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Abstract. We introduce r-T5 spaces in fuzzy topological spaces in view of
Sostak([22] and investigate some properties of r-T5 spaces. Moreover, we study
properties of subspaces and products of r-T5 spaces.

1. Introduction and preliminaries

Sostak [22] introduced the fundamental concept of a fuzzy topological structure
as an extension of both crisp topology and Chang fuzzy topology [3]. It has been
developed in many directions|6,8,9,11,12,13,14,18]. In [1,2,4,,5,7,10,17,21,23], the
various separation axioms were introduced in fuzzy topological spaces in a sense
of Chang [3] or Lowen|[15]. Srivastava [24] introduced separation axioms in a view
of the definition of Hazra.et.al.[8].

In this paper, we define r-T5 space in fuzzy topological spaces in a view of the
definition of Sostak. We investigate some properties of r-T5 spaces. In particular,
we study properties of subspaces and products of r-T5 spaces.

Throughout this paper, let X be a nonempty set, I = [0,1] and Iy = (0, 1]. For
a€l,a(r)=aforalz e X. A fuzzy point z; for t € Iy is an element of I such

that
()_{t, if y =u,
)= 0, if y # «x.
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2 SOME PROPERTIES OF R-T» SPACES

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point x; € X iff
t < A(z). A fuzzy set A is quasi-coincident with i, denoted by A g p, if there exists
x € X such that A(z) + p(z) > 1. If A is not quasi-coincident with p, we denote
Aq p.
Definition 1.1([22]). A function 7 : I — I is called a fuzzy topology on X if it
satisfies the following conditions:

(01) 7(0) = 7(1) = 1.

(02) 7(p1 A p2) > 7(p1) A T(pz) for each pu, pg € I,

(03) 7(V,er 1) = Njer 7(u:) for any {p;}ier C I7.
The pair (X, 7) is called a fuzzy topological space.

Let 7y and 7 be fuzzy topologies on X. We say 71 is finer than 5 (72 is coarser
than 71) if 7 (u) < 71 (p) for all p € IX.

Theorem 1.2 ([8]). Let (X, 7) be a fuzzy topological space. For each r € Iy, A €
IX, we define an operator C, : IX x Iy — IX as follows:

CeAr) = Nplp=Ar1-p) >r}

Then it satisfies the following properties:
(1) C-(0,7) =0,C(1,7) =1, for all r € I.

) Cx(

) ( ’I“), if )\1 S /\2.

) Co(AV 1) = Cr(A\, 1)V Cr (s, 1), for all r € Iy.
) C(

(6) CT(CT()H_T)’ 7“) = C’T()\? T)'

Definition 1.3 ([11]). Let 0 ¢ Ox be a subset of IX. A function 8: O©x — I is
called a fuzzy topological base on X if it satisfies the following conditions:

(B1) B(1) = 1.

(B2) B(p1 A pa) = B(pa) A B(uz2), for all pur, ps € Ox.

A fuzzy topological base 3 always generates a fuzzy topology 75 on X in the
following sense:

Theorem 1.4 ([11]). Let 8 be a fuzzy topological base on X. Define the function
75 : IX — I as follows: for each p € I¥,

V{/\ieJ B(Nz)} if p= VieJ Wi, W5 € Ox,
Ta(n) =4 1 if 4 =0,
0 otherwise

where the first \/ is taken over all families {y; € Ox | =\, pi}-
Then (X, 73) is a fuzzy topological space.

Let (X,7) and (Y, 72) be fuzzy topological spaces. A function f : (X, 71) —
(Y, 72) is called fuzzy continuous if 5(p) < 71 (f~1(u)) for all p € IY.
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Theorem 1.5 ([11]). Let (X;,7;);cr be fuzzy topological spaces and X a set
and f; : X — X; a function , for each i € I'. Let Ox = {0 # = A;cp i '(v3) |
7i(v;) > 0, i € F'} be given, for every finite index set F' C I'. Define a function
B:0x — I on X by

Bp) = \/{/\ Ti(vi) | n= /\ £t w)}

el 1€EF

where the first \/ is taken over all finite index subset F' of I'. Then:

(1) B is a fuzzy topological base on X.

(2) The fuzzy topology 73 generated by 3 is the coarsest fuzzy topology on X
for which each ¢ € ', f; is fuzzy continuous.

(3) Amap f:(Z,7z) = (X, 73) is fuzzy continuous iff for each i € I', f; o f is
fuzzy continuous.

