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Abstract:

In this paper, we introduce the notions of L-fuzzy topoenous orders and investigate some of
properties. We investigate the relationships among L-fuzzy topoenous orders, L-fuzzy topologies
and L-fuzzy interior operators.
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1 INTRODUCTION

Sostak [19] introduced a new definition of L-fuzzy topology as the concept of the degree of the
openness of a fuzzy set. It is an extension of [0, 1]-topology defined by Chang [3]. Hohle and
Sostak [8] substituted a lattice L ( GL-monoid, cqm-lattice) for the unit interval or the two-point
lattice 2 = {0,1} in the definitions of [0,1]-(fuzzy) topologies and [0,1]-fuzzy closure spaces in
[3,4,6,10,12]. Kim and Min [11] studied L-fuzzy preproximities and L-fuzzy topologies where L is
a strictly two-sided, commutative quantale lattice having a strong negation.

In this paper, we introduce the notions of L-fuzzy topoenous orders and investigate some of
properties. We investigate the relationships among L-fuzzy topoenous orders, L-fuzzy topologies
and L-fuzzy interior operators.

These structures are extensions of [0, 1]-(fuzzy) topogenous and [0, 1]-(fuzzy) interior operators
in [1,2,13-17].

2.1 PRELIMINARIES

Throughout this paper, let X be a nonempty set and L = (L, <,V,A,0,1) a complete lattice
where 0 and 1 denote the least and the greatest elements in L. If a < b or b < a for each a,b € L,
then L is called a chain. A lattice L is called order dense if for each a,b € L such that a < b, there
exists ¢ € L such that a < ¢ < b. For each a € L, let @ denote the constant fuzzy subset of X with
value o and Ly = L — {0}.

Definition 2.1. [7,8,11]. A complete lattice (L, <, ®) is called a strictly two-sided, commutative
quantale (scq-lattice , for short) iff it satisfies the following properties

(L1) (L, ®) is a commutative semigroup.

(L2) x =z ® 1, for each € L and 1 is the universal upper bound.

(L3) @ is distributive over arbitrary joins, i.e.

(\/ r;)©s= \/(TiQS).
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Definition 2.2. [7,8,11]. Let (L, <,®) be a scq-lattice. A mapping n: L — L is called a strong
negation , denoted by n(a) = a*, if it satisfies the following conditions:

(N1) n(n(a)) = a for each a € L.

(N2) If a < b for each a,b € L, then n(a) > n(b).

Remark 2.3.[11]. The following lattices (L, <, ®,* ) from (1) to (3) are scg-lattices with a strong
negation *.

(1) Every completely distributive lattice (L, <, A, V,*) with a strong negation * where ® = A. (
In particular, the unit interval ([0, 1], <, A, V,*) with a strong negation a* = 1—a for each a € [0, 1])
(ref.[12]).

(2) Every continuous t-norm ([0, 1], <,t,*) coincided with ® = t and a strong negation
(ref.[7,21]).

(3) A MV-algebra (L, <,®,*) with a strong negation *.(ref. [7,21])

*

In this paper, we assume that (L, <, ®,*) is a scq-lattice with a strong negation *.

Lemma 2.4. [7,11,21]. For each z,y,z € L, {y; | i € '} C L, we have the following properties.
MHIy<z (z0y) <(z0z)andzOy <z Ay.
(2) /\iEF yi = (\/iEF yi)* and \/ieF y; = (/\iEF yi)*
(3) If L is a complete MV-algebra,  ® (\,cr vi) = N\;cr(z © vi)-

All algebraic operations on L can be extended pointwise to the set LX, where X is a set, as
follows: for all x € X and A\, u € L,

(1) A< piff A(z) < p(a);

(2) Ao p)(z) =Az) O p(z).

Definition 2.5 [8,11]. A function 7 : LX — L is called an L-fuzzy topology on X if it satisfies
the following conditions:

(01) T(1) =T(0) = 1.

(02) T()\l ® )\2) > T()\l) O] T()\Q),V)\l, Ay € Lx.

(03) T(\/ieF )\1) > /\iGF T()\J,V{)\l}lgp C Lx.
The pair (X, 7) is called an L-fuzzy topological space.

Let (X,7;) and (Y, 73) be L-fuzzy topological spaces. A function f : (X,7;) — (Y, 72) is said
to be L-fuzzy continuous if To(p) < Ti(f~1(n)), Yu € LY.

