
ON CONVERGENCE IN L-VALUED

FUZZY TOPOLOGICAL SPACES

A.A.Ramadan
Department of Mathematics, Faculty of Science, Beni-Suef University,

Beni-Suef, Egypt
M. El Dardery

Faculty of Science, Department of Mathematics, Fayoum University, Fayoum, Egypt
Hu Zhao

School of Science, Xian Polytechnic University,
Xian 710048, P.R.China
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0. Introduction

Šostak [25-29] introduced a new definition of L - fuzzy topology as the concept of
the degree of the openness of fuzzy set. It is an extension of I = [0, 1]- fuzzy topology
defined by Chang [1]. It has been developed in many directions [5,12-16,19]. The study
of neighborhood systems and convergence of nets in Chang fuzzy topology was initiated
by Pu Pao-Ming and Liu Yin Ming [19] and Liu Ying-Ming, Luo Mao-Kang [18]. In [33]
M.S. Ying, introduced the degree to which a fuzzy point xt belongs to a fuzzy subset λ
by m(xt, λ) = min(1, 1− t+ λ(x)) and gave the idea of graded neighborhood on fuzzy
topological spaces. This plays an important role in the theory of convergence in Chang
fuzzy topology see also [ 3,4,7,8,32]. Following M.S.Ying [33], Demirci [5] introduced
the idea of graded neighborhood systems in smooth toplogical spaces [20] ( a smooth
topology is similar to fuzzy topology as defined by Šostak [25], Hazra and Samanta [12])
in a different approach but restricted himself to the I- valued fuzzy sets.

In this paper, we study the concept of L-fuzzy neighborhood systems and present im-
portant links with the theory of L-fuzzy topological spaces and investigate some of their
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properties. We investigate the relationships among the degrees of L-fuzzy r-adherent
points (r-convergent, r-cluster and r-limit, respectively) nets in an L-fuzzy topological
spaces. Also, we give some related examples to illustrate some of the introduced notions.
In the end, we characterize LF - continuous functions in terms of some of the various
notions introduced in this paper.

1.Preliminaries

Throughout the text we consider (L,≤,∧,∨, 0, 1) as a completely distributive lattice
with 0 and 1, respectively, being the universal upper and lower bound and L0 = L−{0}.
A lattice L is called order dense if for each a, b ∈ L such that a < b, there exist c ∈ L
such that a < c < b. If L is a completely distributive lattice and x ▹

∨
i∈Γ yi, then there

must be i0 ∈ Γ such that x ▹ yi0 , where x ▹ a means: K ⊂ L, a ≤
∨

K ⇒ ∃y ∈ K such
that x ≤ y. If a ▹ b and c ▹ d, it is always has a ∧ c ▹ b ∧ d [10] and some properties of ▹
can be found in [18].

A completely distributive lattice L = (L,≤,∧,∨,⊙,→, 0, 1) (or L, in short) is called a
residuated lattice [11,15,28,29] if it satisfies the following conditions: for each x, y, z ∈ L,

(R1) (L,⊙, 1) is a commutative monoid,
(R2) if x ≤ y, then x⊙ z ≤ y ⊙ z (⊙ is isotone operation),
(R3) (Galois correspondence) x ≤ y → z ⇔ x⊙ y ≤ z.
In a residuated lattice L, x′ = x → 0 is called complement of x ∈ L.
A residuated lattice L is called a BL - algebra [11,15,29] if it satisfies the following

conditions: for each x, y, z ∈ L,
(B1) x ∧ y = x⊙ (x → y),
(B2) x ∨ y = [(x → y) → y] ∧ [(y → x) → x],
(B3) (x → y) ∨ (y → x) = 1.
A BL - algebra is called an MV - algebra if x = x′′, for each x ∈ L.

Lemma 1.1 [11,15,29]. Let L be a complete MV - algebra. For each x, y, z ∈ L,
{yi, xi | i ∈ Γ} ⊂ L, we have the following properties.

(1) x⊙ y ≤ x ∧ y ≤ x ∨ y,
(2) x⊙ y ≤ x, y,
(3) If y ≤ z, (x⊙ y) ≤ (x⊙ z), x → y ≤ x → z and z → x ≤ y → x,
(4) x⊙ y = (x → y′)′,
(5) x ≤ y iff x′ ≥ y′,
(6) x → y = y′ → x′,
(7)

∧
i∈Γ(x⊙ yi) = x⊙ (

∧
i∈Γ yi),

(8)
∨

i∈Γ(x⊙ yi) = x⊙ (
∨

i∈Γ yi),

(9) x → 1 = 1, 0 → x = 1, x → x = 1,
(10) x ≤ y ⇔ x → y = 1 and 1 → x = x,
(11) x →

∧
i∈Γ yi =

∧
i∈Γ(x → yi),

(12) (
∨

i∈Γ yi) → x =
∧

i∈Γ(yi → x),

(13) x →
∨

i∈Γ yi =
∨

i∈Γ(x → yi),
(14)

∧
i∈Γ yi → x =

∨
i∈Γ(yi → x),

(15)
∧

i∈Γ y
′
i = (

∨
i∈Γ yi)

′ and
∨

i∈Γ y
′
i = (

∧
i∈Γ yi)

′.
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In this paper, we always assume that L is a complete MV - algebra. Let X be a
nonempty set, the family LX denotes the set of all L- fuzzy subsets of a given set X.
For α ∈ L, λ ∈ LX , we denote (α → λ), (α ⊙ λ), αX ∈ LX as (α → λ)(x) = α →
λ(x), (α⊙ λ)(x) = α⊙ λ(x), αX(x) = α.

A fuzzy point xt for t ∈ L0 is an element of LX such that

xt(y) =

{
t, if y = x,

0, if y ̸= x.

