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Preface

Most of the predicates dealt with in our daily life and in modern
science arc imprecise. Examples are the predicates, “good”, “bad”. "very
tall”, etc. The imprecision which concerns us here is not statistical but is
an intrinsic concept in such predicates, which we call “Fuzzy” predicates.
A fuzzy predicate is one that cannot be defined precisely for eacl abject.
because some-objects have an ambigrops (fuzzy) status in thal regard

Multiple-valued logic has, for over 50 years, been providing theories
which can deal with the logic of fuzziness. Its departure from ordinar.
logic has been allowing statements to take truth values in the closed unit
mterval [ = [0, 1], rather than in the set t0. 1} only. The understanding. i
some of those theories, has been that when the truth values ol statements
arc compared, the higher such a value is, the higher the "credibility” of the
corresponding statement becomes.

However, set theory has been late in keepping peace with logic,
Prof. Lotfi Zadeh took the required step in 1965 [44] which is now amon:
the classics of science. His idea has been to allow membership values ol
clements (from a certain universal set of discourse X) in a "fuzzy subset”
A m X, to be real numbers from the closed unit interval [0, |].

Subsequently in 1967 Goguen suggested the more peneral theory of
L-fuzzy sets [15]. In this theory, the memmbership values in tuzzy sets can
be from any lattice L [*], rather than [0. 1] n particular. As Zadeh s
intention has been, fuzzy sets open wider scopes for a multitude ol applied
sciences. Among these are control, optimization, mformation theory, data
bases, decision theory, artifical intelligence, biology, medical diagnosis.

sociology and economics.



On the other hand scientists have started to color most domains ol
classical mathemalics such as: topology, algebraic structures, relation
theory, number theory, differential calculus, measure theory, etc.

In 1968, C. L. Chang [11] has introduced the concept of fuzzy
topological spaces based on a straighttorward generalization ol union and
intersection to fuzzy sels.

In 1979, Katsaras [20] created the concept of a fuzzy proxinity
spaces which has been developed in other papers [5].

Recently, many outhors such as: Abd EI-Monsel [1, 2]. Azad |5, 61,
Hutton [17-19], Kerre [29-31] lowen [,], Pu-Pac-ming and liu Ying -
Ming [39, 40] and others have further extended.

In 1986, Badard [12] intreoduced the basic idea of smooth

structures and he defined a smooth topological spaces,

In 1990, MingShing - Ying [33-35] introduced a coneept of

luzzifying topology and in {36] he introduced a concept of fuzzifyine
uniform spaces.

In 1992, A, A. Ramadan [42]. R. Badard, A. A, Ramadan and A_ S
Mashhour {8], investigated some properties of smooth topological spaces
and smooth peruniform spaces. M. K. EL-Gayyar {14], investigated also
smooth  topological spaces and  some application of the smoothness
structures.

In this thesis we use the concept of a fuzzifying topology and (he
conepet  of fuzzifying uniform space 1o introduce and study the new

concepts of a fuzzifying proximity spaces and « fuzzifying syntopogenous

structure. This thesis includes a preface, four chapters 1-4. ¢ and a list of

refrences.
In chapter I, we recall most of definitions and results needed in (he
sequel about fuzzy scts; proximity, uniformity, and syntopogenous:
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multiple-valued logic and fuzzifying topology. Some properties are
established.

In chapter 2, we study (he basic concepts of a fuzzifying untlorm
space. Some results have been added to complete the idea of (his new
concept.

In chapter 3, we introduce and study the new concepts of a
fuzzifying proximity space. Also relations between a fuzzifymg uniform
space and a fuzzifying proximity space are investigated.

In chapter 4, we troduce and study the new concepts of A
fuzzifying  syntopogenous structure. Also relations between these new

concepts are investigated.

Note.

(1} The main results of chapter (3) are conditionally accepted for
publication in “International Journal of Fuzzy Math ™

(1) The main results of chapter (4) are submitted for publication i

“International Joumal of Fuzzy Math.”
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Chapter 1

Introduction

1.1 Fuzzy Sets And Operations On Fuzzy Sets

In 1965, Zadeh [44] introduced the idea of a fuzzy set as an
extension of classical set theory. In classical set theory, an element cither
belongs Lo a set, or does not belong to a set while Zadeh’s definition. of o
tuzzy set is, A fuzzy set A in some universe X is a mapping from X into
the closed unit interval [0, 1]. For xeX, A(x) means the degree of
membership of x in A ; A(x) = | means full-membership, A(x) = 0 means
non membership and A(x) € 10, 1] denotes partial membership. We denote
by Lof [0, 1] and may be replaced by arbitrary complete distributive Jattice
with order reversing involution [15]. Soif L’ denotes by any lattice then a
X-l. mapping is said to be an L-fuzzy set. More details on L-fuzzy sets can
be found in [19], The collection of all fuzzy sets in X will be denoted by I*
[44]. The case 1={0,1}:=2 is essentially set- theory, for elements of 2% are
charactertstic functions and called “crisp” fuzzy sets.

Here, we recall most of definitions and results necded in the sequel

about operations on fuzzy sets.

Definition 1.1.1 /31]

I) The union AUB of A and B as the fuzzy set
AUB : X— [0, 1]
X —max(A(X), [3(x)) Ve X
2) The intersection ANB of A and B as the fuzzy sct
AB - X [0, 1]

X —mim (A(x). B{x)) Ne X



3) The complement A€ of A as the Tuzzy sct
AS X |0, 1]
X —=1- A(x) e X
4y The corresponding partial order relation < on 1™ is deiined for
arbitrary A and B in " as

Ac B < (VxeX) (Ax)<B(x))

Definition 1.1.2 [31]

I) The weak w-level (a-cut), where « e| 0. 1], ofa [‘uz?._v sel A on X Is
denoted A, and is defined as :
Ay = IxixeXand A(x) = o
2) The strong a-level (w-cut), where o el O, 1], ol a fuzzy set A on X 15
denoted A,, and is defined as
A= IxixeXand A(x) » o}
3) The height of a fuzzy set A on X is defined as -

height (A) = sup A(x),
xer X

and Ais normal if, height (A) = |

Proposition 1.1.3 |31 /

Let A and B be fuzzy sets on X
N0 <a<pthen Ay < B,
2)fAcBthen A, cB,. Ve [0 1]
HA=B = (Yoael0l)A, =B,

< (Voae LA, = By

Chapter L Introduction



Y (ANB) 7 A, B, YV ae 0]
(AMB)= A, B, Vae 0]
H(AUBR)Y= AL w B, YVuaelll]
(AUB),~ A, UB, Yoel0l]

Definition 1.1.4 [30]

Union and intersection can be extended (o arbitrary famihies ()

of fuzzy sets A, in X, as follows:

I (u Ai)(\'):sup/\j(x) ¥x e X.
Pel ’ el

2. [:’\/\ij(x):ini'/\i(x) Vx e X,
el icl

Propsition 1.1.5 {30, 39, 40]

Let A, Bel™and {A;:iell 1" : then :

. AV B=BwA and A/ B=0BA
2. A A=A and A A=A

S|

CA u(r'\/-\ij = _r"'\[(/\ WA and A 1(1. ) "’\iJ = (A A
e i el

iEI 1el
€ C

4 (\..i Ai) =M /\C1 and (‘; 1 f’\i] = _u(/\cl-)

1el el el el

Proposition 1.1.6 |5, 12, 30, 38]

et [: X >Y,p:YZ Acl™ . Bel” Cel” (A, el 1" and
(B, iel} < 1". Then,

2. BBy, = (B By

Chapter L Introduction



3B Y= (4B

4. I‘(f"(B)) < B, with equality if { 1s surjective.

h

S A< P (E(AY). with equality il £ is injective,

o (1m)= )

iel 161

=1

f'l(m Bij =M r—](Bi)

Lel el

oay )= o(ray)

| 1]

o<

9. f(rﬂ\ Alj C'rj f(Al)

1€] icl
10). (gol‘)“l((‘) = fﬁl(gﬁl((w))

P (gof {A) = g(f(A)),

Definition 1.1.7 [5]

Let Ael® and BelY. Then the cartesian product AxB 15 a fuzzy sct
in XxY, defined as follows :

(A = B)(x.y)=min(A(x), B(y)):¥(x.y) eX x ¥

Definition 1.1.8 15, 37]

The product mapping f; < f,:X, x X, — Y x Y, of the mapping
Xy > Y and 15X, > Y, is defined by

(fx £ )(x x5 ) = ((x ). (x2)). F(x1.x0) € Xy = X,

Lemma 1.1.9. [5]

Let 1; : X;—> Y, 1=1.2are mapping and Ael™ Bel¥ 11 2 we
have

Clrapter 1. Introduction



[ {f x 1'3)(A| X /\E)C'["l(/\])x1‘2(5’\3).

2 (1 by) (B By) = 1 (By ) 15 (By)

Definition 1.1.10 /3 0/

Let Ry and R, be two fuzzy relations from X to Y, we may consider:
I. The fuzzy umon of R| and R, denoted Ry U R, :
R, wR, (x,y) = max {Rl(x,y),Rz(x,y)} V{x,y) e XxY

1)

. The fuzzy intersection of Ry and R; denoted Ry R,

Ry Ry(x.y)=min {Rl(x,y)._ Rl(x,y_)} (x.y)e X« Y

(RyUR,)Y ! =RTURY!

Y]

4 (R R, =RTARYY where Ry M(xiy) =R (v.x)

1.2.  Proximity Uniformity And Syntopogenous

structures.

Definition 1.2.1. [38]

A binary relation § on the power set of a set X is called a proxinnity
on X if & satisties the following axioms

P1) ASB implies BSA

1)) (A L B)ﬁ(_‘ f ASC or BaC

P:) ASB implies A #¢. B« ¢

Py} AAB implies that there exists a subset F of X such that APl and
(X-E)B.

Ps) AnB = ¢ implies ASB

The pair (X, 8) is called a proximity space.

