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L-FUZZY APPROXIMATION SPACES AND L-FUZZY

TOPOLOGICAL SPACES

A.A.RAMADAN*, E.H.ELKORDY, M.EL-DARDERY

Abstract. The L-fuzzy approximation operator associated with an L-fuzzy
approximation space (X,R) turns out to be a saturated L-fuzzy closure (in-
terior) operator on a set X precisely when the relation R is reflexive and

transitive. We investigate the relations between L-fuzzy approximation spaces
and L-(fuzzy) topological spaces.

1. Introduction

The theory of rough set, proposed by Pawlak [14] is an extension of set theory
for the study of intelligent systems characterized by insufficient and incomplete
information. As a new method of soft computing, rough set theory has become
an important mathematical framework for pattern recognition, image processing,
feature selection, signal analysis and decision analysis.

Equivalence relation is an important concept in classical rough set theory which
are considered as the building blocks for the lower and upper approximation oper-
ators. The notion of an approximation space consisting of a universe of discourse
and an indiscernible relation imposed on it is one of the fundamental concept of
rough set theory. Based on the approximation space, the primitive notion of lower
and upper approximation operators can be induced. From both theoretic and prac-
tical needs, many authors have generalized the concept of approximation operators
by using nonequivalent binary relations [5, 13, 26, 27], or by using axiomatic ap-
proaches [26]. Different kinds of generalization of Pawlak’s rough set has been
obtained by replacing equivalence relation with an arbitrary binary relation. On
the other hand, the relationships between rough sets and topological spaces were
studied by many authors [16, 28]. It can be proved that the lower and upper ap-
proximation operators derived by a reflexive and transitive relation are exactly a
pair of interior and closure operators in a topology. In [16], it was pointed out
that there exists a one-to-one corresponding between the set of all reflexive, tran-
sitive relations (preorder) and the set of all Alexandroff topologies on an arbitrary
universe.

Various fuzzy generalizations of rough approximation have been proposed in the
literature [4, 6, 10, 15, 23, 25, 26]. Many papers were investigated the relationship
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between fuzzy rough set models and fuzzy topologies [3, 24]. On the other hand
Hájek [8] introduced a complete residuated lattice which is an algebraic structure
for many valued logic. In [17, 23], L-fuzzy rough set based on residuated lattice
was studied. Furthermore, it was shown that the lower and upper L-fuzzy approxi-
mation operators derived by a reflexive and transitive L-relation are exactly a pair
of interior and closure operators of an L-topology.

In the present paper, some basic properties of L-upper (L-lower) quasi-approxim-
ation spaces are studied. We investigate the relationship between L-fuzzy rough sets
based on residuated lattice and L-(fuzzy) topological spaces. Also, we discuss the
continuity of maps between L-fuzzy approximation spaces and L-(fuzzy) topological
spaces.

2. Preliminaries

Throughout this paper, Let X be a nonempty set and L = (L,∨,∧, 0, 1) a
completely distributive lattice with the least element 0 and the greatest element 1
in L. For each α ∈ L, let α denote the constant fuzzy subset with value α. We
denote the characteristic function of a subset A of X by 1A.

A residuated lattice L is a structure (L, ∗,→,∨,∧, 0, 1) where (L,∨,∧, 0, 1) is
bounded lattice with the greatest element 1 and the smallest element 0; (L, ∗, 1) is
a commutative monoid and ∗ is isotonic at both arguments; and (x ∗ z) ≤ y if and
only if z ≤ (x → y) for all x, y, z ∈ L. A residuated lattice is said to be complete if
the underline lattice is complete.

In what follows, ∗ is sometimes called a generalized triangular norm and the
implicator → is called the residuum of ∗. An implicator I is called left monotonic
(resp. right monotonic) if I(α) is decreasing (resp. increasing) for every α ∈ L. If
I is both left monotonic and right monotonic, then it is called hybrid monotonic.

An operator ′ : L → L defined by x′ = x → 0, for every x ∈ L, is called a strong
negation if x′′ = x.

In this paper, we always assume that L = (L, ∗,→,∨,∧,′ , 0, 1) is a complete
residuated lattice with a strong negation. Some basic properties of a complete
residuated lattices are as follows.