From Theorem 1.5, we can define the following definitions.

Definition 1.6 ([11]). Let (X, 7) be a fuzzy topological space and A be a subset
of X. The pair (A,7]4) is said to be a subspace of (X, 7) if 7|4 is the coarsest
fuzzy topology on A for which the inclusion map i is fuzzy continuous.

Definition 1.7 ([11]). Let X be the product [ ], X; of the family {(X;, 7;) | i €
I'} of fuzzy topological spaces. The the coarsest fuzzy topology 7 = Q) 7; on X for
which each the projections 7; : X — X is fuzzy continuous is called the product
fuzzy topology of {7; | i € T'}, and (X, 7) is called the product fuzzy topology space.

2. The properties of r-T, spaces

Definition 2.1. Let (X,7) be a fuzzy topological space. A fuzzy set u € IX is
called a r-Q, open neighborhood of x; if z; g p and 7(u) > r. We denote

Qr(we,r) ={p eI |z qu, 7(p) >r}.

Definition 2.2. A fuzzy topological space (X, 7) is said to be a r-T5-space if for
each z¢,ys € Pt(X) such that x # y, there exist A € Q,(z¢,7) and p € Q,(ys, )

such that AA p = 0.

Theorem 2.3. A fuzzy topological space (X, 7) is r-T5 iff for each z;,ys € Pt(X)
such that = # y, and t,s < 1, there exist A\, u € IX such that x; € \, 7(\) >,
Ys € i, T(p) > 7 and AA p = 0.

Proof. (=) For each xy,ys € Pt(X) such that x # y, and t,s < 1, x1_¢,y1-s €
Pt(X). Since (X, 7) is r-T», there exist A € Q- (x1-¢,7) and p € Q,(y1—s,7) such
that A\A pu = 0. Thus, A\ € Q,(z1_¢,7) implies z; € X and 7(\) > r. Thus,
€ Qr(y1—s,7) implies ys € p and 7(pu) > r.



4 SOME PROPERTIES OF R-T» SPACES

(<) Let x4, ys € Pt(X) such that  # y. Let t,s < 1. For z1_4,y1—s € Pt(X),
there exist A\, p € I such that 21, € \,7(\) > r, y1_s € u,7(u) > r and
AA p=0. It implies A € Q,(w¢,7) and p € Qr(ys, 7).

Ift=1o0ors=1,lett =1and s < 1. There exists 0 < p < 1 such that
Tp,Y1—s € Pt(X). Then there exist \,u € IX such that z, € A 7(\) > r,
yi—s € p () >rand AA p=0. Thus, z; ¢ A and ys q u. Hence A\ € Q. (zy,7)
and u € Q. (ys,7) such that A A p = 0. Hence (X, 7) is r-Tp. [

Theorem 2.4. A fuzzy topological space (X, 1) is r-T5 iff for each x,y; € Pt(X)

such that z # y, there exist A € Q,(z,r) and p € Q- (yi,r) such that A A p = 0.

Proof. (=) It is trivial.

(<) Let x4,ys € Pt(X) such that z # y and t < s. Since for each x4,y €
Pt(X), there exist A € Q. (z¢,7) and pu € Q- (ys,r) such that AApu = 0, then y; ¢ p
implies ys ¢ u. Hence (X, 7) is r-Tp. O

Definition 2.5 ([16]). Let D be a directed set. A function S : D — Pt(X) is
called a fuzzy net.

Definition 2.6. Let (X, 7) be a fuzzy topological space, u € I'X, x; € Pt(X) and
r e Iy. A fuzzy point x; is called a fuzzy r-limit point of S, denoted by S— xy, if
for every p € Q- (z, 1), there exists ng € D such that for each n € D with n > ny,
we have S(n) q p.

We denote

lim,(S,r) = \/{xt € Pt(X) | x¢ is a fuzzy r-limit point of S}.

For A € I*X, we denote supp(\) = {z € X | AM(z) > 0} and |supp()\)| is the
cardinal number of supp(A).

Theorem 2.7. Let (X, 7) be a fuzzy topological space. Then the following state-
ments are equivalent.

(1) (X,7) is r-Tx.

(2) For each fuzzy net S, |supp(lim.(S,r))| < 1.