Chapter 1. Introduction



Theorm 1.2.2. [38]

It a subset A of a proximity space (X, &) 1s delined to be closed 1T
xOA implies xeA, then the collection of complements of all closed sels so

defined yields a topology.

Definition 1.2.3. [38]

If & and &; are two proximities in a set X, we deline &> 8,10 AS, 13
imphes A8.B. The above is expressed by saying that &, is finer than &, or

My 18 coarser than 8.

Definition 1.2.4. [38]

Let (X, &) and (Y, &) be two proximity spaces A function [X-»Y
1 said to be a proximity continuity iff
Ad B implies {{A) 8, [{[3).
Equivalently, 'ts a proximily continuity iff

C8, Dimplies £ 1(C)s,6 YD)

Definition 1.2.5 [38]

A umformity U oon a set X is a collection of subsets of X .
satisfying the following conditions.

W) Acu, Vuell
m)u.vel=murmvel
W) uell= there exists vell s voveu

U)uellucve XxX=vell

usJuell=u ' el

The pair (X, U) is called a uniform space.

Chapter L. Introduction
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Definition 1.2.6 [38]

Let X be a non-empty set, uc X x X for x € X we deline
ulx] ={y eX/(x,y) €U}, andu[A]={y eX[Ax eA, (x.y) eu}

Definition 1.2.7 [38]

A topogenous order on a set X is a relation on the power set of X

denoted by -, satistying
o<d and X <X
Iy A <B implies AcB
) AcC<DaB implies A <B

) A“B and C-D together imply A 2 C < BoD and A C o B

Definition 1.2.8. [38]

A syntopogenous structure on a set X is a family S ol topogenons

orders on X satisfying :

si) I and -, belong to S, there exists a - in S such that A- I3
whenever A\ B or A=, .

$2) I~ befong to S, there exists a<’in S such that A- B implics the

existence of a C satisfying A < C < 3

Example 1.2.9. [38]

Given a uniform space (X, U), one may define a proximity on X by
ASB il every ueU. one (and hence ally of the (hree foltowing cquivalent
conditions 1s satisfied -

iy UA]JA B #

i) Ay U[B# ¢

Chlapter 1. hddroduction



i) (A xB)r U=

where, UlAT={y e Xlix e A st (x,y) e U},

1.3. Multiple - Valued Logic.

We disply the fuzzy logical and corresponding set-theoretical
notations used in this thesis. Let us denote by [a] the truth value ol 4
proposition ¢ when [a]el. [33-35, 45]

[ [~wo] = 1-]a]

2. [anp]=min (lal[B)

3. [avpl=max ([a].[B])

4 fe = Bl=[ oy Bl=min (1, 1-og+1p)

5. (e B)i=(u o)A (B> )

0. (avB)=-(-an-p), (wAB)=( av B)

7. (X )= 1 X X)[=: ;
[VMI(\()] ilglf/;,[(l(\)] , [Eixa(\()] :Eg[a(*()]

8 [an(x)]:w[ﬂx(-*r a(x))]

where X 15 the universe of discourse
9. [xeA]=Aw)
10. AcB:=(Vx)(x €A - x €B)

I, AEB::(/\CB)/\(BCA)

Lemma 1.3.1. [33]

Let {A; i} be an indexed family of a fuzzy sets in X, then

I I=(ViYiel 5 A, < B;) > (f’\ Ajpcn B,J

qel 1]

2 =(vi)iel - A c Bi)—> (u Ay c Bi)

1] 1¢:1

Chapter I hitroduction



3=(viiel 5 A, = Bi)“*[-”}f\i T B}
ie e

4. l=(vi)iel = A, EBi)—)»[u/\j =

1el 1]

i
o
N

Lemma 1.3.2. [35]

Forany A, B, C e [~
i =(AcB)> ((BC() (A C('))

(A
and [=(A=B) > B=C)—>(A=C))
=(I

[5S]

Lemma 1.3.3. [35]

Forany A, B, C. De ¥

I j=(A < B) > (f(A) = £(B)) and |=(A = B) = ([{A)Y=[(13)
2 Iz((‘cD)—)(['l((_‘)c["[(l)))

and |=(C = D)—)(f’"l((‘) = f’"(r);)

LA B) > ((X-B)e (X-A))

(X-B))

and [=(A=B)> ((X -A)

Il

1.4. Fuzzifying Topological Spaces.

C.L. Chang introduced fuzzy sct theory into topology {12], Wong.
Lowen, Hotton, Pu and Liu, etc. discussed resp. various aspects of fuzzy
topology [12, 17, 39]. In these authors papers the fuzzy 1opology
themselves remain almost as the classical topology for a family of open

sets only some of these sets can be fuzzy.

Chapter L Introduction
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Mingsheng Ying introduce a new approach for fuzzy opology {33-
35] which depend on a many-valued logic. In this a new approach we find
a real {uzzification of topology 1e. a fuzzy sct may assume a partial

openness and closedness.

1.4.a. Fuzzifyving toplogical spaces.

Mingsheng Ying introduced the definition of fuzzilyving opology

[33] as,

Definition 1.4.a. 1.

Let X be a universe of discourse, 1: 2% —> satisly the Tollowing
conditions:
Iot(X)=1

2. VA A, €2 1A, AAL)Z (A AT(AL)

3. V{Ai 3 el} =2, ‘C(U /\jj =mft(A;)

rel 1el
Then 7t is called a fuzzifying topology on X and (X_ 1) is called 2

fuzzifying topological space.

Remark 1.4.a.2

The conditionds in Definition 1.4.a.1 may be rewritten respectively
as follows :
NE=Xex

VA, A,

=(Alet) A (AeT) > A\NAy € T

i) VIAiiel} c2® = (Vilie ] >Ae 1) > (A &1

1l

Chapter 1. Introduction
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Specially,
; . . . \.
If 7:2% > {0, I} then 1 is a classical topology on X|28[af [ -»
1

10, 1} then 1 is a fuzzy topology on X[12}: and if T ™ — 1 then tis

smooth topelogy on X [42].

Example 1.4.a.2.

- - A ,
Let X be a non empty set, Define a mappimg t: 27 - | as .

JI DA E{¢,X}

A l0s - XA b X

Clearly that 7 is a [uzzifying topology but not classical topology.

Definition

If

(X. 1) be a fuzzifying topology space anchX,lhenr'; 2Y 5

which is given as

T{wv)-.
}E CTOSup ()
V=iiny

Is a fuzzifying topology

Definition 1 4.q4.3. [33]

The family of fuzzilying closed sets is denoted by 3, and defined as

follows :

Ael3=A"cq

J(A) = (A7)

Clrapter L. Introdnction



Theorm 1.4.a.4. [33]

et 3 2 o1 where, J(A) — 1(A"). Then 3 satislices the following

conditions :
[ 3(¢) =1
2 Forany A A, €2 3(A A 2 (A ) A(AS)

o

. Forany {AAI g e[} <2, 3(;’_\ /\i) > inf 3(A;)

el 1ol

Remark 1.4.a. 5.

A mapping 3:2° 51 which satisfies (1), (2) and (3) in theorem

(1.4.a.4 )1s called a fuzzifying cotopology on X .

1.4.b. Fuzzifving neighborhood structure of a point.

Here, we build a fuzzifying neighborhood system and we give some

of its properties.

Definition 1.4.b.1./33]

Let (X, tbe a fuzzfying topological space and xe X The

X

neighborhood system of x is denoted by N, and defined as, N.: 2% —> |

where,

Ny (A)= sup t(B)
xeBomA

Lemma 1.4.0.2./33]

Forany A €2% t(A)=inf sup <(B)

X=A weBe A

Chapter L Introduction



Theorm 1.4.5.3. [33]

- X
[Forany x € Xand A € 27,

T{(A)= inl QUpN\(B)
NEA BeA

Definition 1.4.b.3 [33]

A uzzy set A ts called normal, if SUPA(X) = and (INY s the set

xeX

of all normal fuzzy subsets of 2% 1t 2™ s fuzzy normal if there exists
A C'X‘,‘t(/\) =1,
Theorm 1.4.b.4. [33]

The mapping N:X — Z“\N(z‘\), x—> N,.. has the followine

properties:
[.Torany x. A = AeN_  >xeA
2 Forany x, A, B |= N (ANB)2 N (A)AN_ (B)

3 Foranyx, A, B = AcCB= N (A)<SN (B)
4. For any x, A,
= A €Ny = 3C((C eN)A(Ce A AVy(y eC = C e, )
Conversely, if a mapping N satisties (2), (3). then 1 is a fuzzityia
topology which is defined as,

YA)=1nf N_(A).
XEA

Specially, if it satisfies (1), (4} also, then {or any xe X. N 1s the

neighborhood system of x w.r.t. .

Chapter L Introduction



1.4.c. Fundamental concepis.

Here we give the definitions of the derived set, closure, mterior aul
boundary ol a set i a fuzzifymg topological space and we investigale

some of there properties.

Derived set:

Definition 1.4.c. 1. [24]

The fuzzifying derived set A" of A is defined as follows -

A(x) = - LN
() “r'\(/\“,]:x;)::il.( \( ))

Lemma 1.4.¢.2. [33]

Forany xeX, A 2 we have

Al(x) = l—Nx(/\C\‘J{X})

Theorm 1.4.c.3. [33]

Forany A e;?,x . [= A =Tes A A

Proposition 1.4.c.4.

