called perfect if
(T5) η(

∨

i∈Γ
λi, µ) =

∧

i∈Γ
η(λi, µ), for any {µ, λi | i ∈ Γ} ⊂ LX .

A perfect L-fuzzy topogenous order η is called biperfect if
(T6) η(λ,

∧

i∈Γ
µi) =

∧

i∈Γ
η(λ, µi), for any {λ, µi | i ∈ Γ} ⊂ LX .

Theorem 3.3. Let η1, η2 : LX × LX → L be L-fuzzy topogenous orders on X. Define the com-

position η1 ◦ η2 of η1 and η2 on X by

η1 ◦ η2(λ, µ) =
∨

ν∈LX

(η1(λ, ν)� η2(ν, µ)).

Then η1 ◦ η2 is an L-fuzzy topogenous order on X.

Proof. Let η1, η2 : LX × LX → L be L-fuzzy topogenous orders on X.
(T1) and (T3) are easy.
(T2) If η1 ◦ η2(λ, µ) 6= 0, then there exists ν ∈ LX such that

η1 ◦ η2(λ, µ) ≥ η1(λ, ν)� η2(ν, µ) 6= 0.

So, η1(λ, ν) 6= 0 and η2(ν, µ) 6= 0. It implies λ ≤ ν ≤ µ.
(T4) It is proved from:

(η1 ◦ η2)(λ1, µ1) � (η1 ◦ η2)(λ2, µ2)

=
(

∨

ρ1∈LX

(η1(λ1, ρ1) � η2(ρ1, µ1))
)

�
(

∨

ρ2∈LX

(η1(λ2, ρ2) � η2(ρ2, µ2))
)

=
∨

ρ1,ρ2∈LX

(

(η1(λ1, ρ1) � η1(λ2, ρ2)) � (η2(ρ1, µ1) � η2(ρ2 , µ2))
)

≤
∨

ρ1,ρ2∈LX

(η1(λ1 � λ2, ρ1 � ρ2) � η2(ρ1 � ρ2, µ1 � µ2))

≤
∨

ν∈LX

(η1(λ1 � λ2, ν)� η2(ν, µ1 � µ2))

≤ η1 ◦ η2(λ1 � λ2, µ1 � µ2).

In the next, We introduce the relationship among L-fuzzy topogenous and L-fuzzy interior
operators.

Theorem 3.4. Let η be an L-fuzzy topogenous order on X. Define a function Iη : LX ×L0 → LX

as:

Iη(λ, r) =
∨

{µ ∈ LX | η(µ, λ) ≥ r}.

Then Iη is an L-fuzzy interior operator on X.

Proof. (1) (I1) Since η(1, 1) = 1, Iη(1, r) = 1.

(I2) Since η(µ, λ) 6= 0, µ ≤ λ implies Iη(λ, r) ≤ λ.
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(I3) If λ ≤ µ and r ≤ s, since η(γ, µ) ≥ η(γ, λ) ≥ s ≥ r, then Iη(λ, s) ≤ Iη(µ, r).
(I4) From (T4), we have:

Iη(λ, r) � Iη(µ, s)

=
{

∨

{γ1 ∈ LX | η(γ1, λ) ≥ r}
}

�
{

∨

{γ2 ∈ LX | η(γ2 , µ) ≥ s}
}

=
∨

{γ1 � γ2 ∈ LX | η(γ1 , λ) ≥ r, η(γ2, µ) ≥ s}

≤
∨

{γ1 � γ2 ∈ LX | η(γ1 � γ2 , λ� µ) ≥ r � s}

≤ Iη(λ � µ, r � s).

Theorem 3.5. Let η be an L-fuzzy topogenous operator on X. Define a map TIη
: LX → L by

TIη
(λ) =

∨

{r ∈ L | Iη(λ, r) ≥ λ}.

Then TIη
is an L-fuzzy topology on X induced by η.

Proof. It is similarly proved as Theorem 2.7.

Example 3.6. Let X be a set. Define two functions η0, η1 : LX × LX → L as follows:

η0(λ, ρ) =

{

1, if λ = 0 or ρ = 1,

0, otherwise,

η1(λ, ρ) =

{

1, if λ ≤ ρ,

0, otherwise.

(1) Since λ1 � λ2 6= 0 and ρ1 � ρ2 6= 1 imply λ1 6= 0 and λ2 6= 0 and ρ1 6= 1 or ρ2 6= 1, we have

η0(λ1 � λ2, ρ1 � ρ2) ≥ η0(λ1, ρ1) � η0(λ2, ρ2).