Proof. (1)= (2) Suppose there exists a fuzzy net S : D — Pt(X) such that
|supp(lim,(S,7))| > 2. There exist x # y € supp(lim,(S,)) such that S x4, ys.
Since (X, 1) is r-Ty, there exist A € Q. (x4, 7) and p € Q- (ys, ) such that Ay = 0.
Since S— x4, Ys, there exist ny,ngs such that

VYn > nq, S(n) g A,

Vn > ng, S(n) q p.
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Since D is a directed set, there exists n3 > ny,ny such that
Vn > ng, S(n) g\, S(n) q p.

It implies S(n) ¢ A A p, for all n > n3. Since A A u = 0, it is a contradiction.

(2)= (1) Let (X,7) be not r-T». Then there exist z;,ys € Pt(X) with x # y
such that for all A € Q,(x,r) and for all u € Q,(ys,7), we have AA p # 0. Define
arelation on D ={AApu | A€ Qr(x¢,7), 1 € Q-(ys,7)} by

AL A 1 < Ao A po ifE Ay > Ao, iy > .

Then (D, <) is a directed set. For each A A pu € D, since A A p # 0, there exist
z € X and p € I such that (A A p)(2) >1—p > 0. Then 2z, ¢ A A p. Thus, we
can define a fuzzy net S : D — Pt(X) by

S(ANA p) = zp, that is, S(AA ) = A A p.

For every A € Q. (x,r), there exists A = A A1 € D such that for all p € D with
A < p, we have S(p) g p. Since p < A\, we have S(p) ¢ A. Hence z; € lim,(S,r).
Similarly, ys € lim.(S,r). Thus, |supp(lim.(S,r))| >2. O

Example 2.8. Let X = {z,y} be a set. We define a fuzzy topology 7: IX — I
as follows:

1, ifx=0orl1,

Loif A=,
=92

5, if A=y,

0, otherwise.

For each x,ys € Pt(X) such that x # y, for 0 < r < %, there exist z1 € Q,(x¢,7)
and y; € Q,(ys,r) such that 1 Ay; = 0. Hence (X, 7) is r-Ty, for 0 < r < %
Moreover, we easily show that (X, 7) is not r-T, for r > 1.

Let N be a natural number set. Define a fuzzy net S: N — Pt(X) by

o4, ifn=2m,

S(n) = {

Yo.3, ifn=2m+1,

We can show lim. (S, 5) =0 from (1) to (2).

(1) a; for t € Iy is not a fuzzy 3-limit point of S, for 21 € Q;(z, 5) and for
each n € N, there exists 2n 4+ 1 € N such that 2n 4+ 1 >n and S2n+ 1) § z;.

(2) ys for s € Iy is not a fuzzy %-limit point of S, for y; € Q- (ys, %) and for
each n € N, there exists 2n + 1 € N such that 2n 4+ 1 > n and S(2n) g y1.

Thus, |supp(lim,(S,3))| =0. O
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Example 2.9. Let X = {z,y} be a set. We define a fuzzy topology 7: IX — I
as follows:

1, ifx=0or1,
TA) =4 3, ifA=wzga,
0, otherwise.

For zg3,y05 € Pt(X), since Q,(z03,7) = Q-(yo5,7) = {1}, for each r € Iy,
(X, 7) is not r-Ts.
Let N be a natural number set. Define a fuzzy net S: N — Pt(X) by

S(n) = xq,, a, = 0.5+ (—1)"0.2.

(1) x; for t < 0.6 is a fuzzy r-limit point of S, for T € Q. (z,r) and for all
n € N,we have S(n) ¢ 1.

(2) 24 for 0.6 < t and 0 < r < % is not a fuzzy r-limit point of S, for zg4 €
Q- (x¢,7r) and for each n € N, there exists 2n + 1 € N such that 2n + 1 > n and
5(271 + 1) = 20.3 q 0.4

(3) ys for s € Iy is a fuzzy r-limit point of S, for 1 € Q,(ys,r) and for all
n € N,we have S(n) q 1.

From (1) to (3), put u(x) = 0.6 and pu(y) = 1, we obtain

. 1
p, if0<r<sg,

lim.(S,r) = {

1, ifr>1.

Thus, |supp(lim,(S,r))|=2. O

Define Ax € I*X*X as follows:

1, ifz=y,
0, ifx#uy.

Theorem 2.10. Let (X,7) be r-T5. Then Crg(Ax,7) = Ax where 7 ® 7 is a
product fuzzy topology on X x X.