The set of all fuzzy points inX is denoted by Pt(X). For λ ∈ LX and xt ∈ Pt(X), xt ∈ λ
iff t ≤ λ(x).

Given a mapping ϕ : X → Y , we write ϕ← for the mapping LY → LX defined by
ϕ←(µ) = µ ◦ ϕ; and we write ϕ→ for the mapping LX → LY defined by ϕ→(µ)(y) =∨
{µ(x) | ϕ(x) = y} for all µ ∈ LX , y ∈ Y.

For a given set X, define a binary mapping S(−,−) : LX × LX → L as

S(λ, µ) =
∧
x∈X

(λ(x) → µ(x)), ∀(λ, µ) ∈ LX × LX .

For each λ, µ ∈ LX , S(λ, µ) can be interpreted as the degree to which λ is fuzzy included
in µ. It is called the L-fuzzy inclusion order [6].

Lemma 1.2 [6]. For each λ, µ, ρ, µi ∈ LX , i ∈ Γ and e, xt ∈ Pt(X), the following
properties hold:

(1) λ ≤ µ ⇔ S(λ, µ) = 1,
(2) λ ≤ µ ⇒ S(ρ, λ) ≤ S(ρ, µ) and S(λ, ρ) ≥ S(µ, ρ), for any ρ ∈ LX ,
(3) S(x, λ) = λ(x); for any λ ∈ LX ,
(4) S(xt, λ) = 0 iff t = 1 and λ(x) = 0,
(5) S(e, λ) ∧ S(e, µ) = S(e, λ ∧ µ),
(6) S(xt,

∧
i∈Γ µi) =

∧
i∈Γ S(xt, µi), for any {µi}i∈Γ ⊂ LX ,

(7) S(xt,
∨

i∈Γ µi) =
∨

i∈Γ S(xt, µi), for any {µi}i∈Γ ⊂ LX .

Lemma 1.3 [7]. Let f : X → Y be a mapping. Then the following statement hold:
(1) S(λ, µ) ≤ S(f→(λ), f→(µ)), for each λ, µ ∈ LX

(2) S(ρ, ν) ≤ S(f←(ρ), f←(ν))for each ρ, ν ∈ LY .
In particular, if the mapping f : X → Y is bijective, then the equalities hold.

Definition 1.4 [15,25]. A map T : LX → L is called an L-fuzzy topology on X if it
satisfies the following conditions:

(LO1) T (1X) = T (0X) = 1,
(LO2) T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2), for all µ1, µ2 ∈ LX ,
(LO3) T (

∨
i∈Λ µi) ≥

∧
i∈Λ T (µi), for any {µi}i∈Λ ⊂ LX .

The pair (X, T ) is called an L-fuzzy topological space.

Let T1 and T2 be L-fuzzy topologies on X. We say that T1 is finer than T2 (T2 is
coarser than T1), denoted by T2 ≤ T1, if T2(λ) ≤ T1(λ) for all λ ∈ LX . Let (X, T1) and
(Y, T2) be L-fuzzy topological space spaces. A map f : (X, T1) −→ (Y, T2) is L-fuzzy
continuous (LF - continuous, for short ) if T2(λ) ≤ T1(f←(λ)), ∀λ ∈ LY .
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Theorem 1.5 [13,15]. Let (X, T ) be an L -fuzzy topological space. For each r ∈ L0

and λ ∈ LX , we define operators IT , CT : LX × L0 → LX as follows:

IT (λ, r) =
∨

{ρ ∈ LX | ρ ≤ λ, T (ρ) ≥ r},

CT (λ, r) =
∧

{ν ∈ LX | λ ≤ ν, T (ν′) ≥ r}.

For each λ, µ ∈ LX and r, s ∈ L0, we have the following properties:

(I1) IT (1X , r) = 1X ,

(I2) IT (λ, r) ≤ λ,

(I3) If λ ≤ µ and r ≤ s , then IT (λ, s) ≤ IT (µ, r),
(I4) IT (λ ∧ µ, r ∧ s) ≥ IT (λ, r) ∧ IT (µ, s),
(I5) IT (IT (λ, r), r) = IT (λ, r),
(I6) IT (λ′, r) = (CT (λ, r))′.

Definition 1.6[18]. Let D be a directed set. A function T : D → Pt(X) is called a
fuzzy net in X. Let λ ∈ LX , we say T is a fuzzy net in λ if T (n) ∈ λ for every n ∈ D.

Definition 1.7[17,18]. Let T be a fuzzy net and λ ∈ LX .

(1) T is often in λ if for each n ∈ D, there exists n0 ∈ D such that n0 ≥ n and
T (n0) ∈ λ.

(2) T is finally in λ if there exists n0 ∈ D such that for each n ∈ D with n ≥ n0, we
have T (n) ∈ λ.

Definition 1.8[17,18]. Let T : D → Pt(X) and U : E → Pt(X) be two fuzzy nets.
A fuzzy net U is called a subnet of T if there exists a function N : E → D, called by a
cofinal selection on T, such that:

(1) U = T ◦N.

(2) For every n0 ∈ D, there exists m0 ∈ E such that N(m) ≥ n0, for m ≥ m0.

2. L - fuzzy neighborhood systems.

Definition 2.1. Let λ ∈ LX and xt ∈ Pt(X). Then the degree to which xt belongs to
λ is

S(xt, λ) =
∧
x∈X

(t −→ λ(x)).

Definition 2.2. Let (X, T ) be an L - fuzzy topological space , λ ∈ LX , e ∈ Pt(X) and
r ∈ L0. The degree to which λ is a r-neighborhood of e is defined by

(N T )e(λ, r) =
∨

{S(e, µ) | µ ≤ λ, r ▹ T (µ)}.