Definition 2.6 [8,11]. A map Z : LX x Ly — L¥ is called an L-fuzzy interior operator on X iff
7 satisfies the following conditions:

(I1) Z(1,7) =1, Vr € Lo.

(I12) Z(\,r) < A\, Vr € L.

M) IA<pandr <s,then Z(A,s) <Z(u,r).

(I4) TN O p,r © 5) 2 Z(A\,7) © Z(i, ).

The pair (X,Z) is called an L-fuzzy interior space.

An L-fuzzy interior space (X, 7) is called topological if

T(Z(\,7),7)>Z(\ 1), YA e L5, r € Ly.
Theorem 2.7 [8,11]. Let (X,Z) be an L-fuzzy interior space. Define a map Tz : LX — L by
Tr(\) = \/{r e L| A< I(\, 1)}

Then 7Tz is an L-fuzzy topology on X induced by Z.
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3. L-fuzzy topogenous orders and L-fuzzy interior operators

Definition 3.1. A function 1 : LX x LX — L is called an L-fuzzy topogenous order on X, if it
satisfies the following axioms: for any A, A1, A, jt, pt1, pio € LX,

(T1) n(1,1) =n(0,0) =1,
(T2) if (A, ) # 0, then A < p,
(T3) if A < A1, pin < then n(A, pa) < n(A, p),
(T4) n(A1 © A2, 1 © p2) = (A1, pa) © (A2, ).
Definition 3.2. An L-fuzzy topogenous order 7 is called perfect if

(T5) n(Vier Ais 1) = Nier n(Ai, ), for any {u, A; [i € T} C L.
A perfect L-fuzzy topogenous order 7 is called biperfect if

(TG) T]()\a /\iEF :u”L) = /\'LGF T]()\a IU”L)a fOI' a’ny {)\a Hi | { € F} - LX

Theorem 3.3. Let 1,72 : LX x LX — L be L-fuzzy topogenous orders on X. Define the com-
position my one of n1 and n2 on X by

mom )=\ (mhv)on,p).

veLX

Then 1y o 9 is an L-fuzzy topogenous order on X.

Proof. Let 01,2 : LX x L* — L be L-fuzzy topogenous orders on X.
(T1) and (T3) are easy.
(T2) If 51 0 m2(A, 1) # 0, then there exists v € L¥ such that

n1on2(A, ) > ni(A, v) © na(v, ) # 0.

So, n (A, v) # 0 and n2(v, p) # 0. It implies A < v < p.
(T4) It is proved from:

(m om2) (A1, 1) © (m o m2) (A2, p2)
= ( V' (O, o) ®772(P1a#1))) © ( V' (m(e,p) ®772(P2a#2)))

p1ELX p2eLX

\ ((771()\1, p1) © m (A2, p2)) © (n2(p1, 1) © n2(p2, #2)))
p1,p26€LX

<V a0 X, 01 @ p2) ©@ma(pr © pa, i1 © p2))
p1,p26€LX

<V (10X, v) ©na(v, 1 © p2))
veLX
<mona(A © Az, i1 © pi2).

In the next, We introduce the relationship among L-fuzzy topogenous and L-fuzzy interior
operators.

Theorem 3.4. Let 1) be an L-fuzzy topogenous order on X. Define a function Z,) : L x Ly — L%
as:

I,(\r) = \{w € LY [ n(u, 2) > r}.
Then 1, is an L-fuzzy interior operator on X.

Proof. (1) (I1) Since n(1,1) =1, Z,,(1,r) = 1.
(I2) Since n(p, A) # 0, p < X implies Z,,(A, ) < A.
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(I3) If A < g and r < s, since n(7y, 1) > n(y, A) > s > r, then Z,(A\, s) < I, (u, 7).
(I4) From (T4), we have:

Iﬁ()‘a T) QIH(/L’ S)
={Vin e Ineu, ) =t} o { V€ L% [ oz, ) > 5}
=\/{m o el |n(m A >rn0eu > s}

<\{monelX|nmon op >ros}
<L,Aopuros).

Theorem 3.5. Let 1 be an L-fuzzy topogenous operator on X. Define a map Tz, : LX — L by

Tz,(\) = \/{r € L | Z,(A\,7) > A}

Then 7z, is an L-fuzzy topology on X induced by 7.
Proof. Tt is similarly proved as Theorem 2.7.