Proof. We only show that Crg,(Ax,r) < Ax from Theorem 1.2 (2).
Suppose Crgr(Ax,7r) £ Ax. Then there exist (z,y) € X x X and t € Iy such
that

Ax(z,y) = {

Crar(Dx,r)(x,y) >t > Dx(x,y). (1)

Since Ax(x,y) < t. Then x # y. Since (X, 7) is r-Ty, for x4, y; € Pt(X), there
exist A € Qr(ws,7) and p € Q- (ys,7) such that AAu = 0. Put p = ;7 L (M) Ay ().
Then 7 ® 7(p) > 7(\) A 7(p) > r. Moreover, since x; ¢ A and y; q p, we have

(rr ) Ay () (@, y) + 8= M) A p(y) +¢ > 1.
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Thus, p € Q- ((z,y):,r). Since, for all x € X,

pla,z) = (m ' (N) Ay () (z,x) = M) A p(x) =0,
we have p <1— Ax. So, Ax <1—pand 7®7(p) > r implies
AX < CT@T(AXaT) < T - p-
Since (l’,y)t qp, .
CT®T(AX7T)('Tay) < (1 - p)((l?7y) <t.
It is a contradiction for the equation (1). O

Theorem 2.11. Let 7 ® 7 be a product fuzzy topology on X x X of a fuzzy
topological space (X, 7). If Crg.(Ax,r) = Ax, then (X,7) is (r — €)-Ty, for
arbitrary € > 0.

Proof. Let xy,y; € Pt(X) with  # y. Since Crg-(Ax,7) = Ax, by the definition
Crgr of Theorem 1.2 and Definition 1.1 (03), we have 7 ® 7(1 — Ax) > r. Put
p=1—Ax. Then p(x,y) = 1 implies (z,y); q p. Let 3 be a base for 7 ® 7. Since
T ® 7(p) > r, by Theorem 1.4, for € > 0, there exists a family {p; | p = V,;cp pi}
such that

r@r(0)> N\ Blp) > -
iel
Since (2,9): ¢ (p = V,er pi), there exists ¢ € I' such that (z,y): ¢ p; and B(p;) >
r — €. From Theorem 1.5, there exist A, u € IX such that

pi =7 (W) AT (), Blpi) = TA) AT(p) =7 — €
Therefore 7(\) > r — €, 7(u) > r — €. Furthermore, since (z,y): ¢ p;, we have
(z,9)e g (N) = (17 (M) (@,y) = A2)) +t > 1,

(@, y)e amy ' (0) = (73 (1) (z,y) = w(y)) +1 > 1.
Hence A € Q(z¢,r —€) and p € Q,(y¢, v — €). Moreover, for each = € X,

A A p) () =77 (A Ay () (2, @)
= pi(ilj‘,:l?> < p(ill‘,:l?) - Oa

because p(z,x) = (1 — Ax)(z,z) = 0. Thus, by Theorem 2.4, (X, 7) is (r — ¢)-Tx,
for arbitrary e > 0. O
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Example 2.12. Let X = {a,b} and X x X be sets. We define a fuzzy topology
7 : IX — I as follows:

1, ifAx=0orl,

3 if N =0y,
) =4 * '

%, if A = aq,

0 otherwise.

For each a;,bs € Pt(X) and 0 < r < %, there exist a; € Q,(at,r) and by €
Q,(bs,r) such that a; A by = 0. Hence (X, 7) is r-Tp, for 0 < r < %
Let /3 be a base of product fuzzy topological space (X x X, 7®7). From Theorem

1.5, since
(a,b)1 = m1 (a1) A7y (b))

B((a, b)) = 7lar) Ar(br) = 3.
Since
(b,a); = my (ar) Ayt (),
B((b,a)) = 7(a1) A7(by) = %
Thus,

T®T«%m1v@ﬂh):%.

Since A x = 1-— (CL, b)l V (b, a)l, C7—®T(Ax, %) =Ax. O

Theorem 2.13. Let f: (X,7) — (Y,71) and g : (X,7) — (Z, 72) be fuzzy contin-
uous. Define a function h: X — Y x Z by

Then h: (X,7) = (Y X Z, 71 ® 72) is fuzzy continuous where 71 ® 75 is a product
fuzzy topology of (Y, 71) and (Z, 2).

Proof. Suppose there exists p € IY *Z such that

T(h"(p)) <11 ®@T2(p).