A mapping (N T )e : LX × L0 → L is called the L-fuzzy neighborhood system of e.
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Theorem 2.3. Let (X, T ) be an L - fuzzy topological space and (N T )e the fuzzy
neighborhood system of e. For all λ, µ ∈ LX and r, s ∈ L0, the following properties
hold:

(1) (N T )e(0X , r) = S(e, 0X)and (N T )e(1X , r) = 1,
(2) (N T )e(λ, r) ≤ S(e, λ),
(3) (N T )e(λ, r) ≥ (N T )e(λ, s), if r ≤ s,
(4) (N T )e(λ, r) ≤ (N T )e(µ, r), if λ ≤ µ,
(5) (N T )e(λ1, r) ∧ (N T )e(λ2, s) ≤ (N T )e(λ1 ∧ λ2, r ∧ s),
(6) (N T )e(λ, r) ≤

∨
{(N T )e(µ, r) | µ ≤ λ, S(d, µ) ≤ (N T )d(µ, r) ∀d ∈ Pt(X)},

(7) (N T )xt(λ, r) =
∧

x∈X

(
t → (N T )x1(λ, r)

)
.

Proof. (1),(3) and (4) are easily proved.
(2) It is proved from the following:

(N T )e(λ, r) =
∨

{S(e, µi) | µi ≤ λ, r ▹ τ(µ)}

≤
∨

{S(e,
∨

µi) | µi ≤ λ, r ▹ τ(µ)}
(by Lemma 1.2(2))

≤ {S(e,
∨

µi) |
∨

µi ≤ λ, r ≤ τ(
∨

µi)}
≤ S(e, λ).

(5) If a ▹ (N T )e(λ1, r) ∧ (N T )e(λ2, s), then a ▹ (N T )e(λ1, r) and a ▹ (N T )e(λ2, s),
there exists ρ1 ∈ LX with ρ1 ≤ λ1 and r ▹ T (ρ1) such that a ▹ S(e, ρ1). Again, there
exists ρ1 ∈ LX with ρ2 ≤ λ2 and r ▹ T (ρ2) such that a ▹ S(e, ρ2). So, ρ1 ∧ ρ2 ≤ λ1 ∧ λ2,

r∧s▹T (ρ1)∧T (ρ2) and a ≤ S(e, ρ1)∧S(e, ρ2) = S(e, ρ1∧ρ2) ≤ (N T )e(λ1∧λ2, r∧s).
Hence,

(N T )e(λ1 ∧ λ2, r ∧ s) ≥ (N T )e(λ1, r) ∧ (N T )e(λ2, s).

(6) If r ▹ T (µ), then S(d, µ) = (N T )d(µ, r), for each d ∈ Pt(X). It implies:

(N T )(λ, r) =
∨

{S(e, µ) | µ ≤ λ, r ▹ T (µ)}

=
∨

{(N T )e(µ, r) | µ ≤ λ, S(d, µ) = (N T )d(µ, r), ∀d ∈ Pt(X)}

≤
∨

{(N T )e(µ, r) | µ ≤ λ, S(d, µ) ≤ (N T )d(µ, r), ∀d ∈ Pt(X)}.

(7) It proved from:

(N T )xt(λ, r) =
∨

{S(xt, µ) | µ ≤ λ, T (µ) ≥ r}

=
∨

{
∧
x∈X

(t → µ(x)) | µ ≤ λ, T (µ) ≥ r}

=
∧
x∈X

{t →
∨

{µ(x) | µ ≤ λ, T (µ) ≥ r}}

( by Lemma 1.2(7))

=
∧
x∈X

(t → (N T )x1
(λ, r)).
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Theorem 2.4. Let X be a nonempty set. Let for each e ∈ Pt(X), there is be given a
mappingNe : L

X×L0 → L satisfying the above conditions (1)-(5). Define TN : LX → L
by

TN (λ) =
∨

{r ∈ L0 | S(e, λ) = Ne(λ, r), ∀e ∈ Pt(X)}.

Then
(a) TN is an L- fuzzy topology on X.
(b) If (N T )e is the L-fuzzy neighborhood system of e induced by (X, T ), then TNT =

T .
(c) If Ne’s satisfy the conditions (6) and (7), then

TN (λ) =
∨

{r ∈ L0 | S(x, λ) = Nx(λ, r), ∀x ∈ X},

(d) NTN = N .

Proof. (a) (LO1) It is easily proved from Theorem 2.3(1).
(LO2) It is proved from the following:

TN (λ1) ∧ TN (λ2)

=
(∨

{r ∈ L0 | S(e, λ1) = Ne(λ1, r)}
)

∧
(∨

{s ∈ L0 | S(e, λ2) = Ne(λ2, s)}
)

=
∨

{r ∧ s ∈ L0 | S(e, λ1) ∧ S(e, λ2) = Ne(λ1, r) ∧Ne(λ2, s)}

≤
∨

{r ∧ s ∈ L0 | S(e, λ1) ∧ S(e, λ2) ≤ Ne(λ1 ∧ λ2, r ∧ s)}

≤
∨

{r ∧ s ∈ L0 | S(e, λ1 ∧ λ2) ≤ Ne(λ1 ∧ λ2, r ∧ s)}
( by Lemma 1.2(5))

≤ TN (λ1 ∧ λ2).

(LO3)
If a ▹

∧
i∈Γ TN (λi), then a ▹ TN (λi) for each i ∈ Γ, Note that,

TN (λi) =
∨

{ri ∈ L0 | S(e, λi) = Ne(λi, ri), ∀e ∈ Pt(X)},

so, there exists ri ∈ L0, with S(e, λi) = Ne(λi, ri) such that a ▹ ri. Put r =
∧

i∈Γ ri,
then a ≤ r. By Theorem 2.3, we have

S(e, λi) ≤ Ne(λi, ri) ≤ Ne(λi, r) ≤ S(e, λi).