Example 3.6. Let X be a set. Define two functions 19,1 : LX x LX — L as follows:

() = 1, ifA=0o0rp=1,
oA P) = 0, otherwise,
1, ifA<p,
)\ =
mp) { 0, otherwise.

(1) Since Ay ® A2 # 0 and p; ® pa # 1 imply Ay # 0 and Ay # 0 and p; # 1 or pa # 1, we have

no(A1 © A2, p1 © p2) = no(A1, p1) © 1Mo(Az, p2)-

Other cases are easy. Hence 7y is a biperfect L-fuzzy topogenous order on X.
(2) Since A1 < p1 and Ay < po implies A\ © A2 < p1 @ p2, we have

M (A1 © A2, p1 @ p2) > m(A1, p1) @ m(Ae, p2).

Other cases are easy. Hence 71 is a biperfect L-fuzzy topogenous order on X.
(3) We can obtain Z,,, Z,, : LX x Lo — L as follows:

1, ifxe{0,1}r € Ly,
I%(m—{_ A€ 101 rely

0, otherwise,

I\ 7) =X, YA e LX re L.

(4) We can obtain L-fuzzy topologies 77

n0o’

TIm : LX — L as follows:

1, ifx=0o0r1,

0, otherwise.

72,0 - { To, (3 = 1yAe LY
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Example 3.7. Let X be a set. Define a function 7 : LX x LX — L as follows:

1, ifA=0o0rp=1,
n(A,p) =< infAAinfp, f0#N<p#1,
0, otherwise,

(1) Then 7 is an L-fuzzy topogenous order on X from:
N(A1 © A2, p1 © p2) = inf(A © A2) Ainf(pr © p2)
> (inf(\) @ inf(M)) A (inf(pr) @ inf(p2))
> (inf A1 Ainf p1) ® (inf Ay A inf po)
= n()\la Pl) © n()\Qa p2)

Other cases are easy.
(2) We can obtain Z,, : LX x Ly — L as follows:

6, if A= 6, r e Ly
,(\r)=4q 1, if A=1,7r€ L
A, if 0<r <inf .
(3) We can obtain an L-fuzzy topology 7z, : L — L as follows:

1, ifA\=0or1,
inf A otherwise.

7,00 = {

4. L-FUzzZY TOPOGENOUS ORDER AND L-FUZZY TOPOLOGIES

In the next, We introduce the relationship among L-fuzzy topogenous and L-fuzzy interior
operators.

Theorem 4.1. Let 1 be a perfect L-fuzzy topogenous order on X. Define a function 7, : X - L
by T,(A) = n(A, A). Then we have the following properties:

(1) 7, is an L-fuzzy topology on X.

(2) If L is an order dense chain, then T, = Tz, .

Proof. (1) (O1) From (T1), clearly 7,(0) = 7,(1) = 1.
(02) For any Aj, Ay € LX, we have

7;7()\1 O A2) =n(A © A3, A1 O Xa)
> n(A1, A1) © 1Az, A2)
= 7;7()\1) ® 7;7()\2).

(03) For each family {\; | j € J} C L, we obtain
T,(\/ M) =0\ A V)
J J J
= A,V \)
J J
> A n(ri, A))
J
= AT
J
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Thus 7, is an L-fuzzy topology.

(2) Since T,(A) = n(A, A), by Theorem 3.4, Z,,(A, n(A, X)) > A. From Theorem 3.5, Tz, (\) >
(A, A) = T,(\). Hence 77, > T,,.

Suppose 7z, £ 7T,. Since L is an order dense chain, there exist p € LX and r € Ly such that

Tz,(p) > 1> Ty(p) = n(p, p)-
From the definition of 77, , there exists ry € Ly with Z,(p,r1) > p such that
1z1,(p) Z 1 > 7 > n(p, p)-

Since p = T, (p.r1) = V{u | n(p, A) = 11}, we have

n(p, p) = n(Zy(p, 1), p) = [\, A) = 1.

It is a contradiction. Hence 77, <7,
Definition 4.2. Let (X,n;) and (Y, 72) be L-fuzzy topogenous spaces. A function f: (X,n;) —

(Y, n2) is said to be L-fuzzy topogenous continuous if

n2(A, 1) < m(fFHA), f (W), YA pe LY.