Other cases are easy. Hence η0 is a biperfect L-fuzzy topogenous order on X.
(2) Since λ1 ≤ ρ1 and λ2 ≤ ρ2 implies λ1 � λ2 ≤ ρ1 � ρ2 , we have

η1(λ1 � λ2, ρ1 � ρ2) ≥ η1(λ1, ρ1) � η1(λ2, ρ2).

Other cases are easy. Hence η1 is a biperfect L-fuzzy topogenous order on X.
(3) We can obtain Iη0

, Iη1
: LX × L0 → L as follows:

Iη0
(λ, r) =

{

1, if λ ∈ {0, 1} r ∈ L0,

0, otherwise,

Iη1
(λ, r) = λ, ∀λ ∈ LX , r ∈ L0.

(4) We can obtain L-fuzzy topologies TIη0
, TIη1

: LX → L as follows:

TIη0
(λ) =

{

1, if λ = 0 or 1,

0, otherwise.
TIη1

(λ) = 1, ∀λ ∈ LX
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Example 3.7. Let X be a set. Define a function η : LX × LX → L as follows:

η(λ, ρ) =











1, if λ = 0 or ρ = 1,

inf λ ∧ inf ρ, if 0 6= λ ≤ ρ 6= 1,

0, otherwise,

(1) Then η is an L-fuzzy topogenous order on X from:

η(λ1 � λ2, ρ1 � ρ2) = inf(λ1 � λ2) ∧ inf(ρ1 � ρ2)

≥ (inf(λ1) � inf(λ2)) ∧ (inf(ρ1) � inf(ρ2))

≥ (inf λ1 ∧ inf ρ1) � (inf λ2 ∧ inf ρ2)

= η(λ1, ρ1) � η(λ2 , ρ2).

Other cases are easy.
(2) We can obtain Iη : LX × L0 → L as follows:

Iη(λ, r) =











0, if λ = 0, r ∈ L0

1, if λ = 1, r ∈ L0

λ, if 0 < r ≤ inf λ.

(3) We can obtain an L-fuzzy topology TIη
: LX → L as follows:

TIη
(λ) =

{

1, if λ = 0 or 1,

inf λ otherwise.

4. L-fuzzy topogenous order and L-fuzzy topologies

In the next, We introduce the relationship among L-fuzzy topogenous and L-fuzzy interior
operators.

Theorem 4.1. Let η be a perfect L-fuzzy topogenous order on X. Define a function Tη : LX → L

by Tη(λ) = η(λ, λ). Then we have the following properties:

(1) Tη is an L-fuzzy topology on X.

(2) If L is an order dense chain, then Tη = TIη
.

Proof. (1) (O1) From (T1), clearly Tη(0) = Tη(1) = 1.
(O2) For any λ1, λ2 ∈ LX , we have

Tη(λ1 � λ2) = η(λ1 � λ2, λ1 � λ2)

≥ η(λ1, λ1) � η(λ2, λ2)

= Tη(λ1) � Tη(λ2).

(O3) For each family {λj | j ∈ J} ⊂ LX , we obtain

Tη(
∨

j

λj) = η(
∨

j

λj,
∨

j

λj)

=
∧

j

η(λj ,
∨

j

λj)

≥
∧

j

η(λj , λj)

=
∧

j

Tη(λj).
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Thus Tη is an L-fuzzy topology.
(2) Since Tη(λ) = η(λ, λ), by Theorem 3.4, Iη(λ, η(λ, λ)) ≥ λ. From Theorem 3.5, TIη

(λ) ≥
η(λ, λ) = Tη(λ). Hence TIη

≥ Tη.

Suppose TIη
6≤ Tη. Since L is an order dense chain, there exist ρ ∈ LX and r ∈ L0 such that

TIη
(ρ) > r > Tη(ρ) = η(ρ, ρ).

From the definition of TIη
, there exists r1 ∈ L1 with Iη(ρ, r1) ≥ ρ such that

TIη
(ρ) ≥ r1 > r > η(ρ, ρ).

Since ρ = Iη(ρ, r1) =
∨

{µ | η(µ, λ) ≥ r1}, we have

η(ρ, ρ) = η(Iη(ρ, r1), ρ) =
∧

η(µ, λ) ≥ r1.

It is a contradiction. Hence TIη
≤ Tη.

Definition 4.2. Let (X, η1) and (Y, η2) be L-fuzzy topogenous spaces. A function f : (X, η1) →
(Y, η2) is said to be L-fuzzy topogenous continuous if

η2(λ, µ) ≤ η1(f
−1(λ), f−1(µ)), ∀λ, µ ∈ LY .