It implies S(e, λi) = Ne(λi, r). Furthermore, by Lemma 1.2(7), we have

S(e,
∨
i∈Γ

λi) =
∨
i∈Γ

S(e, λi) =
∨
i∈Γ

Ne(λi, ri)

≤
∨
i∈Γ

Ne(λi, r) ≤ Ne(
∨
i∈Γ

λi, r) ≤ S(e,
∨
i∈Γ

λi).
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So, Ne(
∨

i∈Γ λi, r) = S(e,
∨

i∈Γ λi). Hence, TN (
∨

i∈Γ λi) ≥ r ≥ a. Therefore,

TN (
∨

i∈Γ λi) ≥
∧

i∈Γ λi(λi).

(b)If a▹TN (λ), then there exists r0 ∈ L0 with S(e, λ) = Ne(λ, r0) such that r0▹T (λ).
Since

S(e, λ) = Ne(λ, r0) =
∨

{S(e, µi) | µi ≤ λ, r0 ▹ T (µi)},

then, for each x1 ∈ Pt(X),

λ(x) = S(x1, λ) =
∨

{S(x1, µi) | µi ≤ λ, r0 ▹ T (µi)}

= S(x1,
∨
i∈Γ

µi) =
∨
i∈Γ

µi(x).

Thus, λ =
∨

µi. So, T (λ) ≥ r0 ≥ a. Hence, TN (λ) ≤ T (λ). We can easily obtained
TN (λ) ≥ T (λ).

(c) We only show that S(xt, λ) = Nxt
(λ, r), ∀xt ∈ Pt(X)

iff S(x, λ) = λ(x) = Nx(λ, r), ∀x ∈ X.

(⇒) It is trivial.

(⇐) From the condition (7),

Nxt(λ, r) =
∧
x∈X

(
t → Nx1(λ, r)

)
=

∧
x∈X

(
t → S(x1, λ)

)
=

∧
x∈X

(
t → λ(x)

)
= S(xt, λ).

(d) From the proof of Theorem 2.3(6), we easily obtain NTN ≥ N .

If a ▹ (NTN )e(λ, r) =
∨
{S(e, µ) | µ ≤ λ, r ▹ TN (µ)}, there exists µ0 with µ0 ≤ λ,

r ▹ TN (µ0) such that a ▹ S(e, µ0). Note that

TN (µ0) =
∨

{t ∈ L0 | S(e, µ0) = Ne(µ0, t), ∀e ∈ Pt(X)},

there exists t0 ∈ L0 with S(e, µ0) = Ne(µ0, t0) such that r ▹ t0 (thus r ≤ t0). So,
a ▹Ne(µ0, t0) ≤ Ne(µ0, r) ≤ Ne(λ, r). Therefore, NTN ≤ N .

By Theorem 2.4, we have the following Corollary:

Corollary 2.5. The set of all L - fuzzy topologies on X and the set of all L - fuzzy
neighborhood systems on X are in one to one correspondence.
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Example 2.6. Let L = [0, 1] , X = {a, b} be a set, x → y = min(1 − x + y, 1) and
µ ∈ LX be defined as follows:

µ(a) = 0.3, µ(b) = 0.4.

We define an L- fuzzy topology on X as:

T (λ) =


1, if λ = 0X or 1X ,
1
2 , if λ = µ,

0, otherwise.

From Definition 2.2, Na1 ,Nb2 : LX × L0 → L as follows:

Na1(λ, r) =


1, if λ = 1X , r ∈ L0

0.3, if 1X ̸= λ ≥ µ, 0 < r ≤ 1
2

0, otherwise.

Nb1(λ, r) =


1, if λ = 1X , r ∈ L0

0.4, if 1X ̸= λ ≥ µ, 0 < r ≤ 1
2

0, otherwise.

From Theorem 2.4 (c), we have

TN (λ) =


1, if λ = 0X or 1X ,
1
2 , if λ = µ,

0, otherwise.

3. R- Convergence

Definition 3.1. Let (X, T ) be an L -fuzzy topological space, λ ∈ LX , e ∈ Pt(X) and
r ∈ L0. Then the degree to which a fuzzy net T in X r-convergent to e and T r-cluster
to e are defined, respectively, as follows:

Cone(T, r) =
∧

{N ′e(λ, r) | T is often in λ′},

Cle(T, r) =
∧

{N ′e(λ, r) | T is finally in λ′}.

Definition 3.2. Let (X, T ) be be an L - fuzzy topological space, λ ∈ LX , e ∈ Pt(X)
and r ∈ L0. Then the degree to which e r-adherent point of λ is defined by

Ade(λ, r) = N ′e(λ′, r).
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Proposition 3.3. Let (X, T ) be an L-fuzzy topological space. For each λ ∈ LX , e, xt ∈
Pt(X) and r ∈ L0, we have

(1) S(e, IT (λ, r)) = Ne(λ, r),
(2) S(e, C ′T (λ, r)) = Ad′e(λ, r),
(3) Adxt(λ, r) =

∨
x∈X(t⊙Adx(λ, r)).

Proof.
(1) From Lemma 1.2(7), we have

S(e, IT (λ, r)) = S(e,
∨

{µi | µi ≤ λ, T (µi) ≥ r})

=
∨

{S(e, µi) | µi ≤ λ, T (µi) ≥ r})
= Ne(λ, r).

(2) From Theorem 1.5, we have

S(e, C ′T (λ, r)) = S(e, IT (λ
′, r))

= Ne(λ
′, r) ( by (1) )

= Ad′e(λ, r).