Forany A, Be2*,

. AcBo> A B

r

A(AUB) =ATOUB

I~

]

3. (/\r’\ B) AT B

4. (A eﬁ)/\(/\’cf-\)%/\' e

Chapter L atroduction



2) (AB) (x) = 1--NX((/\1 JBY {x;)

| !
Z

r\B (JF )

\(tS
\(0 =) (B )
< 1— min (N\(/\C ) :x}), NK(B“\ .ﬂ:x}))

~ max (1 N AS )= N (B J:x:))

max {A’(x), B'(x))
(A" BYx)

Then, (A v B)’ < (A7 BY) fa)

In other side
ACAUB,BCAUB=A C(AUB) . B (A B)
S ATUB (ALB) (b
From (a) and (b) we have (A B)J =AW
NAABCSA . ANBEB=(AnB) AL (AcB) B3

=(AB) A B
) AeIosA'c A
S A C A

S ATeld

Closure:

Definition 1.4.¢.5. [33]

Let (X, 1) be afuzzifying topology space.. A < N, the closure A

of A 1s defined as,

Chapter L Inctroduction



Ax)= il (1-3(B))
xeBioA

Lemma 1.4.¢.6. [33]

Forany x, A, A(x)=1- Nx(/\c)

Lemma l.4.¢.7.

FFor any x, A,

D= A=AUA’
2) A(x)= in[ (1-N,(B))
Ar"\B:l‘l !

NFA=ASAET

Proof.

DIf x €A, (AUA)X) =1 ,K(x):IMN\(/\“):-I--—()—*'I
i xgA (A A )(x) = max {()1 I—Nx(/\“t J:.\':)}
= max {()1 I—NX(AC)}
= 1=N (A€
= A(x)
D NGB =1 s N ()
=1-N (A€
= A(x)
NFAeIoA A

Chapter L Introduction
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AN =A
@A:A.

Proposition 1.4.¢.8.

For A. B €2*. we have
1)y &=
2y Ac A

3) /\\)B: A DB

Proof.
1) For xeX, §(x)= inf (1—t($))=0 implies ¢ =4¢
X&) O

Dysince, A=A LUA' DA ACA

3YIt A < B then
K(x):l—Nx(AC)S 1-N(B¢) = Bix).
Now, AcAUB, BcAUB S ACGBCAUR

fn the other hand,
(KL.TB}(X) = ing

xe{ A

. (1-(C))

o

- inf (1 (C,0))

vl A RSOy )

- NERY ’}:;13{(‘1‘-’('3) (I' nhﬂ(‘[((‘I )1 '[((‘3 )))
y il][\ n‘la.‘((],, T((}L - T((_‘z ))

N A CpoC,)

- inf inf max (I (O, | -r((‘z))

NeACO) vehio

= max( inf (1o (), int (1 r((_',)))

RSN aehier
= A(x)v B(x)
Hence, (A_kﬁi%_) < (K UBYX) = AUBe AR
Then, AUB=AURB
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Definition 1.4.¢.9. [33]

Let (X, 1) be a fuzzifying topological space, the intertor ol A e 27 15

delined as:

1‘\”(_X): N_\(/\)

Theorm 1.4.¢.10. [33]

Forany x, A, B « 2%

J=Betr and BcA=>BcA”
Di=A=A"oAer

3) xeA” < (xeA) and (x &(X—A)\)

4) AT =X-(X=A)

Definition 1.4.c.11. [33]

Let (X, 1) be a fuzzifying topologic] space and A < X, the boundary

of Ais given as follows :

DAY (X) = min {l/\'(x)\ l—(X—/\)”(x)}

Theorm 1.4.c.12. [33]

For any A,

1} b(A) :Kr'w(fiﬂ). and. b(AY=DB(X - A)
2) X=b(A)=A" (X -A)

YA =AUbA) and. A)C A< A el

4y A" = /\r"‘\(X—h(A)), and, DAY A=deo A et

Chapter L Introduction



Proposition [.4.c.13.

Let (X, 1) be a luzzilying topology spacejfor any A, B in X,

IVASB=A B
2)(AB) =A" B

N(AUBY oATLB

Proof.

) AcB=N_(A)EN(B) lor all xeX
= AT (X)<B(x) - forall xeX
= A" cB"

DNANBCAANBe B (ANB) <A B

In the other hand.,

(AnB) (x) =N (A B)
2N, (A) AN, (B)
=A"(X)AB"(x)
Z(An r"\BO)(X)

Hence, (A B) 2 A" B’

From (1), (2) we get (A B) =A" B

3) Clearly by (1)

1.4.d._continuous functinos .

Definition 1.4.d. 1. [35]

Let (X,7), (Y. U) be two fuzzilying topological spaces. Aunary

fuzzy predicate C e 3(Y‘\), called [uzzy continunity is given as follows -

C(t):= (Vu)((u eli}— (l‘ Ty e 1'))

- 19 —
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Infuitively, the degree to which f 1s continuous is
[(f‘(f)] = inf mmn (]_ = U(u)+ T(l" l(u))).
Y J

uel

Lemma 1.4.d.2. [35]

Let (X, 1), (Y. U), (7. V) be three Tuzzilyving topological spaces. Tor

any fe Y geZY,
)= C() — ((‘(g) —> (‘(gof))

2) = Clg) = (C() — Clog))

Lemma 1.4.d.3. [35]

Let (X, 1), (Y, U)be two fuzzilying topological spaces, AcX. lor
any fe Y™,
= C(H) > C(F/A)

l.4.e. The cuts and the representation of a fuzzifving

topological space.

Now we study the culs of a fuzzifying topology t 1.et us

denote
Ty = {A sz‘T(A) >(1}

be the strong a - cut of 1

Lemma [.4.e.1.

Let (X, 1) be afuzzifying topological space, then for any w. 1, is

topological spaces. Morever o < as inplies 1, =t
1

[

Chapter L. Initrodiction
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1y Since t(X)=1t(¢)=1 hence T(X)=1(p) = dor any o then
N.per,

2y If A, B et then ©(A) - «, 7(B). o and so, A A TEBY o
Since (A B) 2 t(A) A (B then (A B)>a. and A Bet,

3y Consider {/\Ji el} as a subfamily of 1., so WA, o forany el

Sinee T(\_J Ai) zinf t(A;), then r(u /\5) oL and A e,
il il

1l il
Now, Aet, = tA)>uy = (A)y>u; >Aet,
On the contrary, for the representation Theorm. we would like to
sec that il axioms for a fuzzifying topotogy are effectively satisficd when
we start from  a lamily of topologies associated with every ¢ 1 More

precisely.

Lemma 1.4.¢.2.

[.ct {ru\(_x el} be a family ol topologies on X such  that
oty 2y implies T, <=1, . Letr be the fuzzy set of 2% built by:
T{A)=sup {u:/\ Etu} ]

then 115 a fuzzifving topology.

Proof.

) Since X, ¢ e, then to(X)=1t{d)=1

2) For any A, Be2™, (A v B) = sup {('1 \ AiBer, }
Z sup {u‘i/\ et,.Bet, }

=t Ay~ T(13)

Chapter L Introduction



h y ] i : ’\ a . ¥
3) For a subfanuly {/\1 K el} ol 2% we have,

T(-,‘;;}Ai) |

A ET, ¢
1e1 [

Sup { L

> sup {(x,‘ A et,. forany i el}
=1l sup {('xl A e r(,_}
g

=inf t(A;)

1el

Theorm 1.4.¢.3.

Let © be a fuzzifying topology and let t,, be the o -cut as defined

precedingly. From the families of a topology t, build T by

t(A) = sup {u‘f\ E‘EH}.

Thent-1

Proof.

The proof is trivial from the precedmg results and the well knowa

{act that,

sup {ul Aer, } = sup {a‘r(/\) > (x} = T(A).

Corollary 1.4.¢.4.

T 1% a fuzzifying topology iff for any ael, 1, 1s a classical topology.
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Chapter 11

Fuzzifying Uniform Spaces

A uniformity is an important concept close to topology and a good
tool for an investigation of topology. We must point out that Mingsheny,
Ying [36] was introduced a fuzzifying uniform spaces the framework of
a fuzzifying topology. Here we study the basic conecept ol tuzzilymy

uniforin spaces and we establish some of their fundamental propertics.

2. 1. Fuzzifving uniform spaces

A fuzzifying uniform space 1s defined n {30] as:

Definition 2.1.1.

R - . - ~ . N !
A fuzzifying uniformity on a set X 1s a function UER RN D

X X
2

"where, (1™) is the set of all normal fuzzy subsect of 277 which

satisfies, forany u, v € XX
fu)) Azu— U(u) =0,
fuy) U(u) < U(u™ by,

fus) U(u) < sup U(wv),

voveu

fuy) Ulumv) 2 Uu) A U(v),

fus) uc v — Ulu) <U(WV).

The pair (X, U) 1s said to be a fuzzifying umform spacc.
One may notice that the condition (fu,) can be rewntten as :

Uw=1l->Acuw

Chaprer 1. Fuzzifying Uniform Spaces



Remark 2.1.2.

In a fuzzifying uniform space, we have U(X> X)= L siuce fron

defimtion (2.1.1), there exist u,cXxX st Ulu)=I bt

Uu,) < U(X x X). then U(Xx X)=1.

Remark 2.1.3.

Let (X, U)be a uniform space, this uniform can be identificd with a

{uzzifying uniformity U, U2 X 510 where Utwy=1 i o=l and

UM (uy=0 ifueU.

Definition 2.1.4.

let (X, U) be a fuzzifying uniform space, B2™" % 5 1N and Bc U

Then B, is a base for U if : Vu c2™" " U(u) < sup B (v).

VU

Theorem 2.1.5.

. X X N . ~ PPN . .
Let B27"* 1" Then B is a base for some fuzzifying unifornity

on X iff for any u, ve2X* X,

a) Azu— B(u) =0,

b) B{u)< sup B(v),

¥YCu I

c) B(u) < sup B(v),

Veviul

d) Blu)AB(v)< sup B(w).

WwWenunvy

Chapter |1 Puzzifying Uniform Spaces
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Proof.
First: for any B satisfying a), b), ¢), and d) we set.
U(u) = sup B (v)

Van
and we prove that U is a fuzzilymmg uniformity s [ollow:

N (Azuy=> (Yv){(vau) > AT V)

= B(v)=0
= supB(v)=0
VCu
= U(u)=0.
2) U(u)=supB(v) <sup sup B(w)
veu veu wey |
= sup B({w)

B | 1
WiZh 1l

< sup B(w)zU(u_l).
Wil :

3) U(u) =supB(v) <sup( sup B(w))

Vv<u VOCOU WolWe v

= sup DB(w)

wowIvCcu

[Fat

sup B(w)

WwoilwCu

sup U(w}.