Let 8 be a base for ; ® 7o. By the definition of 71 ® 75, there exists a family
{pi | p=V;ecr pi} such that

(W (p)) < J\ Blpi) < 11 @ 72(p).

el
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By the definition of 3 of Theorem 1.5, for each i € I', there exist \; € IY and
w; € I? with p; = 771_1()\2-) A 71'2_1(/L¢) such that

(b)) < N\ (1 (\) Ara(ai)) < N\ B(o)- (2)

el el

On the other hand, (m o h)~! ()\Z)(x) = \i(m(h(x))) = Ni(f(2)) = fF~1(\) () for
all z € X, similarly, (73 0 h)™1(u;) = g7 (u;). Thus, we have

h=H(pi) = b (my H () Ay ()

A
— _1(7T1_1()\¢))/\h_1(772 (,UZ))
(i)

|
—~
3
=
O
>=
SN—
L
|2
N
>
S
[\]
(@)
=

It follows

It is a contradiction for the equation (2). O

Theorem 2.14. Let f,g: (X, ) — (Y, 72) be fuzzy continuous. Let (Y,7) be
r-To and Cr, (xa,7r) = xx where A is a subset of X ,x4 and xx are characteristic
functions. If f(a) = g(a) for all a € A, then f(x) = g(x) for all z € X.

Proof. Suppose that there exists x € X — A with f(z) # g(x). Since (Y, 72) is

r-Ty, for f(z)1,9(x); € Pt(Y), there exist A € Q,,(f(x)1,r) and p € Qr,(g9(z)1,7)
such that A A p = 0. Since f(z); ¢ A and g(z); q i, we have

() AgHw)(@) >0 (3).
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On the other hand, let 7; : Y x Y — Y be projection maps for each ¢ € {1,2} and
h:X —Y xY defined by h(z) = (f(z),g(x)). We have

AN p=0

= W) AT () ALy =0

= W () Amy () ARTH(Ay) =0

= [T N AT () ARTHAY) =0

=0 Ay) ST—(fTT () Ag™ (W),
Since (Y, 72) is r-T%, by Theorem 2.10, Cr, g, (Ay,7r) = Ay. Since h : (X, 7)) —
(Y X Y, 79 ® 72) is fuzzy continuous, by Theorem 1.5(3),

Cri (W1 (Ay), 1) S h7HCryom (Ay, 1)) = K71 (Ay).
Hence, by Theorem 1.2(2), C., (h™'(Ay),r) = h™'(Ay). Furthermore, Since
Cr,(xa,7) = xx and x4 < h™1(Ay), we have
Xx = Cr(xa,r) < Cr (W (Ay), 1) = W™ (Ay)
ST=(H A ().

Thus, xx(z) = 1 but 1(z) — (f~1(\) Ag~1(u))(x) < 1. It is a contradiction for the
equation (3). O

Theorem 2.15. If f: (X, ) — (Y, 72) is fuzzy continuous and (Y, 72) is r-To,
then Cr,om, (Xa(f):7) = Xa(r) Where G(f) = {(z,y) € X x Y|y = f(z)}.

Proof. Let idy : (Y,72) — (Y, 72) be an identity map. Since fom : (X XY, 71 ®
T9) — (Y,72) and idy omy : (X X Y, 71 ® 2) — (Y, 72) are fuzzy continuous, by
Theorem 2.13, f xidy : (X XY, 71 ® 1) = (Y XY, 15 ® 15) is fuzzy continuous.
From Theorem 1.5(3), it implies

CTl®T2((f X idY)_l(AY)’r) < (f X idY)_l(Cm@TQ(AYaT))'
Since (Y, 72) is r-Ts, we have Cr, 5., (Ay,r) = Ay. By Theorem 1.3(2),

Criom ((f xidy) " (Ay),r) = (f x idy) ™ (Ay).
Since (f x idy ) H(Ay) = Xa(f), we have CT1®TQ(XG(f)7T> =Xxa) O

Theorem 2.16. Every subspace of r-T5 spaces is a r-T5 space.

Proof. Let (A, 7|4) be a subspace of a r-Ty space (X, 7). Let a;,bs € Pt(A) such
that @ # b. Then at, bs € Pt(X) such that a # b. Since (X, 7) is r-Tb, there exists
A € Qr(as,r) p € Qr(bs, ) such that A A u = 0. Since 74(i71(\)) > 7(\) > r
and a; ¢ i1 (X), we have i7'(\) € Q,(a¢,r). Similarly, i (u) € Qs (bs,7).
Moreover, i ~1(A) Ai~1(u) = 0. Hence (A, 7|4) is r-Tp. O



SOME PROPERTIES OF r-Ty SPACES 11
Theorem 2.17. Let {(X;,7;) | i € I'} be a family of r-T5 spaces. Let (X, 7) be
the product fuzzy topological space of {(X;,7;) | i € I'}. Then (X, 7) is r-T5.