(3) From Theorem 2.3(7), we have

Adxt(λ, r) = N ′xt
(λ′, r)

=
( ∧

x∈X
(t → Nxt(λ

′, r)
)′

=
∨
x∈X

(
t → Nxt(λ

′, r)
)′

=
∨
x∈X

(
t⊙N ′x1

(λ′, r)
)

( by Lemma 1.2(4) )

=
∨
x∈X

(t⊙Adx(λ, r)).

Theorem 3.4. Let (X, T ) be an L-fuzzy topological space. Let T : D → Pt(X) be
fuzzy net and U : E → Pt(X) a subnet of S. For r, s ∈ L0, the following properties
hold:

(1) If r1 ≤ r2, Cone(T, r1) ≤ Cone(T, r2), and Cle(T, r1) ≤ Cle(T, r2),
(2) Cone(T, r) ≤ Cle(T, r),
(3) Cle(U, r) ≤ Cle(T, r),
(4) Cone(T, r) ≤ Cone(U, r),
(5) Conxt(T, r) =

∨
x∈X(t⊙ Conx(T, r)), and

Clxt(T, r) =
∨

x∈X(t⊙ Clx(T, r).

Proof. (1) It easily proved.
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(2) If T is finally in λ′, T is often in λ′. Hence

Cone(T, r) =
∧

{N ′e(λ, r) | T is often in λ′}

≤
∧

{N ′e(λ, r) | T is finally in λ′}
= Cle(T, r).

(3) If T is finally in λ′, U is finally in λ′. Hence

Cle(U, r) =
∧

{N ′e(λ, r) | U is finally in λ′}

≤
∧

{N ′e(λ, r) | T is finally in λ′}
= Cle(T, r).

(4) Let U be often in λ′. We will show that T is often in λ′. Let n ∈ D. Since
U : E → Pt(X) is a subnet of T , there exists a cofinal selection N : E → D. For each
n ∈ D, there exists m ∈ E such that N(k) ≥ n for k ≥ m. Since U is often in λ′, for
m ∈ E, there exists m0 ∈ E such that m0 ≥ m for U(m0) ∈ λ′. Put n0 = N(m0). Then
n0 ≥ n and T (n0) = T (N(m0)) = T (n0) ∈ λ′. Thus, U is often in λ′. Hence

Cone(T, r) =
∧

{N ′e(λ, r) | T is often in λ′}

≤
∧

{N ′e(λ, r) | U is often in λ′}
= Cone(U, r).

(5)

Conxt(T, r) =
∧

{N ′xt
(λ, r) | T is often in λ′}

=
∧

{
( ∧

x∈X

(t → Nx1
(λ, r)

)′
| T is finally in λ′}

( by Theorem 2.3(7) )

=
∨
x∈X

∧
{(t → Nx1(λ, r)

)′
| T is finally in λ′}

=
∨
x∈X

∧
{t⊙N ′x1

(λ, r) | T is finally in λ′}

( by Lemma 1.1(4) )

=
∨
x∈X

(
t⊙

∧
{N ′x1

(λ, r) | T is finally in λ′}
)

=
∨
x∈X

(t⊙ Conx(T, r)).

The other case is similar.
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Proposition 3.5. Let (X, T ) be an L-fuzzy topological space , T be a fuzzy net ,
e ∈ Pt(X) and r ∈ L0. Then we have:

Ade(λ, r) =
∨

{Cone(T, r) | T is a fuzzy net in λ}

=
∨

{Cle(T, r) | T is a fuzzy net in λ}

Proof. Since T is finally in λ, T is often in λ. We easily show

Ade(λ, r) = N ′e(λ′, r)

≥
∨

{Cle(T, r) | T is a fuzzy net in λ}

≥
∨

{Cone(T, r) | T is a fuzzy net in λ}

We only show that

Ade(λ, r) ≤
∨

{Cone(T, r) | T is a fuzzy net in λ}.

Let Ade(λ, r) = t. If t > 0, then N ′e(λ′, r) = t. Put D = {µ ∈ LX | Ne(µ, r) > t′}.
Define a relation on D by

µ1 ≼ µ2 iff µ1 ≥ µ2, ∀µ1, µ2 ∈ D.

For each µ1, µ2 ∈ D, since by Theorem 2.3(5),

Ne(µ1 ∧ µ2, r) ≥ Ne(µ1, r) ∧Ne(µ2, r) > t′.

Hence, µ1 ∧ µ2 ∈ D and µ1, µ2 ≼ µ1 ∧ µ2. Thus, (D,≼) is a directed set. For each
µ ∈ D, that is, Ne(µ, r) > t′, we have µ ̸≤ λ′, that is, there exists x ∈ X such that
λ(x) > µ′(x). Thus, we can define a fuzzy net T0 : D → Pt(X) by T0(µ) = xλ(x) where
T0(µ) ∈ λ and λ(x) = T0(µ)(x) > µ′(x).

We will show that if µ ∈ D, then T0 is not often in µ′. Suppose T0 is often in µ′. For
µ ∈ D, there exists ρ ∈ D such that µ ≼ ρ such that

T0(ρ) = yλ(y) ∈ µ′

and λ(y) = T0(ρ)(y) > ρ′(y). Since µ ≼ ρ implies µ ≥ ρ. It implies

λ(y) ≤ µ′(y) ≤ ρ′(y).

It is contradiction for the definition of T0. Thus, if T0 is often in µ′, then µ ̸∈ D, that
is, Ne(µ, r) ≤ t′. Therefore,∨

{Cone(T, r) | T is a fuzzy net in λ}
≥ Cone(T, r)

=
∧

{N ′e(µ, r) | T0 is often in µ′}
≥ t = Ade(λ, r).
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Theorem 3.6. Let (X, T ) be L-fuzzy topological space and T,U : D → Pt(X) fuzzy
nets such that T (n) ∨ U(n), T (n) ∧ U(n) ∈ Pt(X) for each n ∈ D. Define fuzzy nets
T ∨ U, T ∧ U : D → Pt(X) by, for each n ∈ D,

(T ∨ U)(n) = T (n) ∨ U(n), (T ∧ U)(n) = T (n) ∧ U(n).