Wolwcu

[~

4y Uy AU{v) < sup B(w) A sup B(w)

wocu W, v

= sup  (B(w)AB(w)))

WO W, Oy

< sup ( sup  B(w,))

WU W OV W W AN

I}

sup B{w,)

W, CwW MWy Cumy

< sup B{w,)=U(uav).

W CUAY

Chapter \I. Fuzzifying Uniform Spaces



"Sinee, u o v

5) U(u) = sup B(w) < sup B(w) = LH(v)

woou WV

Conversely now, we assume that Uisa fuzzifying unilorm space

and B is a base for it, and we prove that B satisfies a), D), ¢). and d) as

follows :
B)yAzu=U(u)=0
= U(u)y=0 and Bc U
= B(u) =10

B,)} B(u) £ U(u})

<U(u™hy
< sup B(v)

vcu :

B;) B(u) < U(u) < sup U(v)

VovCu

< sup sup B(w)

VvevCu wWov

= sup  B(w)

LR S S R U]

< sup B(w).

Wews

B4} B(u) A B(v) < U{u) A U(v)

<U(umv)
= sup B(w)
wouAay
~ Definition 2.1.6.
Let (X, U) be a fuzzifying uniforin space, «: 2% SN and g o

if ¢ is a base for U, then ¢ is called a subbase of U.

where,

Chapter 1. Fuzzifying Uniform Spaces



n l
Suy=u,neNy

N n
o (u)= Sup{ A op(u;)
i=1

Theorm 2.1.7.

If ¢:2%% 51N fulfils the following conditions for any u, ve eR
s)Azu—>¢e(u)=0

$2)} p{u) £ sup @(v)

ViZu :

s} qp(u) = sup (V)

Vevcu

Then ¢ is a subbase of some fuzzifying uniformity on X.

Proof.

We prove only that ¢ satisfies the conditions B|)-B,) as follows.

1

BAcu=Az nuy

1=1
=> Az, 1, €{1.2,....n}
= qplu; )=0, 1, ell2, .. n}

n

= Aop(u)=0
i=1

1=

1
= sup{ A op(u;)
i=1

n -
u=MNu,n eN}z(p”(u)—()
i=1

1n

B,) (pﬁ = sup{ A p(u,)
|

n
MU, =u,n EN}
i=1

n

Ssupy A sup o(v))

n
Mu;=u.neN
i=1

.
v, Ch,

Chapter 1. Fuzzifving Uniform Spaces
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Mi-':

n n
=supd sup A o(f(i))} mu, =u,neN
n Tl =
[eliM, !
where, f e l'[ M, =f:{L2, ... n}—> 2R iS5y, v, eM, and
=1
M, = {VI.VI cu, } 1l N
.
n n n 1 |
”feﬂM then ~ f(1)= N v, < Nuy [m u) =u
1= i=1 i=1 =1 i=1
therefore,
n n » L
| (u)<sup /\(p(v Jlv="v, cu neNJ
=1 j=]

= sup (pF‘(v)

1

VU
_ n
B:) ¢ (u)—‘;up A (p(u yimuy=U, neN
i=1
1} n
<supy A sup  o(vy)|mu;=u. neN
=V v ov, cu, t=1
n ! i
=supy sup A op(f(N))inu;cu,. neN
n l_—] l:]
FelM,
L
. X - X
where, fellM; =f:{l2,... .n}>2"" = v, v;M; and
i=1
{viiviovicui}, i=1Ln
. n n n n n R
If £ elIM; then, nv,omv;c m(v ov;)C m(u ). therefore:
i=1 1=1 i=1 = =1
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n 1 n
vev= /i via v o(up =
i=1 1~1 i=1 [

— n
o (u) < sup{ A (vy)
=1

= sup @ (v}
Vaovou

1

YUy = UL ne N1
1

n l

iMv;=v, neN
[

B,) (p'?(u) A (pr’”w(v) = sup{/\l(p( u;)

n
/\sup{ A p(v))
=1

Ii n L
MV, =v, Mu;=u, neN
1=1 P=] [

= Sup{;{ (b(llj)/\ /I{ ¢'(Vi)
i=I 1=1

n H
< sup{_/\itp(wi) _f\l(wi) cCuMnv, ne N}
1= 1=

(‘t‘\
= sup ¢ '(w)
WUy

Remark 2.1.8.

From Detinition (2.1.4.), clearly every uniform space 1s a base ol it
self. And so, every uniform space satisfies directly the conditions of

. Theorem (2.1.5.), consequently we take the following Theorem.

Theorem 2.1.9.

If Ui is a fuzzifying uniformity on X, for any 1], then v U, is a
e |

subbase of some fuzzifying uniformity on X .

Proof.

For ue2®X

we define (U U;)(u)=sup U, (u) and we prove tha
el

1e el

\ U; verfiy the conditions s,), s,) and s3) as follows:

rel
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S;)) Acu= U, (u)=0 foranyiel

= supU;(u)=0

1€l
:[iLEJI Ui)(u):()

S2) [u Ui)(u) =sup U; (u)

iel iel

<sup sup U;{v)

il ye=u !

= sup (u Ujj(v)

A
veu | CTEl

; . = U,
$3) (;JIUJ(U) fl;? i(u)

<sup sup U, (v)
iel vavcu

= sup (u Uij(v).

voveu tEl

2.2. Fuzzifying uniform topology

Here we bwld a fuzzifying topology from a fuzzifving uniformity

and we give some of its properties.

Lemma 2.2.1.

Let (X, U) be a fuzzifying uniform space, and t: 2~ — I defined by,
Aet: =(Vx)((x eA)— (Fu)(u e A(Ux]cA)), AcX
1e.

T(A)=inf sup U(u), AcX

A A
Then 1 15 a fuzzifying topology on X and called fuzzitying uniform

topology of U.
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Proof.

01) Clearly, for any xe X, X x X [x] = X, since, U(X x X) = 1.
then T (X) = 1 (from definition 1.1.2)

oy) Forany A, A; < X we have,

t(A)AT(Ay)= mf sup Uf{up)~ inf sup  U{uy)
ALY Uiix) A N2EAL U (LA
< mf  ( sup Ufup)a  sup Uu-)
NEAT AL U] C A, U Ix]e AL
= inf sup  (Uu) A Ulu, )
NeA A, Uiix]aa,.
U, [x]c A,
< nf sup U(u;mu,)
NEA NA, u{x|cA,.
us[x]JcA,
< anf sup Uu)

NEALNAL INCA, MA,
because, (upMuy)[x]=u[x] uy[x]to show that,
ye(unuy)x] < (x.y)eu; nu,

S (X, y) eup A (X, y) €u,

<y eux]ay euy[x]
Sy eu[x]nuyx]

0:) For any I, we have,

(ad- o
1€l Xe:‘f’jAl UIXICK-JAL
]

=1if inf sup U(u)
lel xeA, ul X A
[

>mf inf sup  Ufu)

el NeA, uls|z A,

because, u[x]c AjcwA;andso, sup Uu)< sup  {(u).
iel ul x| A, uf x| A
[
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Theorem 2.2.2. [36]

Let (X, U) be fuzzifying uniform space and 1 the {uzzifymng

topology of U. Then for any xe X, A € X,

= (x e A%)Y > (Au)(u e U) A(ulx]c A)).

Theorem 2.2.3 [36]

Let (X, U) be a fuzzifying uniform space and 1 the (uzzifying

topology of U then forany A X, x € X,
= x e A o (Vu) ((uelU)— (x eu[A])),

l1.e.

A = inf (1-Uqu).

xeu[Aj

where A is the closure of A with respect to 1.

2.3. Fuzzy uniform continuity

Definition 2.3.1.

Let (X, U) and (Y, V) be two fuzzifying uniform spaces. A unary
fuzzy predicate C e3(Y™). called fuzzy uniform continuity, is defined as
follows:

C(f):=(Vv)(veV) > (fx N v)elU)). feY"™.

Intuitively, the degree to which f'is continuous is,

[é(f)]z inf\_ min([,l—V(v)+{,l(f><f)ﬁ|(v)))

vel
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Lemma 2.3.2.
Let (X, U), (Y, V)and (Z, W) be three fuzzifying uniform spaces.

forany feY*, gez",
(1) [=C(f) - (C(g) > Cgor)).

(2) [=C(g) > (C(1) -> C(fog)).

Proof.

We only demonstrate (1). It suffices to show that
[C(5)] <{C(g) - C(gof)]

If [C(g)] <[C(gof)]. its abvious,

If [C(g)]>[C(gof)]. then

[Cg) -[C(gof)] = inf min (L1~ W(w)+ V((g=<g) '(w))

wel”

~ mf min (L1 —W(w)+ U(((gof) x (gol)) l(w))

we2’

< sup (V((gxg) ' (w) = U((gof) x (gof)) ' (w))

we2’

= sup (V(gxg) (W)= U(((gx g)o(Fx ) rwi)

wel’

= sup (V(gxg) (W)~ U(Fx /) () ' (w))

we2”

< sup (V(v) = U((f x £) ' (v)))

ve2!

Therefore
[C(g) = C(gof)] = min (1,1~ [C(g)] + C(gof))

> inf\ min (L1 - V({v)+ U((f x f)‘fl(V)))

vel

=[C(£)]
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Proposition 2.3.3.

Let (X, U)and (Y, V)be two fuzzifying uniform spaces, and 7, and
1, be the fuzzifying topologies of U and V, respectively. Forany I e Y
=C(f) = C(f).

where C is fuzzy continuity w. r_t. 7, and 3 (see, Definition 4.d by

Proof.