Lemma 2.1. [1, 2, 8, 9, 22] Suppose that L is a complete residuated lattice, then
∀x, y, z ∈ L, {xj : j ∈ J} ⊆ L, the following conditions hold

(I1) 1 → x = x, x → (y → x) = 1,
(I2) x ≤ y iff x → y = 1,
(I3) (x → y) ∗ (y → z) ≤ (x → z), x → y ≤ (x ∗ z) → (y ∗ z),
(I4) x →

∧
j∈J xj =

∧
j∈J (x → xj), and hence if y ≤ z, then x → y ≤ x → z,

(I5) (
∨

j∈J xj) → y =
∧

j∈J(xj → y), and hence if x ≤ y, then x → z ≥ y → z,

(I6) (x ∗ y) → z = x → (y → z) = y → (x → z),
(I7) x ∗ (x → y) ≤ y and x ≤ (x → y) → y,
(I8) y ≤ x → y and y ≤ x → (x ∗ y),
(I9) (x → y) ∗ (z → w) ≤ x ∗ z → y ∗ w, where w ∈ L,
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(I10) (x → y) ∧ (z → w) ≤ x ∧ z → y ∧ w,
(I11) x → y′ = (x ∗ y)′,
(I12) (

∨
j∈J xj) ∗ y =

∨
j∈J (xj ∗ y),

(I13) (
∧

j∈J xj)
′ =

∨
j∈J x′j,

(I14) (
∨

j∈J xj)
′ =

∧
i∈I x

′
j,

(I15) x → y = y′ → x′,
(I16) x ∗ y = (x → y′)′, x → y = (x ∗ y′)′.
Let X be a universal set, An L-subset on X is a mapping from X to L, and the

family of all L-subsets on X will be denoted by LX [10]. All algebraic operations
on L can be extended pointwise to the powerset LX as follows: for all x ∈ X

(1) µ ≤ ρ iff µ(x) ≤ ρ(x),
(2) (µ ∗ ρ)(x) = µ(x) ∗ ρ(x),
(3) (α ∗ ρ)(x) = α ∗ ρ(x),
(4) (µ → ρ)(x) = µ → ρ(x),
(5) (α → ρ)(x) = α → ρ(x),
(6) µ′(x) = µ(x) → 0.

Definition 2.2. [2] An L-fuzzy quasi-equivalence relation on a universe set X is a
map R : X ×X → L satisfies the following conditions

(1) reflexive if R(x, x) = 1, ∀x ∈ X,
(2) transitive if

∨
y∈X R(x, y) ∗R(y, z) ≤ R(x, z), ∀ x, y, z ∈ X.

An L-fuzzy quasi-equivalence relation is called an L-fuzzy equivalence relation
on X if it satisfies

(3) symmetric if R(x, y) = R(y, x), ∀ x, y ∈ X,
Sometimes we use the following condition instead of (2)
(4) R(x, y) ∗R(y, z) ≤ R(x, z), ∀ x, y, z ∈ X.
An L-fuzzy quasi-equivalence relation is called serial if∨

y∈X
R(x, y) = 1, ∀ x, y ∈ X.

The pair (X,R) is called an L- fuzzy quasi approximation (rep. approximation)
space if R is an L- fuzzy quasi- equivalence (rep. equivalence) relation. Let (X,R1)
and (X,R2) be two L-fuzzy approximation spaces. A mapping f : X → Y is called
R-map if

R1(x, y) ≤ R2(f(x), f(y)) ∀ (x, y) ∈ X ×X.

Let R be an L-fuzzy quasi-equivalence relation on X. Define R−1(x, y) = R(y, x)
for all x ∈ X. Then R−1 is an L-fuzzy quasi-equivalence relation on X.

Definition 2.3. [7] For a given set X, define a binary mapping S : LX ×LX → L
by

S(λ, µ) =
∧
x∈X

(λ(x) → µ(x)), ∀ λ, µ ∈ LX ,

then S is an L-partial order on LX . For λ, µ ∈ LX , S(λ, µ) can be interpreted as
the degree to which λ is a subset of µ. It is called the subsethood degree or the
fuzzy inclusion order.
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Lemma 2.4. [7] Let S be the fuzzy inclusion order, then ∀λ, µ, ρ, ν ∈ LX and a ∈ L
the following statements hold

(1) µ ≤ ρ ⇔ S(µ, ρ) = 1,
(2) S(µ, a → ρ) = S(a ∗ µ, ρ) = a → S(µ, ρ),
(3) µ ≤ ρ ⇒ S(λ, µ) ≤ S(λ, ρ) and S(µ, λ) ≥ S(ρ, λ), ∀ λ ∈ LX ,
(4) S(λ, µ) ∗ S(ρ, ν) ≤ S(λ ∗ ρ, µ ∗ ν) and S(λ, µ) ∧ S(ρ, ν) ≤ S(λ ∧ ρ, µ ∧ ν).

Definition 2.5. [9] Let X be the universe set, a family τ ⊆ LX is called L-topology
if it satisfies the following conditions

(1) 1X , 1ϕ ∈ τ ,
(2) λ, µ ∈ τ implies λ ∧ µ ∈ τ ,
(3) ∀i {λi : i ∈ I} ⊆ τ implies

∨
i∈I λi ∈ τ .

An L-topology τ is called strongly if it further satisfies the following:
(4) α ∗ λ ∈ τ for all λ ∈ τ, α ∈ L,
(5) α → λ ∈ τ for all λ ∈ τ, α ∈ L.
A strongly L-topological space (X, τ) is called an Alexandrov L-topological space

if τ also satisfies that {λi : ∀ i ∈ I} ⊆ τ implies
∧

i∈I λi ∈ τ .