For each r ∈ L0, the following properties hold:
(1) If T (n) ≤ U(n) for all n ∈ D, then

Cle(T, r) ≤ Cle(U, r), Cone(T, r) ≤ Cone(U, r).

(2) Cle(T ∧ U, r) ≤ Cle(T, r) ∧ Cle(U, r).
(3) Cone(T ∨ U, r) ≥ Cone(T, r) ∨ Cone(U, r).
(4) Cone(T ∧ U, r) ≤ Cone(T, r) ∧ Cone(U, r).
(5) If L is order dense , then Cle(T ∨ U, r) = Cle(T, r) ∨ Cle(U, r).

Proof. (1) Let U be finally (often) in λ. Then T be finally (often) in λ, respectively.
Thus it is trivial. (2),(3) and (4) are easily proved.

(5) Since T ≤ T ∨ U and U ≤ T ∨ U , by (1), we have

Cle(T ∨ U, r) ≥ Cle(T, r) ∨ Cle(U, r).

Suppose that Cle(T ∨U, r) ̸≥ Cle(T, r)∨Cle(U, r). Since L is order dense, then there
exist t ∈ L0 and a fuzzy point e ∈ Pt(X) such that

Cle(T ∨ U, r) > t > Cle(T, r) ∨ Cle(U, r).

Since Cle(T, r) < t and Cle(U, r) < t, by the definition Cle, there exist λ, µ ∈ LX such
that T and U are finally in λ′ and µ′, respectively, with

Cle(T, r) ∨ Cle(U, r) ≤ N ′e(λ, r) ∨N ′e(µ, r) < t.

Since T is finally in λ′, there exists n1 ∈ D such that T (n) ∈ λ′ for every n ∈ D with
n ≥ n1. Since U is finally in µ′, there exists n2 ∈ D such that T (n) ∈ µ′ for every n ∈ D
with n ≥ n2. Let n3 ∈ D such that n3 ≥ n1 and n3 ≥ n2. For n ≥ n3, we have

(T ∨ U)(n) ≤ λ′ ∨ µ′ = (λ ∧ µ)′.

Thus, (T ∨ U) is finally in (λ ∧ µ)′. It implies

Cle(T ∨ U, r) ≤ N ′e(λ ∧ µ, r)

≤ N ′e(λ, r) ∨N ′e(µ, r) < t.

It is a contradiction. Hence, we have

Cle(T ∨ U, r) ≤ Cle(T, r) ∨ Cle(U, r).

�
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Example 3.7. Let (L = [0, 1],→) be defined as Example 2.6. Let X = {a, b} be a set
and µ ∈ IX as follows:

µ(x) = 0.3, µ(y) = 0.4.

We define L- fuzzy topology T : IX → I as follows:

T (λ) =


1, if λ = 0X or 1X ,
1
2 , if λ = µ,

0, otherwise.

(1) In general, Cle(T ∧ U, r) ̸= Cle(T, r) ∧ Cle(U, r).
Let N be a natural numbers. Define fuzzy nets T,U : N → Pt(X) by

T (n) = xan , an = 0.8 + (−1)n0.2.

U(n) = xbn , bn = 0.8 + (−1)n+10.2.

From Theorem 3.6, (T ∧U)(n) = x0.6 is a fuzzy net. Let e = x0.3. From Definition 3.1,
we have for 0 < r ≤ 1

2 ,

Cle(x0.6, r) = 1−Ne(µ, r) = 1−m(x0.3, µ) = 0.

Since T or U is finally in 1X ,

Cle(T, r) = 1−Ne(0X , r) = 1−m(x0.3, 0X) = 0.3.

Similarly, Cle(U, r) = 0.3. For 0 < r ≤ 1
2 ,

0 = Cle(T ∧ U, r) ̸= Cle(T, r) ∧ Cle(U, r) = 0.3.

(2) In general, Cone(T ∨ U, r) ̸= Cone(T, r) ∨ Cone(U, r).
Define fuzzy nets T,U : N → Pt(X) by

T (n) = xan , an = 0.6 + (−1)n0.2.

U(n) = xbn , bn = 0.6 + (−1)n+10.2.

From Theorem 3.6, (T ∨ U)(n) = x0.8 is a fuzzy net. Let e = x0.3. For all r ∈ I0,

Ade(x0.8, r) = 1−Ne(0X , r) = 1−m(x0.3, 0X) = 0.3.

Since T or U is often in µ′, for 0 < r ≤ 1
2 ,

Cle(T, r) = 1−Ne(µ, r) = 1−m(x0.3, µ) = 0.

Similarly, Cle(U, r) = 0. For 0 < r ≤ 1
2

0.3 = Cone(T ∨ U, r) > (Cone(T, r) ∨ Cone(U, r)) = 0.
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4. Fuzzy r-limit nets and LF - continuous mappings

Definition 4.1. Let (X, T ) be an L-fuzzy toplogical space. Let T : D → Pt(X) be
fuzzy net in X , e ∈ Pt(X) and r ∈ L0. Then the degree to which T r-limit to e is
defined , denoted by Lime(T, r) = t, if Cle(T, r) = Cone(T, r) = t.

Theorem 4.2. Let (X, T ) be L-fuzzy topological space and T,U : D → Pt(X) be fuzzy
nets such that T (n)∨U(n) ∈ Pt(X) for each n ∈ D. If If L is order dense , Cle(T, r) =
Cone(T, r) and Cle(U, r) = Cone(U, r), then

Lime(T ∨ U, r) = Lime(T, r) ∨ Lime(U, r).