2Y2Y  ith v[f(x)] < 3. then we prove

For any xef ' (B), if ve
that (f < )" (v)[xj= £ (B)?
Since, y e(fx ) ' (V)[x]= (x, y) e(f x )7 (v)
S(fxNx, y)ev
= ({(x). f{y) ev
= f(y) e v[f(x)].
Since f(y) e v[f(x)|and v[f(x)]= B then f(y)eB and so yef '(B)

Hence, sup U(u)z  sup  U{(fx 0 Yvy. Also we lave,

ulx|cl ' (B) vif(x) B
inf sup Uu)> nf sup  U((f x £y vy
xef (B} y|xjcr '(B) xel (B) v[f(x)|cB

= inf sup  U((f <) '(v))
f(xv)eB vif(x)|<B

>inf  sup U((Fx ) '(v))
yeB viy|cB

[C(H)] = .i‘nﬁ min(l, 1 -7 (B} + 7 (f "B

= ian min(l, I —inf sup V(v)+ inf sup L))
Be2 veB y|v]cB xel '(B) Uiyl t '(By

= mf mm(l 1—inf sup V(v)+inf sup U({(fx f)"l(v)))
Be2® veB viy|cB veB viv|-B
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> inf inf inf min(1, 1- V(v) + U((f x £) '(v)))
Be2Y yeB viy]cB

=[C(H).

2.4.The cuts and the representation of a fuzzifying

uniform space

To study the cuts of a fuzzifying uniformity U, Let us denote
Uy = fu e 2% Uu) > o)

Uq 1s said to be a-cut of a fuzzifying uniformity U.

Definition 2.4.1

If U and V are uniformities (fuzzifying uniformities) on X s.t. U = V

(V u e 2% U) < V(v)) then we say that V is finer than U or that U is

coarser than V.

Lemma 2.4,2

Let (X, U) be a fuzzifying uniform space, then for anyainl, U,1sa

uniformity on X. Moreover,if o > o, then U <cu

[ )

Proof.

u) Ifue Uy, @2 0, then U(u) > e > 0.1ence A — u.
w)Forucvandu e U, since U(u) > a and Uu) < U(v)
thus U(v) > o, then v e U,

w) If u € U g, since Uu) < sup U(v), then sup  U(v) > o thus

VovcCu vovou

2XXX

there exist v e s.t.vovcuand U(v) > o, then v eU,,, vov c u.

—_ 34 .
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w) Hou, v €U, then UWAU(V) > o, since U(u m vy = UlnaU(vy
thusUlumv)>athenunve U,

us) 1fu e U, then U(u) > o, since U{u) < Utu™") so that U(a') > ¢,
then u' e U,. HenceU,isa uniformity on X. The second part is triviai

to verify.

On the contrary, for the representation theorem, we would like to
see that if the axioms for a fuzzifying uniformity are eftectively satistied
when we start from a family of uniformity associated with every « m |

More precisely .

Lemma 2.4.3.

Let [ U\ ael] be a family of uniformity on X such that o, 2> >

nmplies U < U  LetU be a fuzzy set built by .
| L

2
U)y=sup {ciue U, )

Then U 1s a fuzzifying uniformity on X,

Proof.
fuy) If Az u, thenu ¢ U, for any « in I, then Uu)=20
fu)Ifue U, anduc v, thenve U,
smee folue U, ) <lotve U,!, then Uu) < U(v).
fus) Since, sup {chue U, } <sup lavu” e U, !,
then Uqu) < U™,
fuy) Since, sup fclunve U,) > sup faddue U, and, vell,!,

then U(u m v) = U(u)aU(v).
fus) U(u) =sup {avu e U,

Chapter 11, Fuzzifying Uniform Spaces

- 36 -



<sup {a\{ Iv)(vovcu—>ve ll,)

=sup sup {o\ve Uy}

VevcCu

= sup U(v)

YevCu

Theorem 2.4.4.

Let U be a fuzzifying uniformity on X andU .be the strong a-cut as

defined precedingly. From the families of uniformity U on X we build U’
by U'(u)=sup {ohu e U, }
Then U" = U.

Proof.
The proof is tnvial from the preceding results and the well known

fact that, sup {c\ue U, } =sup {a\ Uu)>a } = U(u).

— 37 —.
Chapter 11. Fuzzifving Uniform Spaces



Chapter 111

Fuzzifving Proximity Spaces



Chapter 111

Fuzzifving Proximity Spaces

Recently, a number of authors have expanded a new approach )
luzzification. The classical approach was (0 maintain the classical
mathimatical structures which alow the sets to be fuzzy. FFor instance, the
way Chang [12] defined fuzzy topology is exactly the classic definttion [or
a family of open sets, only the fact that some of these sets can be (uzy
makes the difference. In the new approach we reformulate the defining
axioms themselves i terms of multiple valued logic. In this casc the
correspondimg axioms become systems ol inequalities. The basic idea is 1o
see an axiom like P — ( as defining a constraint between the truth vatues
p. q (of P, Q respectively). Here we take q > p. See for example Badard
(11] and Ramadan {42]. Under the title " A new approach for fuzzy
topology *, Mingsheng Ying introduced three papers |33-33] about the
concept of fuzzifying topology, Also in [36] he introduced the concept of
fuzzilying uniform spaces. In this chapter we introduce (he concept of
fuzzifying proximity spaces and we make some links betwoen fuzzilyms
proximity spaces and fuzzifying topological spaces on the one hand and

fuzzitying uniform spaces on the other hand.

3.1. Fuzzifying proximity spaces
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Definition 3.1. 1.

A fuzzfying proxumty on a set X is a function & < 1-?\‘ ™ which
satislies.

[p1) o (A, BY=3(B, A)

P d(AUB, C)=8(A, O)vS (B, O)

fp2) 6 (¢, X) =0

fps) Forany A, B € 2% there exist £ < X S 1.

S(AB)23(AE)vd(X-LE B)

36 (A, B)2 (AN B)(x)forany x € X

The pair (X, 8) is called a fuzzifying proximity space and the
number § (A, B) can be interpreted as the degree of nearness ol (he sets A

and B.

Remark 3.1.2.

Let (X, ) be a proximity space. This proximily can be identificd
with a fuzzitying 8" where 8™ 2% 2% 5 [ a-

8" (A, B) = L if (A, B) €8; 8" (A, B) = 0 if(A, B) ¢0.

Remark 3.1.3.

Let (X, 8) be a fuzzifying proximity space, then.
WDAcCC,BcD implies § (A, B) <§(C. D)
D)8 (X, X)=1.
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Definition 3.1.4.

Let (X, 87 and (Y, &) be two fuzzifymyg proximity spaces, A unary

fuzzy predicate Ce 3 (YY), called luzzifying proximity contmuity is
defined as the following two equivalent conditions:

D) C ()= (y A BY (A, B) € 8> ((A), f(B)) € 5,)
2) C (B = (yC, B (FUC)L (D) €5, > (C.D) £ 5,)

Intutively, the degree to which f 1s continuous is

[E (D] = inf _min (1, [-5; (A, B)+ &, (I{A), (B)))
ABez®

= inf _min (1, 1-8(F'(C), YD+ §,(C, D).
C.De2’ =

Theorem 3.1.5.

let (X, 8)), (Y. &) and (Z, 8;) be three fuzzifying proximity spaces.
For any fe Yy g EZY,
() [=C () = (C(g) > C(goh)

(2)-C (2) > (C(f) > C(fog)).

Proof.
We only demonstrate (1). It suffices to show that
[C (D) < [Ce) > Cgo].
It [E‘(g)] < [E‘(goﬂ], its obvious.
It [E(g)] = [E(gof)], then

[C(e)] - [C(goD] = inf  min (1, 1- 8, (g7 (C), g'(D)) +8:(C.1))-
C.Der”

- inf o omin (1, 1- 8((gofy (C)(goly (DY) 1 8 C.DN.
C.De2”
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< sup (SO (DY -8 (2 (e )

C.Der’

< sup (O (F(A), I(B))- 5:(A.B))
A Be2?

Theretore.

[C @) = C(goh] = min (I, l—[(‘%(g)] [ Cleoh])

> ing Ymin(lﬂ]-&(l"(/\), (B SaA, B))

A el

— [ ().

Definition 3.1.6.

Let (X, 0)be a fuzzifying proximity space, Y be a subsct of X. For

A, B e 2V we define, 8y (A, B) = (A, B).
It is casily verified that Sy is a fuzzifying proximity on Y. We call &,

the subspase proximity.

Lemma 3.1.7.

Let (X, 8)), (Y. 82) be two fuzzilying proximity spaces. A — X_ (ur
any f e Y™,

= c(f) — c(f/A).

Proof.

[c(t/A)] = inf  min (I, 1-8,A(M, N) + 8:(F/A(M), (FFA(N)))
M.Ne2*

ml min (1, 1-8, (M, N + 3,(fiM). fiN})
M Ne2t

= anf o (1, 1-8;(M, N) 1+ 8,(fiM)., fINY)
M Ne2®

= [e(D]
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3.2. The cuts and the representation_of fuzzifying

proximity spaces

Now we study the cuts of a {uzzitying proximity 8. Let us denote
8o = [(A, B) € 2Xx2™M §(A, B) > o]

d..1s said to be strong a-cut of fuzzitying proximity o.

Definition 3.2. 1.

If &and &; are proximities (Fuzzifying proximities) on X such that
81 D 8 (VA, B € 2%x2% §,(A, B) €6, (A, B)), then we say that &, is finer

than &, or 8, 1s coarser than 8.

Lemma 3.2.2,

Let (X, 9) be a fuzzifving proximity space, then for any cc in 1. §,, 15

a proximity on X, Moreover, if ¢« > a0, then O, SOy, .