An L-fuzzy topology [9, 18, 20, 21] is given by a mapping T : LX → L satisfies
the following conditions:

(O1) T (1X) = T (1ϕ) = 1,
(O2) T (λ ∧ µ) ≥ T (λ) ∧ T (µ),
(O3) T (

∨
i λi) ≥

∧
i T (λi).

If in addition, T satisfies
(H1) T (α ∗ λ) ≥ T (λ),
(H2) T (α → λ) ≥ T (λ).
Then T is a strong L-fuzzy topology on X, and the pair (X, T ) is a strong

L-fuzzy topological space.
An L-fuzzy topological space (X, T ) is called Alexandrov L-fuzzy topological

space if T also satisfies
(O4) T (

∧
i∈I λi) ≥

∧
i∈I T (λi).

A mapping f : (X, T1) → (Y, T2) is LF -continuous if it satisfies that T1(f←(λ)) ≥
T2(λ) for all λ ∈ LY , where f←(λ) = λ ◦ f .

Definition 2.6. [7, 11] A L-fuzzified set of all upper sets of an approximation
space (X,R) is a map ∇(R) : LX → L defined by

∀λ ∈ LX , ∇(R)(λ) =
∧

(x,y)∈(X,X)

R(x, y) → (λ(x) → λ(y)).

Dually, an L-fuzzified set of all lower sets of an approximation space (X,R) is a
map ∆(R) : LX → L defined by

∀µ ∈ LX , ∆(R)(µ) =
∧

(x,y)∈(X,X)

R(x, y) → (µ(y) → µ(x)).

A fuzzy subset λ is called an upper set (resp. a lower set) if

∇(R)(λ) = 1 (resp. ∆(R)(λ) = 1).
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3. L-fuzzy rough (closure,interior) approximation operators

The notion of fuzzy rough sets based on residuated lattice was proposed by
Radzikowska and Kerre in [17]. By taking complete residuated lattices instead
of [0, 1] as truth value structure, it differs from the concept of fuzzy rough sets
in [6, 12, 13, 15].

Definition 3.1. [10, 23] Let (X,R) ba an L-fuzzy quasi-approximation space.
The two maps CR, IR : LX → LX are called upper and lower L-fuzzy rough
approximation operators on X defined respectively by

CR(λ)(x) =
∨
y∈X

R(x, y) ∗ λ(y),

IR(λ)(x) =
∧
y∈X

(R(x, y) → λ(y)), ∀ λ ∈ LX , x ∈ X.

In the case when L = {0, 1}, λ and R can be reduced to crisp subsets of X and
X ×X respectively, and CR(λ) and IR(λ) are precisely the corresponding concepts
in classical rough set theory. Nevertheless, IR(λ) ≤ CR(λ), which is true in the
classical case, is not in the fuzzy setting.

The following theorem provides some basic properties of the lower and upper
L-fuzzy rough approximation operators.

Theorem 3.2. [23] Let CR, IR : LX → LX be the lower and upper L-fuzzy rough
approximation operators on X. Then they satisfy the following properties

(1) S(λ, CR(λ)) ≥ 1 and S(IR(λ), λ) ≥ 1 ∀ λ ∈ LX ,
(2) S(λ, µ) ≤ S(CR(λ), CR(µ)) and S(λ, µ) ≤ S(IR(λ), IR(µ)) ∀ λ, µ ∈ LX ,
(3) CR(

∨
i∈I λi) =

∨
i∈I CR(λi) and IR(

∧
i∈I λi) =

∧
i∈I IR(λi) ∀ λi ∈ LX ,

(4) CR(α ∗ λ) = α ∗ CR(λ) and IR(α → λ) = α → IR(λ), where α ∈ L,
(5) CR(CR(λ)) ≤ CR(λ) and IR(IR(λ)) ≥ IR(λ),
(6) CR(α) ≤ α and IR(α) ≥ α,
(7) S(CR(λ), µ) = S(λ, IR−1(µ)).

In the following definitions 3.3, 3.4, we define a strongly stratified upper( lower)
L-fuzzy quasi-approximation space which induce L-fuzzy topological spaces in the
next section.

Definition 3.3. Amap C : LX → LX is called an upper L- fuzzy quasi-approximation
operator on X iff C satisfies the following conditions

(UA1) S(λ, C(λ)) = 1 and C(α) = α,
(UA2) If S(µ, λ) ≤ S(C(µ), C(λ)),
(UA3) C(

∨
i∈I λi) =

∨
i∈I C(λi),

(UA4) C(C(λ)) ≤ C(λ).