Proof. Let x¢,ys € Pt(X) such that x # y. Then there exists ¢ € T such that
(mi(2))t, (mi(y))s € Pt(X;) with m;(x) # m;(y). Since (X;,7;) is r-Ts, there exist
A€ Qr,((mi(2))e,r) and 1 € Qr, ((mi(y))s, r) with AA p = 0.

Since 7;(w;) = (mi(z)): ¢ X iff z; ¢ 77 1()\) , we have

7 ) € Qq (x4, 7).
Similarly, 7; ' (1) € Q- (ys, 7). Moreover, 7; *(A\) A m; *(u) = 0. Therefore, (X, 7)
is a r- T, space. [l

Theorem 2.18. Let {(X;,7;) | i € I'} be a family of fuzzy topological spaces.
Let (X, 7) be their product fuzzy topological space. If (X, 7) is a r-T5 space, then
(X, 7j) is a (r — €)-T% space for each € > 0 and for each j € I'.

Proof. Let (z7), (y?)s € Pt(X;) such that 27 # y’/. Then there exist 2° € X; for
all i € I' — {j} such that z # y € X with
zt, ifi el —{j}, ot ifiel —{j},
mi(x) =9 o . my) =9 ..
x, it =y, yl, ifi=j.

Since (X, 7) is r-T5 space , there exist

pEQr(xs,r), we Qr(ys,7), pAw=0

Let 8 be a base for 7. Since 7(p) > r and 7(w) > r, for € > 0, there exists two
families {px | p = Vyex Pr} and {wn | w =V, car Wm } such that

() = N\ Blox) >r -,

keK
Tw) > N\ Blwm)>r—e
meM

Since z¢ ¢ (p = Ve pr) and ys ¢ (w =/, c s Wm), there exist k € K and m € M
such that

Tt q Pk, B(pk) > T =€
Ys 4 Wm, 6(wm) > T = €,
Pk A\ Wy = 0. (4)

Then there exist two family:
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il ok = Niep, 7 ")} and { | wi = Niep, 77 ()}, where F1 and F
are finite subsets of I' such that

Blpx) = /\ Ti(Ai) > 1T — €,

iEF]_

Blwm) > N\ nilm) >r—e
IEFs
Without loss of generality, we may assume j € F' = F} = F, because ,if necessary,
we can take F' = Fy U F» U {j} such that
Ni=1LVie FRBU{jlandu =1,VIe FyU{j}.

Hence we have

Blox) = /\ Ti(Ai) > 1 — €,

icF

Bwm) > /\ Ti(pi) > r —e.

133
Since x; q pr and ys q wy,, for each j € F,
zeqm; (A Ys g5 (1)

Hence . ‘
)\j € QTj(xgvr - 6)7 s € Q’Tj(yg7r - 6)‘

We only show that A; A u; = 0.
Suppose there exists 2/ € X7 such that

(A A ) (27) > 0. (5)

Then there exist 2° € X; for all i € I' — {j} and z € X with

() = { xt, ifiel —{j},

2, ifi = j.

Since zy q pr and ys q wy,, we have
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It implies
t> \/ (T-X)(m(x)),
ieF—{j}
5> \/ (T - Nz)(ﬂ'z(x))
ieF—{j}

i€F—{j}
Therefore

(pr A wm)(2) > 0.
It is a contradiction for the equation (4). Hence (X, ;) is (r —€)-To. O

13

Example 2.19. Let X = {a}, Y = {b,c} and X xY = {(a,b), (a,c)} be sets. We

define fuzzy topologies 11, 7o as follows:

1, ifA=0orl,

0, otherwise,

n ={

1, ifx=0or1,

3. ifd=c

40 1 1,
(IS A IETT S

2 — Ul

0, otherwise.

Then (X, ) is r-Ty-space for all r € Iy and (Y, 72) is r-Tr-space for all 0 < r <
We obtain the product fuzzy topology 71 x 5 : IX*Y — I as follows:

1, ifx=0or1,
3 if A= (a,c)
40 1 » €)1,
mETN=Y 1 i ()
2 - » V)1,
0, otherwise.

Hence (X x Y, 71 ® 12) is r-T5 for 0 < r < % O

1
5
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.
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