Proof.
P (A, B) e, = dA B)>a
< 0B, A) >«
< (B, A)ed,, .
D) (AUB, C) €d, < 3(AUB, C) > «a
S §(A, C)v B, C)>a
< O0A, Cy> aord(B,C)>
< (A, C)ed, or (B, C) €d,.
p2) Sie 8(d, X) =0 then (¢, X) ¢ &, forany o in 1.
P(A.B)e s, = 3(A, B)y<a
=> ther exist E ¢ X s.t. (A, E) v §(X-I:, B) < «
Chapter ). Fuzzifying Proximity Spaces
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= ther exist ECXs.t. S(A. E)< o and 3(X-I:. By = ¢
= ther exist EcX s.t. (A, E) ¢ 3, and (X-I5, B) & 3,
ps) ANB = ¢ =(ANB) (x) # ¢ for some x
= 0A,B)=1
= oA, B)>a forany o
= (A, B) € §,.

Henc o, is a proximity on X. The second part is trivial to venty.

On the contrary, for the representation theorem, we would like to
see that 1if the axioms for a fuzzifying proximity are clfectrvely satished
when we start from a family of proximity associated with cvery

o in 1.
lore precisely.

Lemma 3.2.3.

Let {6,\ oel} be a family of proximity on X such that o, = o,

imples Oy, 8, . Let & be a fuzzy set built by.

(A, By =sup {a\ (A, B) e §, !

LA}

Then 3 is a fuzzifying proximity on X .

Proof.
[p1) (A, B) =sup {a\ (A, B} e Oy )
ssup ot (B, A) e §,, !
= 0(B, A).
Shmilarly, §(B, A) < 0(A.B). Then 8(A, B) = 3(B, A).
fp2) 5(AUB, C) = sup{at (AUB, C) € §,
Chapter \W. Fuzzifving Proximity Spaces

13-



=sup o\ (A, C) € 8, 0r (B, C) € &,
=sup {a\ (A, C) € §,) v {a\ (B, C) € d,,)
=d(A, C) v &(B, C)

fpa) Since (¢, X) 8, Vael then d(¢, X)=10.

fpy) For any A, B 2% there exist E = X s.t.

(A, E) v 8(X-E. B) = sup {a\ (A, E)ed, ! v supi{p (X-I5, B) ST
=sup Y\ (A, B)ed, or(X-E, B) €6,, v = o v [}
<sup {Y\(A,B) € &}
= d(A, B).

fps) IFA N B = ¢, then (AnB)(x) < §(A, B),

If A B¢ implies (A, B) €5, Vael then A, B)=1.

Therefore, (A, B)= (AN B)(x) V x € X.

Theorem 3.2.4.

Let & be a fuzzifying proximity on X and 8, be the o-cul as defined
precedimgly. From the families of proximity 8, on X we build §° by
8°(A, B) =sup [\ (A, B) 8,
Thend =3 .

Proof.

The proof is trivial from the preceding results and the well known

fact that, sup {a\ (A, B) €0,) =sup la\ §(A, B) > ol =3 (A 3)
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3.3. Fuzzifving topology induced by a fuzzifying

proximity

Remark 3.3.1,

A fuzzifying cotopology on X is a map 3 2% 5 1 where
JI(A)=1(A") which satisties

a) 3(¢) =1,

b) For any A, A, €2%, J(A|1U Ay) = I(A) A3(A);

¢) Forany [ A;\iel}, 3( _ml A2 jnlf J(A)).
ie e

Theorem 3.3.3.

Let 8 be a fuzzifying proximity on X and 3: 2% — 1 defined by
A e3=(Vx)((Ix},A)ed > x eA)

JA) = inf (1-8({x], AY)
xe.\c

then 3 1s a fuzzifying cotopology on X.

Proof.
a) Sinc 8({x}, ¢) = 0 then J(p) = 1
b) For any A, A, 2%,
J(AUB) = nl (I-0(1x}, AuB))

N e )

= nt (- 8({x}, A) ACL-8({x}, B)

L [
Noe ey [

>infinf ((1- 8(!Ix). A A(1-8({x], B)))

ve ¥ xelt

Chapter M1 Fuzzifving Proximity Spaces



= inf ((1-3({x}, A) A infr(l-ﬁ({x}, B))

NEAS v eld
— 3(A) A I(B)

¢) Forany [A el ), (A= il (1-3(Ix). A )

iel V(:(r"\/\l)‘ el
[

> anf o (1-8({x}, A))

xecr Al
[
:in[f inf_ (1-8({x}. A)
re Noelh

= inf J(A)

Since. " A; < A; implies o {x}, _r'\l A < BIxY, A) Viel

iel

Corllarly 3.3.4.

A map 1 2% — 1 which defined by,

(A) = inf (I1-8({x}, A%))

N e

is a fuzzifying topology on X.

Proof.

Clearly byTheorem(2.1) and De'Morgans Lows

Theorem 3.3. 5.

Let (X, &), (Y, &) be two fuzzifying proximity spaces and ;. ©: be

(he fuzzifying topology of &, 8, respectively. Then for any fe Y™ we get,

= (1) = C(f)

where C is fuzzy continuity w. r. t. 1y, 7a.
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Proof.
Since T(A) = nf (1-0({x}. A%))

xeh

and inf (1-8,(F'(y), FAM = jnr (1-81(F (), £HA))
el '(A) veEA

[C(D] = ing, min (1, -1 A} + 17 (A))

Ae2

= inf min (!, - jnf (1-8x(y, A° )
oty i

+ inf (1= 8(T'(y), (A
xe["(A)

> inf min (1, 1- jpf (1-8:(y, AY))

Ae2’ v eA
+ inf (1- ST (y), £ (A%))
veA

= nf  min (F<8x(y, A°) - 8,(F(v), I'(AY)))

}'_AGZ\'

= [C(R]

3.4. Some propertias on a fuzzifying proximity spaces

Now we explain, how to get a fuzzifying proximity if a fuzzilyine

uniformity on a set X, is given.

Theorem 3.4. 1.

Let (X, U) be a fuzzifying uniform space. Let 8;;. 252" 5 [ be

defined by

ou(A.B)=int  (1-Uu).
llIAlﬁB:(IJ

Then, &, is a fuzzifying proximity on X.
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Proof.
fp) 8y(A,B)= inf (1-U(W))

u[A]~B = §
= i (1-0@)
u'[BlnA=¢
=5y (B, A)
fpz) Su(AUB, C) = inf  (1-0(w)

ufAuB]|nC=1¢

= inf (1- u(u))

(u[Al v uB)nC =

= inf (1- u(u))

u[A]nC=¢, BN C=14¢

inf  (1-u@)v  jnf (1-v(u))

ufA]~C = ¢ ulBjnC=4¢
= 6(_] (A, C)V 8U (B, C)
On the othar hand we prove Sy(AUB, C) <3y (A, C)v 8y (B, O),
ie. inf (1-0@)S  jof (I-v@)v  jaf (1-0(W)

v

aAUB]nAC=1¢ wWA]nC=1¢ uB|~C=4¢
1.e. sup uu)> sup U@U)A  sup  U(u).
a[AuB]|nC=1¢ u[A]nC =¢ u[Bjn C=4¢
We assume that sup U(wa  sup U(u) =t then  sup u(u) >t
uA]~C=¢ u[B]~C=¢ ulA]C = ¢
and sup uU(u) 2 t, hence there exist uj, i€ U s.t. G[A]NC = ¢,
uw[B]AC=4¢

u3[B]n C = ¢, and u(u) = t, u(up) > t. Taking uz =u; My,
since U(u3) 2 U(uy) A U(uy) > t and us[ALUBd N C=¢,
then sup u(u) > t, therefore dy(AUB, C) <3y (A, C)v dy (B, ).
aAUB]AC=$
fp;) Since u[$] N X = ¢, Vu €v and u(XxX) = 1, then 8y (¢, X )=0.
fpa)du(A, B8y (X-E, B)=  inr  (1-U(W)v inf  (1- o(w)=
u[A]NE = ¢ X -EjnB =

inf (1- uu))

u[AlNE=9¢, u[X-E]|nB=4¢

< inf  (1-u(u)

u[A]~B =§
=6y (A, B).
fps)If ANB = ¢, then (ANB)(x)<y(A, B).
If AnB # ¢, then u[A]NB = ¢,
since Sy(A, B) = jnf [(ueu = ~(u[A]"B = ¢)]

= inf min (1, 1- u() + [-([A}INB = )}
then (ANB) (x)= 8y(A, B). Therefor (ANB) (x) < 8y (A, B), for any xe X.



Theorem 3.4.2.

Let U be a fuzzifying proximity on X. Then U and & induce the

same fuzzifying topology.

Proof.

Let tybe afuzzitying topology iduced by U and 5\, be a luzzifvine
topology iduced by &(;. From Lemma 3.1in [36] we have
Tsu= nf (1-80(fx}, AY))

XNEA
= inf (- jnf (1-Uw))
XeA ulxjc A

inf sup Uw) = 1ty (A).

XEA yx|c A

Theorem 3.4.3.

Let U be a fuzzifying uniformity on X, &, be a tuzzifying proximity

induced by U and t5,; be a fuzzifymg topology of §,).
Then forany x € X, A X,
)= (xe A?) > (({x}, A%) 281).

A"(x) = 1- 8 (Ix}, AY
D) F{xe A) = ((Ix),A) €8y)).

A (X) =3, ({x}, A)
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Proof.

1) From Definition 2.1 in [34] andTheorem 3.3 in [36] we have

Sy (6, A= inf (1-U(w)
uX|nA'=¢

=1- sup  U(w
ulx]n A =¢

=1- sup U(u)
u[x]=A

= 1-A (),
then A°(x) = 1- &y ({x}, A).
2) From Theorem 2.2. in [34] we have
A =1-(X-AY®
= 1-(1-8y ({x}, A))
= ou ({x}, A).