The pair (X, C) is called an L-upper quasi-approximation operator. A upper
L-fuzzy quasi-approximation operator is called:

(1) strongly stratified iff it satisfies (LS) C(α ∗ λ) = α ∗ C(λ),
(2) upper L-fuzzy approximation if it satisfies (LA) C(1x)(y) = C(1y)(x).
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Definition 3.4. Amap I : LX → LX is called an lower L- fuzzy quasi-approximation
operator on X iff I satisfies the following conditions:

(LA1) S(I(λ), λ) = 1 and I(α) = α,
(LA2) If S(µ, λ) ≤ S(I(µ), I(λ)),
(LA3) I(

∧
i∈I λi) =

∧
i∈I I(λi),

(LA4) I(I(λ)) ≥ I(λ).

The pair (X, I) is called an lower L-fuzzy quasi-approximation operator. A lower
L-fuzzy quasi-approximation operator is called:

(1) strongly stratified iff it satisfies (LS) I(α → λ) = α → I(λ),
(2) lower L-fuzzy approximation operator if it satisfies (LA) I(1′x)(y) = I(1′y)(x).

Theorem 3.5. If the mapping C : LX → LX satisfies the following conditions
(1) 1x ≤ C(1x),
(2)

∨
z∈X(C(1x)(z) ∗ C(1z)(y)) ≤ C(1x)(y),

(3) C(
∨

i∈I λi) =
∨

i∈I C(λi),
(4) C(α ∗ 1x) = α ∗ C(1x).

Then we have the following properties
(a) C(λ) =

∨
y∈X C(1y) ∗ λ(y),

(b) C satisfies the above conditions iff C is a strongly stratified upper L-fuzzy
quasi-approximation operator.

Proof. (a) Since λ(x) =
∨

y∈X(1y(x) ∗ λ(y)),

C(λ)(x) = C(
∨
y∈X

(1y ∗λ(y)))(x) =
∨
y∈X

C(1y ∗λ(y))(x) =
∨
y∈X

C(1y)(x)∗λ(y) (by(4)).

(b) (⇒) C is strongly stratified upper L-fuzzy quasi-approximation operator from
the following statements

(UA1) By (a) and condition (1), we have

C(λ)(x) =
∨
y∈X

C(1y)(x) ∗ λ(y) ≥
∨
y∈X

(1y(x) ∗ λ(y)) = λ(x).

Since C(1) = 1 and α ∗ 1 = α, C(α ∗ 1) = α ∗ 1 = α.

(UA2) By (a), it is easy.

(UA4)

C(λ)(x) =
∨
y∈X

C(1y)(x) ∗ λ(y) ≥
∨
y∈X

(
∨
z∈X

C(1y)(z) ∗ C(1z)(x) ∗ λ(y)) (by(2))

=
∨
z∈X

C(1z)(x) ∗ (
∨
y∈X

C(1y)(z) ∗ λ(y)) =
∨
z∈X

C(1z)(x) ∗ C(λ)(z) = C(C(λ))(x).

(⇐) We only show that the condition (2) by (UA4) we have

C(1x)(y) ≥ C(C(1x))(y) =
∨
z∈X

C(1z)(y) ∗ C(1x)(z) (by(a)).
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The following two Theorems in [10] provides some basic properties of the lower
and upper L-fuzzy rough approximation operators. �

Theorem 3.6. Let (X,R) ba an L-fuzzy quasi-approximation space. Then the
upper L-fuzzy rough approximation operators on X has the following properties

(1) CR(α) = α if and only if CR(1) = 1,
(2) CR(1y ∗ α)(x) = R(x, y) ∗ α,
(3) CR(1y)(x) = R(x, y),
(4) R is serial iff one of the following properties holds
(i) CR(α) = α (ii) CR(1) = 1, ∀α ∈ L.

Theorem 3.7. Let (X,R) ba an L-fuzzy quasi-approximation space. Then the
lower L-fuzzy rough approximation operators on X has the following properties:

(1) IR(α) = α if and only if IR(0) = 0,
(2) IR(1y → α)(x) = R(x, y) → α,
(3) IR(1′y)(x) = R(x, y) → 0,
(4) R is serial iff IR(α) = α ∀α ∈ L,
(5) I(λ) =

∧
y∈X λ′(y) → I(1′y),

(6) IR(λ) = C ′R(λ
′) and CR(λ) = I ′R(λ′),

(7) If CR(1x) = I ′R(1′x), then CR(λ′) = I ′R(λ).

Proposition 3.8. Let (X,R) be an L-fuzzy approximation space. Then for all
λ, µ ∈ LX , we have the following properties

(1) IR(CR(λ)) = CR(λ),
(2) CR(IR(λ)) = IR(λ),
(3) S(CR(λ), ρ) = S(λ, IR(ρ)),
(4) S(IR(λ), IR(ρ)) = S(IR(λ), ρ),
(5) S(CR(λ), CR(ρ)) = S(λ, CR(ρ)).