Proof. From Theorem 3.6, T∨U is a fuzzy net. We easily proved it from the followings:

Cle(T ∨ U, r) = Cle(T, r) ∨ Cle(U, r) (by Theorem 3.6(2))

( since Cle(T, r) = Cone(T, r) and Cle(U, r) = Cone(U, r),)

= Cone(T, r) ∨ Cone(U, r)

≤ Cone(T ∨ U, r) (by Theorem 3.6(4))

≤ Cle(T ∨ U, r). (by Theorem 3.6(2)) �

Theorem 4.3. Let (X, T ) be L-fuzzy topological space. Let T be a fuzzy net and
H = {U | U is a subnet of T}. Then, if L is an order dense, the following statements
hold:

(1) Cone(T, r) =
∧

T∈H Cle(U, r).
(2) Cle(T, r) =

∨
T∈H Cone(U, r).

Proof. (1) For each U ∈ H, by Theorem 3.4, we have

Cone(T, r) ≤ Cone(U, r) ≤ Cle(U, r) ≤ Cle(T, r).

Hence
Cone(T, r) ≤

∧
U∈H

Cle(U, r).

Suppose

Cone(T, r) ̸≥
∧

U∈H

Cle(U, r).

Then there exist xp ∈ Pt(X) and t ∈ L0 such that

Conxp(T, r) < t <
∧

U∈H
Clxp(U, r).

Since Conxp(T, r) < t, there exists µ ∈ LX with T is often in µ′ such that

Conxp
(T, r) ≤ N ′xp

(µ, r) <
∧

U∈H

Clxp
(U, r).
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Since T is often in µ′, for each n ∈ D there exists N(n) ∈ D with N(n) ≥ n and
T (N(n)) ∈ µ′. Hence there exists a cofinal selection N : E → D such that U = T ◦N .
Thus U is a subnet of T and U is finally in µ′. It is a contradiction.

(2) From (1), we have ∨
U∈H

Cone(U, r) ≤ Cle(T, r).

Conversely, let Cle(T, r) = t > 0. Then Ne(λ, r) ≤ t′, for T is finally in λ′. Let
F = {µ | Ne(µ, r) > t′}. Define a relation on E = D × F by

(m,µ1) ≤ (n, µ2) iff m ≤ n, µ1 ≥ µ2.

Then (E,≤) is a directed set. If µ ∈ F , then T is not finally in µ′. For each (n, µ) ∈ E,
there exists N(n, µ) ∈ D with N(n, µ) ≥ n such that T (N(n, µ)) ̸≤ λ′. So, we can
define N : E → D. For each n0 ∈ D and µ0 ∈ F , there exists N(n0, µ0) ∈ D with
N(n0, µ0) ≥ n0 such that T (N(n0, µ0)) ̸≤ µ′0. Hence for every (n, µ) ≥ (n0, µ0), since
n ≥ n0, we have N(n, µ) ≥ n ≥ n0. Therefore N is a cofinal selection on T . So,
U = T ◦N is a fuzzy subnet of T and U is finally to every member of F . If U is often
in λ′, then U is not finally of λ, that is, λ ̸∈ F . Thus∨

U∈H

Cone(T, r) =
∧

{N ′e(λ, r) | U is often in λ′} ≥ t.

Since t is arbitrary, we complete the proof.
�

Theorem 4.4. Let L be an order dense , (X, T ) be L-fuzzy topological space and T
be a fuzzy net. If every subnet U of T has a subnet K of U such that Lime(K, r) = t,
then Lime(T, r) = t,

Proof. Let H = {U | U is a subnet of T}. For each U ∈ H, since U has a subnet K
with LimT (K, r) = t, by Theorem 3.4(4), we have

Cone(U, r) ≤ Cone(K, r) = Cle(K, r) = t.

Hence, by Theorem 4.3(2),

Cle(T, r) =
∨

U∈H

Cone(U, r) ≤ t.

Conversely, by Theorem 3.4(2),

t = Cone(K, r) = Cle(K, r) ≤ Cle(U, r).

Hence, by Theorem 4.3(1),

t ≤
∧

U∈H

Cle(U, r) = Cone(T, r).

Hence, Cle(T, r) ≤ Cone(T, r). Since Cone(T, r) ≤ Cle(T, r) from Theorem 3.4(2),
Cle(T, r) = Cone(T, r), that is, Lime(T, r) = t. �
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Example 4.5. Let (L = [0, 1],→) be defined as Example 3.7. Let N be a natural
number set. Define a fuzzy net T : N → Pt(X) by

T (n) = xan , an = 0.6 + (−1)n0.2.

Let e = x0.3. Since T is often in µ′, for 0 < r ≤ 1
2 ,

Cone(T, r) = 1−Ne(µ, r) = 1−m(x0.3, µ) = 0.

Since T is finally in 1X , for each r ∈ I0

Cle(T, r) = 1−Ne(0X , r) = 1−m(x0.3, 0X) = 0.3.

Thus, since Cone(T, r) ̸= Cle(T, r) for 0 < r ≤ 1
2 , Lime(T, r) does not exists.

Since Cone(T, r) = Cle(T, r) = 0.3 for 1
2 < r ≤ 1, Lime(T, r) = 0.3.

Theorem 4.6. Let (X, T1) and (Y, T2) be L-fuzzy topological spaces. For every fuzzy
net T in X , xt ∈ Pt(X), r ∈ L0 and λ ∈ LX , the following statements are equivalent.

(1) f : (X, T1) → (Y, T2) is LF - continuous.
(2) Nf→(e)(µ, r) ≤

∨
{Ne(λ, r) | f→(λ) ≤ µ}.