- 50 —
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Chapter IV

Fuzzifying Syntopogenous Structures

Since several papers are conmon to fuzzy topology. fuzzy
proximity and fuzzy uniformity, one would expect, (o existence ol general
structures which include these three concepts. Katsaras gave (or the first
time m [24] the concept of a fuzzy syntopogenous structure and he showced!
that, the fuzzy topology, the fuzzy proximity and the fuzzy uniformity.
are special cases of fuzzy syntopogenous structures. Also in [26] he
mtroduced a new definition of a fuzzy syntopogenous structure in the
embedding of the structure in a multiple valued logic, and he showed that
there 'is a one- to- one correspondence between the Artico- Moresco fuzzy
proximities  [4] and the symmetrical luzzy topogenous stiuctures.
Mingsheng Ying introduced three papers [33-35] about the concept of
fuzzitying topology. Also in [36] he mtroduced the concept ol fuzzifyme
uniform spaces. We introduced in chapter three the concept of fuzzilvine
proximity spaces. In this chapter we introduce the concept of fuzzilving
syntopogenous  structures and some fundamental properties  are
established. We give a natural links between fuzzifying syntopogenous
structures,  fuzzifying topology, fuzzifymg proximity and luzzifyig

uiformity.

4. 1. Fuzzifying syntopogenous structures

Definition 4.1.1.

A fuzzifyimg topogenous order on a set X is a function

n: 2% x 2% 5,
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which satisfies:
D, ¢)=n X, X)=1,
HINABY{I-Ax)HVvB(x) forall x e X,
NAcC,DcB implies n(C, D)<y (A, B),
HNAUB, C)=n (A, C)An(B, C),

NA, BNCY = (A, B)An (A, O)

Definition 4.1.2.

If n, and n, are topogenous orders (fuzzifying lopogenous orders)
on X such that 1, < n(V A, Be2X x2% Ni{A, B) <y (AL B)). then we
say that 1, 1s finer than 1, or 1, is coarser than n.

We omit the proof of the following easily established Lemmas.

Lemma 4.1.3.

Let n be a fuzzifying topogenous order on X and let i be defined

by n“(A.B ) =n(B*, A%). Then , n" s a tuzzifying topogenous order on X,

Lemma 4.1.4.

Let n be a fuzzifying topogenous order on X, A o X
and x € X. Then:

DX, ¢) = 0: (9, A)and n(A, X) = 1.

20(x,X)=1:n(x, )= 0 and n(g, X)=1,

X, x) =0 n(d, x) = 1.

Definition 4.1.5.

A fuzzifying topogenous order 1 on X is called:
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I) Perfect it n( A, B) = inf (A, B)
| I
2) Biperfect if it 1s perfect and n(A, - B;)=inf n(A. B;)

3} Symmetrical if 4= n"*

Lemma 4. 1.6.

N is biperfect iff both n and n° are perfect.

Proof.

Cleary, from Lemma (4.1.4). Definition (4.1.5) and De” Morgan’s

Lows.

Definition 4.1.7.

If mi, na2are fuzzifying topogenous orderson X,

then n = 1,0 n; defined by

N(A, B) = sup(n,(A, Cyan(C. B))
CeX

Lemma 4. 1.8.

let 4, 11, be fuzzifying topogenous orders on X and let
n= 1,012 Then:
I) 1 1s a fuzzifying topogenous order on X,

) If v, is a fuzzifying topogenous order with n, > 1, . 1>

then n, >
HOn® =nfons

| Proof.
) 1) Clearly.

Chapter 1V, Fuzzifying Symtopogenous Structures
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2) To prove n(A, B) < (1- A(x))v B(x) for all xe X we prove only
N(A, B) = 0, if xeA, xeB. Since either xeC or xeC then we have (wo
cases, first x €C, x¢B. But n, (C, B) < (1-C(x)} v B(x). so0 1 (C.B) - O,
then n(A, B) = 0. On the other hand xeC. xe A. Since.
N2 (A, O (- Ax))IC(x) hence 1, (A, C) = 0, then (A, By = 0,

3) Let AjcA, BB, Since ny(A, Oyl ALL O

ni(C, B)<n (C, By) thus,
NAA, CHA N (C, B 2 (AL O)a 1 (C, By), and

sup N2 (A, C)a ny (C, B)< sup ( 112 Ay, Oy (C. By
CcX CaX

Then n(A, BY< n(A,. B)).

DA UB, C)=sup(n,(AUB, D)an(D. )
DcX

< sup (n2(A, D)yAn(B, DY) an,(D. )
DX

= sup (ny(A. D)An(D. 0))
DcX

A Sup (r]z(B, D) A (D, (‘))
DcX

=Nn(A, C)an(B, )

Similarly n(A, B~ C)=n(A. B)yAn(A. O)

II) Let A, Be2* We need to show that

Mo (AL B) 2 n(A, B). If n(A. B)=0, there is nothing 1 prove.
Suppose that n{A, B)> 0 and let t (0,11, (A, B)>t. There exists C =X
such that |, (A, Q) AN (C, B) 2t implies 1 (A, C) = t and N, Byt
But ny(A, O)x( I-A(X)V(C(x))=T-(A(x)A( [-Cx)MN=1-(ANC)(x) Tor all
xeX . Then [-(ANC® ) (x) =2t for all xe X, te(0.1]. Take € 1. then
(ANC*) (x)=0, For all xe X, then AcC, Since No (A, B) 2 ny(C, By .
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Mo = 1Ny, then Ny(A, B)2t. Now, we have n(A, B) 2 t mmplies 1A, B) 2 t.
Then 1, (A, B) 2 (A, B).
D) n* (A, B) = n(B*, A

= sup(nz(Bc. C)An(C, AC))

CcX

= sup(nS(CC, B) A (A, CC))
CcX

= sup(ng(D, B) A nS(A., D))
DX

=nzonj(A, B)

and so n° =n$ony

Definition 4.1.9.

A tuzzilying syntopogenous structure on a non- empty set X is a
non- empty family S of fuzzifying topogenous orders on X satistying the

following axioms.

I'Sy) S is directed in the sense that given 1, n; € S there exists e

withn 2, m

FS,) Given neS and e > 0 there exists 1 €S with n on ez .

Difinition 4.1.10.

If a fuzaifying syntopogenous structure S on X consists of a single

fuzzifying topogenous order, then S is called a fuzzifying topogenous,

(X, S) a fuzzifying topogenous space.

Lemma 4.1.11.

It'S = {n}is a fuzzifying topogenous structure on X, then N= No .
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Proof.

Cleary from Defmition (4.1.7) and (by (1I) of Lemma (4.1 M).

Definition 4.1.12.

A luzzifying  syntopogenous  structure S is called perfect (resp.

Biperfect, resp. Symmetrical), if every member of S is perfect (resp.

Biperfect, resp. Symmetrical).

Lemma. 4.1.13.

Let § be a fuzzifying syntopogenous structure on X and detine ng by
Ns(A, B) = sup{n(A, B) | ) €S},

Then, S’ = {ng} is a fuzzifying topogenous structure on X

Proof.
1) Clearly s (¢, ¢) = ng (X, X) = |
2) To prove ns (A, B) < (1-A(x)) v B(x) for all xe X we prove only
N (A, BY = 0, if xeA, x ¢ B. Since A, B) < (1-A(x)) v B(x), for all
xe X, hence n(A, B) = 0 iu this case forall n e S. Then Ns (A BYy 0,
and 50 Ns (A, B) < I-A(x)) v B(x) for all xe X
H A cC De B, then n(C,D)< A, B) for all neS. Since
supin(C. D), neS)< supin(A, B), neS!, then Ns(C, D)< ng (A, B).
4) s (AUB, C) = supi n(AUB, C)\ nes!
= supy (A, C) A (B, Oy nes)
“{sup{ (A, C)\ nesS!) A (supi n (B, C)\nesly
“Ns A, C) A ng (B, C)
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4.2. The cuts and the representation of a fuizifving

topogenous order.

Now we study the cuts of a fuzzifving topogenous order i et us
denote.
_ : SR R A Y > !
Ne= LA, B)e 27< 27V (AL B)Y 2 o)

N said to be weak o-cut of a fuzzitying topogenous order

Lemma 4.2.1.

Let 1 be a fuzzitying topogenous order on X then for any o in'l oy,

Is a topogenous order on X Moreover, if ¢, > o then N, €N

Proof.

Iy Smee n(d. d)=n(X. X)=12 . then(d. ¢). (N, X)ycu,

o

2 (A B)en=1nA.BY>a forall o« &1
=(1-A(xhH v B(x)z a forall cc e 1 (orail x & X
=1- (A A -BO) 2o, forall g e L forall x e X
take = 1, then [~( (xeA)A (X ¢ Bhl = lforallx e X
= |xeA-> xe B] = 1, forall x e X
= Ac i
3) Let AcC, De B and (A, BB) € n,implies, n(A. B) = o, henee.
a =N (A, B) < (A, B)). then (A, Bpen,.
HIAUB. C) e nues WAUB. C) 2
S NA O AnB. Oy 2w
< NAC)za, (B, Oz
<> (A C) e N (AL Oy e,
Similary (A, BnC)e 1, <> (A, B) e N (A C)ye
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Flence 1, 15 a topogenous order on X.

On the other hand, take (A, B)e Mo, - SO (A BYy= ap, but g = -

hence (A, B) 2 oo, then (A, B) € na.

On the contrary, for the representation theorem. we would like to
see that 1l the axioms for a [uzzifying topogenuous order are effectively
satislied when we start from a family of topogenous orders associated with

every o in I .More precisely.

Lemma 4.2.2,

Let {n,\ o eI} be a family of topogenous orders on X s oy =
mmplies N, < ny,, - Let i be a fuzzy relation built by
N(A, B) = sup{ad (A, B)e 1y,

Then 1 1s a fuzzitying topogenous order on X

Proof.
Iy Snee (b, )X, X)yen,, then n(¢. ¢y =m(X, N)=1
N(AB) = sup La] (A, B)e o)
= sup jof AcB)
“ [AcB]
=(1- A(x)) v B(x). for all x eX.
3y For Ac C, Dc B, NC. D) suplal (C. D)e N !
= supial (A, Bie i,
‘(A B)
HNAUB, C) = sup{a] (AUB. e )
=suprof (A, O)e (B, C)e 1,

=suptol (A, Qe n b asuplul (B, O)e Vol
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= NA, O (B, C).
Simtlary n(A, B C) - (A, By A n(AL O).