Proof. (1) By (UA1), we have

IR(CR(λ))(x) =
∧
y∈X

(R(x, y) → CR(λ)(y)) =
∧
y∈X

(R(x, y) →
∨
z∈X

(R(y, z) ∗ λ(z)))

=
∧
y∈X

∨
z∈X

(R(x, y) → R(y, z) ∗ λ(z)) (by(I4))

≥
∧
y∈X

∨
z∈X

(R(x, y) → (R(y, x) ∗R(x, z) ∗ λ(z))

≥
∨
z∈X

(R(x, z) ∗ λ(z)) = CR(λ)(x) (by(I8)).

(2) By (LA1),we have
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CR(IR(λ))(x) =
∨
y∈X

(R(x, y) ∗ IR(λ)(y)) =
∨
y∈X

(R(x, y) ∗
∧
z∈X

(R(y, z) → λ(z)))

=
∨
y∈X

∧
z∈X

(R(x, y) ∗ (R(y, z) → λ(z))) (by(I11))

≤
∨
y∈X

∧
z∈X

(R(x, y) ∗ (R(y, x) ∗R(x, z) → λ(z)))

≤
∧
z∈X

(R(x, z) ∗ λ(z)) = IR(λ)(x) (by(I5)).

(3)

S(CR(λ), ρ) =
∧
x∈X

(CR(λ)(x) → ρ(x)) =
∧
x∈X

((
∨
y∈X

R(x, y) ∗ λ(y)) → ρ(x))

=
∧
x∈X

(
∧
y∈X

(R(x, y) ∗ λ(y) → ρ(x))) (by(I5))

=
∧
x∈X

∧
y∈X

(λ(y) → (R(x, y) → ρ(x))) (by(I6))

=
∧
y∈X

(λ(y) →
∧
x∈X

(R(y, x) → ρ(x)))

=
∧
y∈X

(λ(y) → IR(ρ)(y)) = S(λ, IR(ρ)).

(4) By using (1),(3), we have S(IR(λ), IR(ρ)) = S(CR(IR(λ)), ρ) = S(IR(λ), ρ).

(5) By using (2),(3), we have S(CR(λ), CR(ρ)) = S(λ, IR(CR(ρ))) = S(λ, CR(ρ)).
�

Definition 3.9. Let R be a quasi-equivalence relation on X. A fuzzy set λ ∈ LX

is called compatible with R (or left-extensional with respect to R on X) if for any
x, y ∈ X it holds λ(x) ∗R(x, y) ≤ λ(y).

A fuzzy set λ is called right-extensional with respect to R if λ(y)∗R(x, y) ≤ λ(x)
for all x, y ∈ X. i.e, R(x, y) ≤ λ(y) → λ(x).

Lemma 3.10. (1) λ = IR(λ) iff λ is compatible with R,
(2) CR is compatible with R if R is an equivalence relation,
(3) CR−1 is right-extensional with respect to R.

Proof. (1) Let λ = IR(λ), then

λ(x) ∗R(x, y) = IR(λ) ∗R(x, y) = (
∧
z∈X

R(x, z) → λ(z)) ∗R(x, y)

≤ R(x, y) ∗ (R(x, y) → λ(y)) ≤ λ(y) (by(I7)).

If λ is compatible with R, then λ(x) ∗R(x, y) ≤ λ(y) ⇔ λ(x) ≤ R(x, y) → λ(y).
So, λ(x) ≤

∧
y∈X R(x, y) → λ(y) = IR(λ)(x). Thus, λ = IR(λ).
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(2)

CR(µ)(x) ∗R(x, y) = (
∨
z∈X

R(x, z) ∗ µ(z)) ∗R(x, y) =
∨
z∈X

(R(x, z) ∗R(x, y)) ∗ µ(z)

=
∨
z∈X

(R(y, x) ∗R(x, z)) ∗ µ(z) ≤
∨
z∈X

R(y, z) ∗ µ(z) = CR(µ)(y).

(3) By similar way. �

4. L-fuzzy topological spaces.

In this section we will show that an upper(lower) L- fuzzy quasi-approximation
operator on a set X induces a new kind of strongly stratified L-fuzzy topology in
natural way and hence induces a strong L-topology on a set X.

Let (X, CR) be an upper L-fuzzy quasi-approximation space, there exists a
method to induce a strongly stratified L-fuzzy topological space, In fact, define
TR : LX → L as follows: ∀ λ ∈ LX ,

TR(λ) = S(CR(λ), λ) =
∧
x∈X

(CR(λ)(x) → λ(x))

=
∧
y∈X

(
∨
x∈X

R(x, y) ∗ λ(y) → λ(x)) =
∧

x,y∈X

R(x, y) → (λ(y) → λ(x)).

Observe that for all α ∈ L, λ ∈ LX , we have

TCR(α ∗ λ) = S(CR(α ∗ λ), α ∗ λ) = S(α ∗ CR(λ), α ∗ λ) (by Theorem 3.2(4))

= S(CR(λ), α → (α ∗ λ)) (by Lemma 5.2(2))

≥ S(CR(λ), λ) = TCR(λ) (by (I10)).

From this, we obtain the following Lemma.