Theorem 4.3. Let (X, η1), (Y, η2) and (Z, η3) be L-fuzzy topogenous spaces. If f : (X, η1) →
(Y, η2) and g : (Y, η2) → (Z, η3) are L-fuzzy topogenous continuous, then g ◦ f : (X, η1) → (Z, η3)
is L-fuzzy topogenous continuous.

Proof. It follows that, for each λ, µ ∈ IZ ,

η1((g ◦ f)−1(λ), (g ◦ f)−1(µ)) = η1(f
−1(g−1(λ)), f−1(g−1(λ)))

≥ η2(g
−1(λ), g−1(µ))

≥ η3(λ, µ).

Theorem 4.4. Let (X, η1) and (Y, η2) be L-fuzzy topogenous spaces. Let f : (X, η1) → (Y, η2)
be topogenous continuous. Then it satisfies the following statements:

(1) f−1(Iη2
(µ, r)) ≤ Iη1

(f−1(µ), r), for each µ ∈ LY .

(2) f : (X, TIη1
) → (Y, TIη2

) is fuzzy continuous.

Proof. (1)

f−1(Iη2
(µ, r)) = f−1(

∨

{ρ ∈ LY | η2(ρ, µ) ≥ r})

=
∨

{f−1(ρ) ∈ LX | η2(ρ, µ) ≥ r}

≤
∨

{f−1(ρ) ∈ LX | η1(f
−1(ρ), f−1(µ)) ≥ r}

≤
∨

{λ ∈ LX | η1(λ, f−1(µ)) ≥ r}

= Iη1
(f−1(µ), r).

(2) From (1), Iη2
(µ, r) = µ implies Iη1

(f−1(µ), r) = f−1(µ). It is easily proved from Theorem
2.7.
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Theorem 4.5. Let (X, T ) be an L-fuzzy topology on X. Define a function ηT : LX × LX → L

as follows:

ηT (λ, ρ) =

{
∨

{T (γ) | γ ∈ Φλ,ρ} if Φλ,ρ 6= ∅,

0 if Φλ,ρ = ∅

where Φλ,ρ = {γ ∈ LX | λ ≤ γ ≤ ρ}.
Then we have the following properties:

(1) ηT is an L-fuzzy topogenous order on X.

(2) If L is a completely distributive lattice, then ηT is perfect.

(3) If η is a perfect L-fuzzy topogenous on X, then η ≥ ηTη
.

(4) If η is a perfect L-fuzzy topogenous on X and L is order dense, then η ≥ ηTIη
.

(5) If L is an order dense chain, then TIηT
= T .

(6) If L is a completely distributive lattice, then TηT
= T .

Proof. (1) (T1) and (T3) are obvious.
(T2) If λ 6≤ ρ, then Φλ,ρ = ∅ implies ηT (λ, ρ) = 0.
(T4) If Φλ1,ρ1

= ∅ or Φλ2,ρ2
= ∅, then

ηT (λ1 � λ2, ρ1 � ρ2) ≥ ηT (λ1, ρ1) � ηT (λ2, ρ2).

Let Φλ1,ρ1
6= ∅ and Φλ2,ρ2

6= ∅. There exist νi ∈ LX with λi ≤ νi ≤ ρi, i = 1, 2. It implies
λ1 � λ2 ≤ (ν1 � ν2) ≤ ρ1 � ρ2 such that

T (ν1) � T (ν2) ≤ T (ν1 � ν2).

Thus, we have

ηT (λ1, ρ1) � ηT (λ2, ρ2)

=
{

∨

{T (ν1) | ν1 ∈ Φλ1,ρ1
}
}

�
{

∨

{T (ν2) | ν2 ∈ Φλ2,ρ2
}
}

=
∨

{T (ν1) � T (ν2) | ν1 ∈ Φλ1,ρ1
, ν2 ∈ Φλ2,ρ2

}

≤
∨

{T (ν1 � ν2) | ν1 ∈ Φλ1,ρ1
, ν2 ∈ Φλ2,ρ2

}

≤
∨

{T (ν) | ν ∈ Φλ1�λ2,ρ1�ρ2
}

= ηT (λ1 � λ2, ρ1 � ρ2).

(2) (T5) For each νj ∈ LX with λj ≤ νj ≤ ρ, we have
∨

j λj ≤
∨

j νj ≤ ρ such that

ηT (
∨

j

λj, ρ) ≥ T (
∨

j

νj) ≥
∧

j

T (νj).

Hence
∧

j

ηT (λj , ρ) =
∧

j

(

∨

{T (νj) | νj ∈ Φλj,ρ}
)

( since L is a completely distributive lattice)

=
∨

(

∧

j

{T (νj) | νj ∈ Φλj,ρ}
)

≤
∨

{T (
∨

j

νj) |
∨

j

νj ∈ ΦW

j
λj,ρ}.