Theorem 4.3. Let (X,n1),(Y,n2) and (Z,n3) be L-fuzzy topogenous spaces. If f : (X,n1) —
(Y,n2) and g : (Y,n2) — (Z,n3) are L-fuzzy topogenous continuous, then go f : (X,n1) — (Z,n3
is L-fuzzy topogenous continuous.

Proof. It follows that, for each \, u € 1%,

Q\
—
>
7
—
—
Q\
—
—~
>
S~—
S~—
S~—

m(go f) (N, (go /)~ ) =m(f~(

Theorem 4.4. Let (X,n1) and (Y,n2) be L-fuzzy topogenous spaces. Let f : (X,n1) — (Y,n2)
be topogenous continuous. Then it satisfies the following statements:

(1) f (Zpa(ps7)) < Ly (f 4 (), 7), for each p€ LY.
(2) f:(X,Tz,,) — (Y, Tz1,,) is fuzzy continuous.

Proof. (1)

FH T (o)) = T\ Hp € LY | malp, ) > 7))
=\{ ) e LX | na2p, ) > 1}
<\ ) e X Im(F o) £ () > 7}
<\/Ihe I [ £ ) = 1)
=L, (f (), 7).

(2) From (1), Z,, (p, ) = p implies Z,,, (f~*(w),r) = f~'(w). It is easily proved from Theorem
2.7.
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Theorem 4.5. Let (X,7) be an L-fuzzy topology on X. Define a function nr : LX x L* — L

as follows: )
{ VAT () |y € ®rp} iRy, #0,
0

nr(\p) = Py — 0
o=

where @) , = {y € L* | A <~y <p}.
Then we have the following properties:
1) 7 is an L-fuzzy topogenous order on X.
) If L is a completely distributive lattice, then nr is perfect.
) If ) is a perfect L-fuzzy topogenous on X, then n > ng,.
) If n) is a perfect L-fuzzy topogenous on X and L is order dense, then n > N1z, -
5) If L is an order dense chain, then 77, =T.
(6) If L is a completely distributive lattice, then T,, = T.

Proof. (1) (T1) and (T3) are obvious.
(T2) If X £ p, then @ , = 0 implies n7 (A, p) = 0.
(T4) If (I))\hm = (Z) or (I))\27p2 = (Z), then

(
2
(3
(4
(

N7 (A © A2, p1 © p2) > n7 (A1, p1) © n7 (A2, p2).

Let @), p, # 0 and @y, ,, # 0. There exist v; € L¥X with \; < v; < p;, @ = 1,2. It implies
A1 O A2 < (11 ©®va) < p1 @ pa such that

T (1) 0T () <T (11 O wa).
Thus, we have
n1 (A1, p1) © (A2, p2)
= {VITw) [ e 0r i} o { VT W) |02 € By}
=\V{T() ©T ()| vi € Oy, p vz € Prypy}
<\VATwiowm) | vi € @y, v2 € Dry

< \/{T(V) |V € ®x,0r0, 01002 )
= 777’()\1 ® A2, 01 ® p2)'

(2) (T5) For each v; € L with \; <v; < p, we have V; A <V, v < psuch that

777(\_/ Xop) =T\ v)) = /\T(Vj)-

J

Hence

J

Az = A (VAT0) vy € @,))
( since L is a completely distributive lattice)
=V (AT [y € 0,))
< \/{TJ<\/ DIRVIZE VWAt

J J

< 777(\/ Aj» p)
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(3) Since n(A, p) > n(7,7) for A <+ < p, we have:

n,(\p) = VAT, (1) [ A<y < p}

=V A<y <p}
<n(A, p).

(4) It follows from (3) and Theorem 4.1(2).
(5) Suppose Tz, # 7. Since L is an order dense chain, there exist A € L and r € L such that

Tz

ur (
Since 7(\) > r, we have nr(A\,A) > T(A) > r. So, Iy (A7) > A, Thus, 7z, () > r. It is a
contradiction. Thus, TInT >T.

Suppose Tz, £ 7. Since L is an order dense chain, there exists A € LX with Z,; (A, 5) = A
such that

A) <r<T(N).

Tz, (A) > s>1>T(\).

Since A =7, (A, s) = V{pi | n7(pi, A) > s}, by the definition of 7, for each i, there exists ; with
pi < i < Asuch that 7(v;) > s; > r. Thus, A =V, p; <V, < Aimplying that A =/, . So,

TN =T/ = AT = Asi =

It is a contradiction. Thus, TI&T <T.