Lemma 4.1. If (X, CR) is an upper L-fuzzy quasi-approximation space, then TCR
satisfies

(H1) TR(α ∗ λ) ≥ TR(λ).

Theorem 4.2. TR is an strongly stratified Alexandrov L-fuzzy topology.

Proof. (O1) TR(1X) = S(CR(1X), 1X) = S(1X , 1X) = 1, TR(1ϕ) = S(CR(1ϕ), 1ϕ) =
S(1ϕ, 1ϕ) = 1.

(O3) Let {λi : i ∈ I} be any family of fuzzy subset in X, then

TR(
∨
i

λi) = S(CR(
∨
i

λi),
∨
i

λi) = S(
∨
i

CR(λi),
∨
i

λi) (by Theorem 3.2(3))

≥
∧
i

S(CR(λi,
∨
i

λi)) ≥
∧
i

S(CR(λi), λi) =
∧
i

TR(λi).
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(O4)

TR(
∧
i

λi) =
∧

x,y∈X

R(x, y) →
(
(
∧
i

λi)(y) → (
∧
i

λi)(x)
)

=
∧

x,y∈X
R(x, y) →

∧
i

(
(
∧
i

λi)(y) → (λi(x))
)

≥
∧
i

∧
x,y∈X

R(x, y) → (λi(y) → λi(x)) =
∧
i

TR(λi).

(H2)

TR(α → λ) = S(CR(α → λ), α → λ) = S(α ∗ CR(α → λ), λ) (by Lemma 5.2(2))

= S(CR(α ∗ (α → λ)), λ) (by Theorem 3.2(4))

≥ S(CR(λ), λ) = TR(λ) (by(I7)).
�

Corollary 4.3. τR = {λ ∈ LX | τR(λ) = 1} = {λ ∈ LX | CR(λ) = λ} is a strongly
stratified Alexandrov L-fuzzy topology.

Theorem 4.4. Let (X, CR) be a strongly stratified upper L-fuzzy quasi-approximation
space. Define an operator RC : X ×X → L as follows

RC(x, y) = C(1x)(y).
Then,

(1) (X,RC) is an L-fuzzy quasi-approximation space,
(2) RCR = R and CRC = C.

Proof. (1) Since RC(x, y) = C(1x)(y) ≥ 1x(y), then RC(x, x) = 1. From Theorem
3.5, we have C(λ)(x) =

∨
z∈X(λ(z) ∗ C(1z)(x)).

RC(x, y) = C(1x)(y) ≥ C(C(1x))(y)

=
∨
z∈X

(C(1x)(z) ∗ C(1z)(y)) =
∨
z∈X

(RC(x, z) ∗RC(z, y)).

(2) RCR(x, y) = CR(1x)(y) =
∨

z∈X(1x(z) ∗R(z, y)) = R(x, y). �
Corollary 4.5. Let (X, CR) be a strongly stratified upper L-fuzzy quasi-approximation
space. Define an operator R−1C : X ×X → L as follows

R−1C (x, y) = C(1y)(x).
Then,

(1) (X,R−1C ) is an L-quasi-approximation space,

(2) R−1CR−1
= R and CR−1

C
= C.

Similarly, Let (X, IR) be an lower L-fuzzy quasi-approximation space, there
exists a method to induce a strongly stratified L-fuzzy topological space, In fact,
define T : LX → L as follows

TR(λ) = S(λ, IR(λ)) =
∧

x,y∈X

R(x, y) → (λ(x) → λ(y)).
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Observe that for all α ∈ L, λ ∈ LX , we have

TR(α → λ) = S(α → λ, IR(α → λ)) = S(α → λ, α → IR(λ)) (by Theorem 3.2(4))

= S(α ∗ (α → λ), IR(λ)) (by Lemma 5.2(2))

≥ S(λ, IR(λ)) = TR(λ) (by(I7)).

From this, we obtain the following Lemma.

Lemma 4.6. If (X, IR) is an lower L-fuzzy quasi-approximation space, then TR
satisfies

TR(α → λ) ≥ TR(λ).

Theorem 4.7. τR is a strongly stratified Alexandrov L-topology.

Proof. By a dual sense of Theorem 4.2, it is easily proved. �

Corollary 4.8. τR = {λ ∈ LX | IR(λ) = λ} is a strongly stratified Alexandrov
L-topology.

Corollary 4.9. τR = {λ ∈ LX | λ(x) ∗R(x, y) ≤ λ(y) ∀ x, y ∈ X}.

Proof. By Corollary 4.8 and Lemma 3.10, it is easily proved. �

Corollary 4.10. Let τR be the L-topology defined as Corollary 4.8, then for every
x, y ∈ X, we have

R(x, y) =
∧

λ∈τR

λ(x) → λ(y).

Theorem 4.11. Let τ be an L-topology on a set X, define the relation Rτ on X
as for all x, y ∈ X,

Rτ (x, y) =
∧

λ∈τR

λ(x) → λ(y).