≤ ηT (
∨

j

λj , ρ)
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(3) Since η(λ, ρ) ≥ η(γ, γ) for λ ≤ γ ≤ ρ, we have:

ηTη
(λ, ρ) =

∨

{Tη(γ) | λ ≤ γ ≤ ρ}

=
∨

{η(γ, γ) | λ ≤ γ ≤ ρ}

≤ η(λ, ρ).

(4) It follows from (3) and Theorem 4.1(2).
(5) Suppose TIηT

6≥ T . Since L is an order dense chain, there exist λ ∈ LX and r ∈ L such that

TIηT
(λ) < r ≤ T (λ).

Since T (λ) ≥ r, we have ηT (λ, λ) ≥ T (λ) ≥ r. So, IηT
(λ, r) ≥ λ. Thus,TIηT

(λ) ≥ r. It is a
contradiction. Thus, TIηT

≥ T .

Suppose TIηT
6≤ T . Since L is an order dense chain, there exists λ ∈ LX with IηT

(λ, s) = λ

such that
TIηT

(λ) ≥ s > r > T (λ).

Since λ = IηT
(λ, s) =

∨

{ρi | ηT (ρi, λ) ≥ s}, by the definition of ηT , for each i, there exists γi with
ρi ≤ γi ≤ λ such that T (γi) ≥ si > r. Thus, λ =

∨

i ρi ≤
∨

i γi ≤ λ implying that λ =
∨

i γi. So,

T (λ) = T (
∨

i

γi) ≥
∧

i

T (γi) ≥
∧

i

si ≥ r.

It is a contradiction. Thus, TIδT
≤ T .

(6) For each L-fuzzy topology T on X, since L is a completely distributive lattice, by (2), ηT is
perfect. By Theorem 4.1, TηT

is an L-fuzzy topology on X. Since ηT (λ, λ) =
∨

{T (ρ) | λ ≤ ρ ≤
λ} = T (λ), we have

TηT
(λ) = ηT (λ, λ) = T (λ).

Theorem 4.7. Let (X, I) be an L-fuzzy interior space. Define a function ηI : LX × LX → L as

follows:

ηI(λ, ρ) =

{
∨

{r ∈ L | λ ≤ I(ρ, r)}, if λ ≤ I(ρ, r)

0, if λ 6≤ I(ρ, r).

Then we have the following properties:

(1) ηI is an L- fuzzy topogenous order on X.

(2)If L is an order dense chain , then ηI is perfect.

(3) IηI
(λ, r) ≤ I(λ, r) and IηI

(λ, s) ≥ I(λ, r) for each λ ∈ LX , r, s ∈ L with s < r. If L is a

chain, IηI
(λ, r) ≤ I(λ, r), for each λ ∈ LX , r ∈ L.

(4) If I is topological and L is an order dense chain , then ηTI
= ηI.

Proof. (1) (T1) and (T3) are obvious.
(T2) If ηI(λ, ρ) 6= 0, there exists r ∈ L such that λ ≤ I(ρ, r) ≤ ρ.

(T4) Since λ1 ≤ I(µ1, r) and λ2 ≤ I(µ2, s) imply

λ1 � λ2 ≤ I(µ1, r) � I(µ2, s) ≤ I(µ1 � µ2, r � s),

we have,

ηI(λ1, µ1) � ηI(λ2, µ2)

=
∨

{r ∈ L | λ1 ≤ I(µ1, r)} �
∨

{s ∈ L | λ2 ≤ I(µ2, s)}

≤
∨

{r � s ∈ L | λ1 � λ2 ≤ I(µ1 � µ2, r � s)}

=
∨

{r0 ∈ L | λ1 � λ2 ≤ I(µ1 � µ2, r0)}

= ηI(λ1 � λ2, µ1 � µ2)
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(2) Suppose there exists a family {λi | i ∈ Γ} such that

ηI(
∨

i∈Γ

λi, µ) 6≥
∧

i∈Γ

ηI(λi, µ).

Since L is an order dense chain, there exists r ∈ L such that

ηI(
∨

i∈Γ

λi, µ) < r <
∧

i∈Γ

ηI(λi, µ).

Since ηI(λi, µ) > r, for each i ∈ Γ, there exists si ∈ L such that si > r with λi ≤ I(µ, si). Put
s =

∧

i∈Γ
si. Then

∨

i∈Γ
λi ≤ I(µ, s),i.e. ηI(

∨

i∈Γ
λi, µ) ≥ s ≥ r. It is a contradiction.