(3) Cle(T, r) ≤ Clf→(e)(f ◦ T, r)
(4) Cone(T, r) ≤ Conf→(e)(f ◦ T, r)
(5) f→(CT1(λ, r)) ≤ CT2(f

→(λ), r).
(6) CT1(f

←(µ), r)) ≤ f←(CT2(µ), r).
(7) f←(IT2(µ, r)) ≤ IT1(f

←(µ), r).

Proof. (1) ⇒ (2) For any ρ ∈ LY such that T2(ρ) ≥ r and ρ ≤ µ. Since f is LF -
continuous, then T1(f←(ρ)) ≥ T2(ρ) ≥ r, we have by Lemma 1.3 (2)

S(f→(e), ρ) ≤ S(e, f←(ρ)) (e = xt, f
→(e) = f(x)t)

= Ne(f
←(ρ), r)) (T1(f→(f←)(ρ)) ≥ r)

≤
∨

{Ne(λ, r) | f→(λ) ≤ µ}. (f→(f←(ρ)) ≤ ρ ≤ µ).

Thus, Nf→(e)(µ, r) ≤
∨
{Ne(λ, r) | f→(λ) ≤ µ}.

(2) ⇒ (3) If f→(λ) ≤ µ and f ◦ T is finally in µ′, there exists n0 ∈ D such that for
all n ≥ n0, f(T (n)) ∈ µ′. Let T (n) = xt. Then

t ≤ µ′(f(x)) ≤ (f(λ))′(f(x)) ≤ λ′(x).

It implies T (n) ∈ λ′. Therefore, T is finally in λ′.

Cle(T, r)

=
∧

{N ′e(λ, r) | T is finally in λ′}

≤
∧

{N ′e(λ, r) | ∃µ, f→(λ) ≤ µ, f ◦ T is finally in µ′}

=
∧

{{
∨

{Ne(λ, r) | f→(λ) ≤ µ}′, f ◦ T is finally in µ′}

≤
∧

{N ′f→(e)(µ, r), f ◦ T is finally in µ′}
= Cle(f ◦ T, r) ( by (2) )
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(3)⇒(4) Every subnet U : E → Pt(Y ) of f(T ), there exists a cofinal selectionN : E → D
such that U = f(T ) ◦N = f ◦ (T ◦N). Put K = T ◦N . Then K is a subnet of T . We
can prove it from the followings:

Cone(T, r) ≤ Cone(K, r) (by Theorem 3.4(5))

≤ Cle(K, r) (by Theorem 3.4(2))

≤ Clf→(e)(f ◦K, r) (by (3))

= Clf→(e)(f ◦ (T ◦N), r)

= Clf→(e)(U, r).

From Theorem 3.4 (2), we have Cone(T, r) ≤ Conf→(e)(f ◦ T, r).
(4) ⇒ (5) From Theorem 1.5 and Proposition 3.3 (2),

S(x1, C
′
T1(λ, r)) = C ′T1(λ, r)(x) = Ad′x(λ, r).

It implies
CT1(λ, r)(x) = Adx(λ, r). (X)

Thus, we have

f→(CT1(λ, r))(y)

=
∨

{CT1(λ, r)(x) | f(x) = y}

=
∨

{Adx(λ, r) | f(x) = y} ( by (X))

=
∨

f(x)=y

∨
{Conx(T, r) | T is fuzzy net in λ} (by Proposition 3.5)

≤
∨

f(x)=y

∨
{Cony(f ◦ T, r) | T is fuzzy net in λ}( by (4))

=
∨

{Cony(f ◦ T, r) | T is fuzzy net in λ}

≤
∨

{Cony(T, r) | T is fuzzy net in f→(λ)}
= Ady(f

→(λ), r) (by Proposition 3.5)

= CT2(f
→(λ), r)(y). ( by (X))

(5) ⇒ (6) and (6) ⇒ (7) are easily proved .
(7) ⇒ (1) We will show that T1(f←(µ)) ≥ T2(µ), for all µ ∈ LY .
Let T2(µ) = 0. It is trivial.
Let T2(µ) = r > 0. Since TN = T2 from Theorem 2.4(b), we have, for all y ∈ Y ,

S(y, µ) = Ny(µ, r).

It implies, for all x ∈ X,

S(f(x), µ) = S(x, f←(µ)) = Nf(x)(µ, r).
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Since f←(IT2(µ, r)) = f←(µ) ,

S(x, f−1(µ)) = S(x, f←(IT2(µ, r))

(Since f←(IT2(µ, r)) ≤ IT1(f
←(µ), r),)

≤ S(x, IT1(f
←(µ), r))

= Nx(f
←(µ), r). (by Proposition 3.3(1))

Thus, by Theorem 2.3(2), we have

S(x, f←(µ)) = Nx(f
←(µ), r).

Hence, T1(f←(µ)) ≥ r. �
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27. A. P. Šostak, Basic structures of fuzzy topology, J. of Math. Sciences 78, no 6 (1996), 662-701.
28. E. Turunen, Algebraic structures in fuzzy logic, Fuzzy Sets and Systems 52 (1992), 181-188.

29. E. Turunen, Mathematics behind fuzzy logic, A Springer-Verlag Co., (1999).
30. Wang Guo-Jun, Pointwise topology on completely distributive lattices, Fuzzy Sets and Systems 30

(1989), 53-62.
31. R.R.Yager, On a general class of fuzzy conectivies, Fuzzy Sets and Systems 4 (1980), 235-242.

32. W. Yao, On many-valued L - fuzzy convergence spaces, Fuzzy Sets and Systems 159 (2008), 2503-
2519.

33. M.S. Ying, On the method of neighborhood systems in fuzzy topology, Fuzzy Sets and Systems 68
(1994), 227-238.

A.A.Ramadan
E-mail address: aramadan58@hotmail.com

M.El-Dardery
E-mail address: mdardery6@gmail.com
Hu Zhao
E-mail address: zhaohu2007@yeah.net