Then Rτ is reflexive and transitive. Moreover, τ ⊆ τRτ
.

Proof. For each x ∈ X, we have Rτ (x, x) =
∧

λ∈τ (λ(x) → λ(x)) = 1, hence R is
reflexive.

For each x, y, z ∈ X, we have

Rτ (x, y) ∗Rτ (y, z) =
( ∧
λ∈τ

(λ(x) → λ(y))
)
∗
( ∧
λ∈τ

(λ(y) → λ(z))
)

≤
(
λ(x) → λ(y)) ∗ (λ(y) → λ(z)) ≤ λ(x) → λ(z) (by (I3)).

Hence, Rτ (x, y) ∗Rτ (y, z) ≤
∨

y∈X
∧

λ∈τ (λ(x) → λ(z)) = Rτ (x, z). Thus,

Rτ (x, y) ∗Rτ (y, z) ≤ Rτ (x, z), i.e. Rτ is transitive. For each λ ∈ LX , we have

λ(x) ∗Rτ (x, y) ≤ λ(y) ∀ x, y ∈ X.

Hence, λ(x) ≤ Rτ (x, y) → λ(y) for each y ∈ X. So, λ(x) ≤ IR(λ)(x). Then we
have IR(λ) = λ, because Rτ is reflexive, i.e. λ ∈ τR. �
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Theorem 4.12. If τ is a strongly stratified Alexandrov L-topology on X and Rτ

is a L-relation, then τ = {λ ∈ LX | λ(x) ∗Rτ (x, y) ≤ λ(y) ∀x, y ∈ X}. Moreover,

τ = τRτ .

Proof. We show that for each λ ∈ LX , with λ(x) ∗ Rτ (x, y) ≤ λ(y) implies λ ∈ τ .
For x ∈ X, define µx : X → L as

µx(z) = λ(x) ∗Rτ (x, z).

Then, µx(x) = λ(x) and µx(z) ≤ λ(z) for all z ∈ X which implies

λ =
∨
x∈X

µ(x).

For each ρ ∈ τ , define fρ(z) = ρ(x) → ρ(z). It follows that fρ, because τ is strongly
stratified. Since τ is Alexandrov L-topology, then

∧
ρ∈τ (fρ) ∈ τ .

Now, µx(z) = λ(x) ∗Rτ (x, z) = λ(x) ∗ (
∧

ρ∈τ (ρ(x) → ρ(z))) = λ(x) ∗
∧

ρ∈τ (fρ).

So, µx ∈ τ , because τ is strongly stratified. Then λ ∈ τ . On the other hand,
since for each λ ∈ LX with IR(λ) = λ, we have

λ(x) ∗Rτ (x, y) = IR(λ)(x) ∗Rτ (x, y) = (
∧
y∈X

(Rτ (x, y) → λ(y)) ∗Rτ (x, y)

≤ (Rτ (x, y) → λ(y))) ∗Rτ (x, y) ≤ λ(y) (by (I7)).

Therefore, λ ∈ τ , i.e. τRτ ⊆ τ . By Theorem 4.11, we have τ = τRτ . �

Example 4.13. Let (L = [0, 1], ∗,→, 1) be a complete residuated lattice with the
law of double negation defined by

x ∗ y = (x+ y − 1) ∨ 0, x → y = (1− x+ y) ∧ 1, x′ = 1− x.

Let X = {a, b, c} and λ ∈ LX as follows λ(a) = 1, λ(b) = 0.1, λ(c) = 0.4.
Define R ∈ LX×X as follows

R =

 1 0.2 0.9
0.8 1 0.7
0.6 0.5 1


So, we have

(1) By Definition 3.4, we could obtain an L-fuzzy strongly stratified interior
space

I(λ)(x) =

 0.5, if x = a,
0.1, if x = b,
0.4, if x = c.

So, I(0.25 → λ) = 0.25 → I(λ) = 0.85.

(2) By Theorem 3.5, we could obtain a L-fuzzy strongly stratified closure space

C(λ)(x) =

 0.3, if x = a,
0.8, if x = b,
0.6, if x = c.
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So, C(0.25 ∗ λ) = 0.25 ∗ C(λ) = 0.25.
3) By Theorem 4.2, we could obtain an strongly stratified Alexandrov L-fuzzy

topology

TR(µ) =
{

1, if µ = 0̄ or1̄,
0.3, if µ = λ

So, TR(0.25 → λ) = 1 ≥ TR(λ).

5. Continuous mappings.

Definition 5.1. Let (X, C1) and (Y, C2) be two upper L-fuzzy quasi-approximation
spaces, then a mapping f : (X, C1) → (Y, C2) is a C-map if f(C1(λ)) ≤ C2(f(λ)) for
each λ ∈ LX .

Definition 5.2. Let (X, I1) and (Y, I2) be two lower L-fuzzy quasi-approximation
spaces, then a mapping f : (X, I1) → (Y, I2) is a I-map if f←(I2(λ)) ≤ I1(f←(λ))
for each λ ∈ LX .