(3) Since I(ρ, r) ≤ I(ρ, r), then ηI(I(ρ, r), ρ) ≥ r. Hence, IηI
(λ, r) ≥ I(λ, r).

Let L be a chain. Since IηI
(λ, r) =

∨

{ρi | ηI(ρi, λ) ≥ r}, for s < r, there exists si ∈ L

such that s < si ≤ r with ρi ≤ I(λ, si). Put s = ∧i∈Γsi ≥ s. Then ∨i∈Γρi ≤ I(λ, s). Hence
IηI

(λ, r) ≤ I(λ, s).
(4) Suppose ηTI

6≥ ηI. Since L is an order dense chain, there exist r ∈ L, λ, ρ ∈ LX such that

ηTI
(λ, ρ) < r < ηI(λ, ρ).

Since ηI(λ, ρ) < r, there exists s ∈ L with s ≥ r such that λ ≤ I(ρ, s). Since

λ ≤ I(I(ρ, s), s) = I(ρ, s) ≤ ρ,

we have TI(I(ρ, s)) ≥ s. It implies

ηTI
(λ, ρ) ≤ TI(I(ρ, s)) ≥ s ≥ r.

It is a contradiction. Hence ηTI
≥ ηI .

Suppose ηTI
6≤ ηI. Since L is an order dense chain, there exist r ∈ L, λ, ρ ∈ LX such that

ηTI
(λ, ρ) > r > ηI(λ, ρ).

Since ηTI
(λ, ρ) > r, there exists ρ ∈ LX with λ ≤ ρ ≤ ρ such that

ηTI
(λ, ρ) ≥ TI(ρ) ≥ r..

Thus TI(ρ) ≥ r. It implies
λ ≤ ρ ≤ I(ρ, r).

Thus ηI(λ, ρ) ≥ r. It is a contradiction.

Theorem 4.8. Let (X, η) be an L-fuzzy topogenous space. Then we have the following properties:

(1) If L is a chain, ηIη
≥ η.

(2) If (X, η) is perfect and L is an order dense chain, then η = ηIη
≥ ηTη

.

Proof. (1) Let η(λ, ρ) ≥ r. Then λ ≤ Iη(ρ, r). It implies ηIη
(λ, ρ) ≥ r. Since L is a chain, ηIη

≥ η.

(2) Suppose ηIη
6≤ η. Since L is an order dense chain, there exist λ, ρ ∈ LX and s ∈ L such that

ηIη
(λ, ρ) > s > η(λ, ρ).

Since ηIη
(λ, ρ) > s, there exists r ∈ L with r > s such that λ ≤ Iη(ρ, r). Since Iη(ρ, r) =

∨

{µi |
η(µi, ρ) ≥ r} and (X, η) is perfect, by (T5), we have

η(λ, ρ) ≥ η(Iη(ρ, r), ρ) ≥
∧

η(µi, ρ) ≥ r > s.

It is a contradiction. Thus η ≥ ηIη
. So, η = ηIη

and η ≥ ηTη
from Theorem 4.5(3).
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(Eds.), The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).

9. A. K. Katsaras, Fuzzy quasi-topogenous and fuzzy quasi-uniformities, Fuzzy Sets and Systems 27 (1988), 335-
343.

10. Y.C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133 (2003), 277-297.
11. Y.C. Kim and K.C. Min, L-fuzzy preproximities and L-fuzzy topologies, Information Sciences 173 (2005), 93-113.

12. Liu Ying-Ming and Luo Mao-Kang , Fuzzy topology, World Scientific Publishing Co., Singapore , 1997.
13. A. A. Ramadan, and M. El-Dardery, fuzzifying syntopogenous structures, Fuzzy Mathematics 10(4) (2002),

1169-1180.
14. A. A. Ramadan, M. Abdel-Sattar,M. El-Dardery and Y.C. Kim, fuzzy topogenous spaces and fuzzy Quasi-

uniform spaces, Fuzzy Mathematics 11(1) (2003), 125-138.
15. A. A. Ramadan, Y.C. Kim and M.K. El-Gayyar, On fuzzy topogenous orders, Fuzzy Mathematics 11(2) (2003),

355-378.
16. A. A. Ramadan, M. El-Dardery and Y.C. Kim, on fuzzy semi-topogenous structures, Fuzzy Mathematics 11(4)

(2003), 769-790.
17. A. A. Ramadan, M. El-Dardery and Y.C. Kim, on fuzzy syntopogenous structures, Fuzzy Mathematics 11(4)

(2003), 791-810.
18. S. K. Samanta, Fuzzy topogenous and fuzzy uniformities, Fuzzy Sets and Systems 70 (1995), 97-105.
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