(6) For each L-fuzzy topology 7 on X, since L is a completely distributive lattice, by (2), n7 is
perfect. By Theorem 4.1, 7, is an L-fuzzy topology on X. Since nr(AA) = V{7 (p) | X < p <
A} =T (A), we have

Tor () = 170 X) = T(V).

Theorem 4.7. Let (X,Z) be an L-fuzzy interior space. Define a function nz : L x LX — L as

follows:
V{re LIX<Z(p,7)}, if A<Z(p,7)

) = { if A2 T(p,r).

Then we have the following properties:

(1) nz is an L- fuzzy topogenous order on X.

(2)If L is an order dense chain , then nz is perfect.

(3) Z,, (A7) < Z(A\,r) and Z,, (N, 8) > Z(A,r) foreach A\ € LX, r;s € L withs <r. If L is a
chain, Z,,, (\,r) < Z(\,r), for each A € LX  r € L.

(4) If T is topological and L is an order dense chain , then ng, = nz.

Proof. (1) (T1) and (T3) are obvious.
(T2) If nz(A, p) # 0, there exists r € L such that A < Z(p,r) < p.
(T4) Since Ay < Z(p1,r) and Ay < Z(ug, s) imply

A O X < T(pa,7) ©ZL(p2,8) <I(pr © pa, 7 s),
we have,
nz(A1, 1) © nz(Ae, p12)
=\V{reL |\ <Z(u,n}o\/{seL|l <I(u,s)}
<\V{roseL| Mol <I(momuros)}

= V{ro € LI M © X2 < T(1 © pia, o)}
=nz(A © A2, 1 © p2)
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(2) Suppose there exists a family {\; | i € I'} such that

nz(\/ Aoow) 2\ nz(hi, ).

iel iel

Since L is an order dense chain, there exists r € L such that

nr(\/ Nisw) < < N\ nz(hi, ).

iel iel

Since nz(Ai, ) > r, for each i € T', there exists s; € L such that s; > r with A; < Z(u,s;). Put
s = Nier si- Then \/, . Ai < Z(p, s),i.e. nz(V;er Ain ) > s > . It is a contradiction.

(3) Since Z(p,r) < Z(p,r), then nz(Z(p,r), p) > r. Hence, L, (A, 1) > Z(A, 7).

Let L be a chain. Since Z,,(A\,r) = V{p:i | nz(pi,A) > r}, for s < r, there exists s; € L
such that s < s; < r with p; < Z(A,s;). Put s = ANjers; > s. Then Vierp; < Z(\,s). Hence
Lo (A1) <IN, 8).

(4) Suppose 1z, # nz. Since L is an order dense chain, there exist 7 € L, A, p € LX such that

Nz (A p) <1 <nz(A, p).
Since nz(A, p) < r, there exists s € L with s > r such that A <Z(p, s). Since
A< T(Z(p,9),5) = T(p,s) < .
we have T7(Z(p, s)) > s. It implies
nz(Ap) < Tz(Z(p,s)) = s >

It is a contradiction. Hence nz, > nz.
Suppose 17, £ nz. Since L is an order dense chain, there exist r € L, A\, p € LX such that

nrz (A, p) > 1 > nz (A, p).

Since 0z, (A, p) > 7, there exists p € LX with A < p < p such that

nrz(\ p) = Tz(p) > ..

Thus 7z(p) > r. It implies
A< p<Z(p,7).

Thus nz(A, p) > r. It is a contradiction.

Theorem 4.8. Let (X, n) be an L-fuzzy topogenous space. Then we have the following properties:
(1) If L is a chain, nz, > 1.
(2) If (X, n) is perfect and L is an order dense chain, then 1 = nz, > n7,.

Proof. (1) Let n(X, p) > r. Then X\ < Z,(p,r). It implies nz, (A, p) > r. Since L is a chain, nz, > 7.
(2) Suppose nz, £ 7. Since L is an order dense chain, there exist A, p € L~ and s € L such that

nz,(A p) > s >n(A, p).

Since 1z, (A, p) > s, there exists r € L with r > s such that A\ < Z,(p,r). Since Z,(p,r) = /{1 |
n(ui, p) > r} and (X, n) is perfect, by (T5), we have

1\ p) = 0(Zy(p,r), p) = Nlpis p) =7 > s.

It is a contradiction. Thus n > nz,. So, n = 7z, and n > 1z, from Theorem 4.5(3).
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