Theorem 5.3. If f : (X,R1) → (Y,R2) is a R-map, then f : (X, CR1) → (Y, CR2)
is a C-map.

Proof.

f(CR1(µ))(y) =
∨

x∈f←({y})

CR1(µ)(x) =
∨

x∈f←({y})

∨
z∈X

(R1(x, z) ∗ µ(z))

≤
∨
z∈X

R2(f(x), f(z)) ∗ f(µ)(f(z)) ≤ CR2
(f(µ))(y).

�

Theorem 5.4. If a mapping f : (X, C1) → (Y, C2) is a C-map, then f : (X,RC1) →
(Y,RC2) is R-map.

Proof. RC1(x, y) = C1(1x)(y) ≤ f(C1(1x))(f(y)) ≤ R2(1f(x))(f(y)) = RC2(f(x), f(y)).
�

Theorem 5.5. If a mapping f : (X, CR1) → (Y, CR2) is C-map, then f : (X, TCR1
) →

(Y, TCR2
) is LF -continuous.

Proof. The continuity of f : (X, TCR1
) → (Y, TCR2

) can be shown as follows

TCR1
(f←(λ)) = S(CR1(f

←(λ)), f←(λ)) ≥ S(f←(CR2(λ)), f
←(λ))

=
∧
x∈X

(CR2(λ)(f(x)) → λ(f(x))) ≥
∧
y∈X

(CR2(λ)(y) → λ(y))

= S(CR2(λ), λ) = TCR2
(λ).

�

Theorem 5.6. If f : (X,R1) → (Y,R2) is a R-map, then f : (X, IR1) → (Y, IR2)
is an I-map.
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Proof.

f←(IR2
(λ))(x) = IR2

(λ)(f(x)) =
∧
z∈Y

(R2(f(x), z) → λ(z))

≤
∧

f(y)=z∈Y

(R2(f(x), f(y)) → λ(f(y)))

≤
∧
y∈X

(R1(x, y) → f←(λ)(y)) = IR1(f
←(λ))(x).

�

Theorem 5.7. If a mapping f : (X, IR1
) → (Y, IR2

) is continuous, then f :
(X, TIR1

) → (Y, TIR2
) is LF -continuous.

Proof. The continuity of f : (X, TIR1
) → (Y, TIR2

) can be shown as follows

TIR1
(f←(λ)) = S(f←(λ), IR1(f

←(λ))) ≥ S(f←(λ), f←(IR2(λ)))

=
∧
x∈X

(λ(f(x)) → IR2(λ)(f(x))) ≥
∧
y∈X

(λ(y) → IR2(λ)(y))

= S(λ, IR2(λ)) = TIR2
(λ).

�

Corollary 5.8. If a mapping f : (X, T1) → (Y, T2) is continuous, then f : (X,RT2) →
(Y,RT1) is R-map.

Proof. Since λ ∈ T2 implies f←(λ) ∈ T1, then by Theorem 4.11 we have

RT2(f(x), f(y)) =
∧

λ∈T2

(λ(f(x)) → λ(f(y))) =
∧

λ∈T2

(f←(λ)(x) → f←(λ)(y))

=
∧

µ∈T1

(µ(x) → µ(y)) = RT1(x, y).

�

Theorem 5.9. Let (X, C1) and (Y, C2) be two upper L-fuzzy quasi-approximation
spaces. If (X, C1) is strongly stratified, then f : (X,R1) → (Y,R2) is C-map iff

f(C1(1x)) ≤ C2(1f(x)) ∀ x ∈ X.

Proof. Since λ =
∨

z∈X λ(z) ∗ 1z, we have

f(C1(λ))(y) =
∨

x∈f←({y})

C1(
∨
z∈X

λ(z) ∗ 1z)(x) =
∨

x∈f←({y})

∨
z∈X

λ(z) ∗ C1(1z)(x)

=
∨
z∈X

λ(z) ∗
( ∨
x∈f←({y})

C1(1z)(x)
)
=

∨
z∈X

λ(z) ∗
(
f(C1(1z))(y)

)
≤

∨
z∈X

λ(z) ∗
(
C2(1f(z))(y)

)
≤

∨
z∈X

f(λ)f(z) ∗
(
C2(1f(z))(y)

)
≤ C2(f(λ))(y).

�
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6. Conclusion.

In this paper, we have proved that a pair of L-fuzzy quasi-approximation op-
erators can induce a L-fuzzy topological space (L-topological space) if and only
if the fuzzy relation is reflexive and transitive. On the other hand, under certain
conditions an L-fuzzy interior (closure) operator derived from an L-fuzzy topologi-
cal space can be associated with a reflexive and transitive fuzzy relation such that
the induced L-fuzzy lower (upper) approximation operator is the L-fuzzy interior
(closure) operator.
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