Theorem 4.2.3.

Let n be a fuzzdying topogenous order on X and 1, be the weak s-cut as
defmmed precedingly. From the families ol topogenous 1., on X we butli

n by

l]k (A, B) =suplal (A, BYen,).
Thenn =1

Proof.

The proof s trivial  from the preceding results and the well known
fact that .

suptal (AL B)e n,} = suplof n(A, B).> )= (A, B).

4.3. _Some properties of fuzzifying syntopooeenous

structures.

I this section, we cxplain the natural links between fuzzitving
syntopogenous structures, fuzzilying topology, fuzzifying proximity and

fuzzifying uniformity.

Theorem 4.3.1.

Let m be a fuzzifying topogenous order on X and 1:”;3‘\ — ldelmed
by:

(AeTt)) (Vx)(xe A= (x. A) e n)
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T AA)=ml y(x, A).
L NoA

Then, 1, 1s a fuzzifymg topolgy on X,

Proof.
) Smee n(X, X) - 1, then nix, X)zn (X, X)thus nix. Xy 1.
Then 7, (X} - I

Dt AnB)= inf nix. A B)
NeACH

= mf (n{x, Ayan(x. B3)
N

=inf n(x, A)/\ini{'u(x, B}
N w0

=T, (A)n T, (B}

3) Smee n(x. A En(x. A;). then,
el

Ty Ay = mf (s v A
el NeEws A re |

sinfimfnlx, A )

|
[

=inf T, (A).
[
Now, let & be a fuzzifying proximity on X. Deline n by

N (A, By=1-8(A, B Itis easy to see that 1) 1s a symmetrical fuzzilvine
topogenous order on X and that §; - (N Is o a fuzzitving topogenous

structure with T,

o

=Ts. IS = {0} is a symmetrical fuzzilyig topogenous
structure on X, then the function.

§: 2% % 2% 51 B(ALB) - 1-m (AL B9,

1s fuzzilying proximity on X with S = S,.. Thus we have.
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Theorem 4.3.2

The mapping & — Sq, from the set of all fuzzilyimg proximities on X 1o (he

set of all symmetrical fuzzifyig topogenous structures on X. 1s one-(o-one

and onto. Moreover To ~ Ts

4]

Theorem 4.3.3

Let U be a tuzzitying uniformity on X Diline 1, by

nu(A. By=" sup  U{uw)
oA B )

Then 1y 1s a biperfect fuzzifying topogenous order on X. Morcover

Ty = Tu=Ts

Proof.

1) Take u = X x X. smce ¢ — ul¢p] and U(X x X) I
then (¢, ) =1

similarly u = X x X, X = u[X]: U(X x X) = I implies n(X x X) - |

2) To prove n(A. B) < (- A (x)vB (x) for all xe X we prove only
(A, B) = 0, if xeA, x ¢ B. Since xeA implies xeufA]. But xe B3 then
u[A]NB* = ¢ for all ueU and so n(A, B) = 0.

3 H A < C, D < B, Since WAl < ufCl, B = I | (hen
u[A]"B*cu[C]nD* then,

WC, DYy =" sup U
ufCleaD® =

= osup Uu)

ulag oo

= n(A, B)

HnAUB, O)y= sup U{u)
l]'./\\.JBIr‘\(”. —II]
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sup Utu)

ula R T Y B

sup Ulu) A~ sup LH{u)
Al e ae oy

(A, B)Aan(B, O)

Similary, n(A, BCy=n(A. Byan(A. C)
Now we proof T, = Ty == Ts.

TI‘[ (A) = .nf N (xa A)
A

-1
Xt

inf  sup U
XEA U[xAY <)

= inf sup U(w
xeA gl x)cA

= Tu(A).

And from Theorem 4.3.2 we have T, = Ts.

Finally, let A =\ A, then u[A] = U u[A;] and so

1€l el

N (A, By = sup Ut
__,"u[/\-]]r'ﬁl"f =i
jeb

= int ¢ sup  Utu))
i€l ufAJB =6

= A Nu (/\_i, B)
=

In an analogous way we show that

(A, q BY = A nu (A, By,
e 1=l

and so 115 1s a biperfect {uzzifying topogenous order on X.
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Theorem 4.3.4

Let N, be fuzzifying neighborhood system ol x € X. Then

N{A, B) = inf ((1-A(x)) v N (B))
xeX

is a fuzzifying topogenous order on X,

Moreover, N(A) = n{x, A)and ©y = 1.

Proof.

D1 8)= inf X0 v N(A) = |

N(X, X)= inf (1= X(x)) v N (X) = 1.
xeX

2)n (A, B) = iné(' ((1-A{x)) v No(BY)

< (1-A(x)) v B(x)
N AcC, D cBinmples

N(C.D) = inf (1-C(x)) v Ny (DY)
xeX

A

in;; ({(1-Afx)) v N (B))

=n (A, B).
DN (AUB.C) = inf (1-(AUB)X)) v N (C)).

xeX

= in!{' (((1- ACXHACT-B(x)) v Ny ().

= inf (1= A(x)) v Ny ( V\m[ﬂlB X)) v N (O
XeEX

= (A, C)yAn (B, O).

Now, 1 (x, N} = mi{( (1-x(x)) v Ny (A)) = N (A).
X&)

Chapter 1. Fuzzifying Syntopogenons Structearey
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Finally, ©, (A) = inf n(x, &)
oA

= nl NO(A)
NEA

= TN (A)

Corallary 4.3.5.

The fuzzifying topogenous order 1) can be constructed from the cuts
U, > 0, of the fuzzifying uniformity by use of the equality.

N (A, B) = sup (e (A B) A ),

L =0

where 11, (A, B)1s defined from U, by:

(A, B)enu - = (3u) (uel, Au[A]NB" = 0).

- Proof.

N (A, B) = sup {Ulu) : ufA]nB" = ¢

u

= sup tsup (U D u[AJNB" = diac Ulu) 2a)

o0

= sup tsup juel, u[A]NB" = ¢} Aa)
o0}

ToSup Mk (A, B) Aag
o0

Corllary 4.3.6

To every o we can associate with U, a topogenous order 0, by
taking,

N (AL B) i =(3u) (uelU Au[A]B" = ¢), and
N{A, BY=sup o >0 /A, B}
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4.4. Fuzzifving topogenous continuity

Definition 4.4.1.

Let 1y . 12 be two fuzzilying tepogenous orders. A unary fuzzy
predicate ¢* e 3(YX) . called fuzzy topogenous continuty is defined as,
CT(Fy= (V. D)(((‘, D) en, %(t"i((‘), [ "([))) eql)
Intuitively the degree 1o which fis contmuous 1s,

[C’"(f)]: inf _min{L 1y (C D)+ (') 1 D))
¢.b.e2’ :

Lemma 4.4.2.

Let &), 8: be two fuzzifymg proxmutiy on XY respectively. then

for any fe Y™ we get
= M () > C(1)

Where Cis fuzzy continuity wr.t, N, -Nes. Tespectively.

Proof.

Since n(A, By = [-8(A, B%). then

[(‘*(f)]z inf _min(l, F—1,(C, D)Jrn](ffl((‘)_ l"l(i))))
C.De2’

= inf. min(l, 1-5,(f () £ (D)) 15 (¢, D))

[

oo
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Lemma 4.4.3.

Let 11, 2 and 113 be three fuzzifying topogenous orders on X, Y and
" : : X /.
7 respectively. For any fe Y™ and geY

1y - ('*(f‘)a((‘*(g)%('*(gof'))

2) | Cr o (T o).

Proof.

We only demonstrate (1}, 1t suffices to show that,
[(‘*(f)] < [(‘*(g) N (‘*(gor)]_
If [(‘*(g)- < [(‘*(g,of')], its obvious.

[f [("*(g)- > [C*(gnf)], then

[ ()] -[c" eon)]

= inf min(l,l+nz(g_]((’),g_l(D))—r]_«,((_‘,l)))

C.De2”

- inf/min(], 1+ my((20H) (). (gof) (D)) D))
C.De2”

<(‘_’5;22/‘('1z(g_'((“). e (D))= my((eory '(C). (gor) (1))

< sw (112(/-\, By~ ny(f A, S 'l(B)))

therefore,

[(‘*(g)—(‘*(gof)]:min(!. l~[(‘*(g)]+[(‘*(gof)])
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> nf min(L =15 (A, B)+1]1([' l(,f\), [ l{li)))
A Be2!

ea

Hence ('*(g)a(‘*(gnf‘)]z[(
L

*

i)

Lemma 4.4.4.

Let vy, m2 be two fuzzifying topogenous orders on X_ Y respectively
and 1, . Tt be the fuzzifyng topologies of 1), 1, respectively. Then. for
any fe Y* we get

= CT(f) = C(f)

where C 1s fuzzy continuity w r.t. Ty~ T
Proof.

We prove that [(_’*(f)] <[Cen]

Smce T, (A)= 1l n(x. A)
NeA

and  inf n,(x, t‘_l(A))z inf m(x, f"'(x\)), then
A) A

xef 'y Ve

[(_’"(f)]— inf min(L ]—t,]ﬁ(/\)*”Tn(f‘_i(/\)))

Ael)
= i\n‘t; min[l, =i, (y, A)+ iq[' n(x. '(A)}
2 VoA Nob oA s
> inf min(l, I—infa(v. Al by (x, ‘(e’\)J
o v -7 v

= inf“ min(l, -y, A)y+n(f '(y, 1‘ I(/\))

v

)
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4.5. Inverse image of a fuzzifying topogenous order.

Definition 4.5. 1.

Let 1 X—>Y be a function and let 1 be a fuzztlving topogenous
order on Y. The mapping 1,:2%2% — 1,1, (A, B) = n(F(A) (1B ) is

called the inverse image of 1 by the mapping [and is denoted by 1'(17)

Theorem 4.5.2.

~ ] . . Ce
() 1s a fuzzifymg  topogenous  order  on X, where

f:X— 5 v and N 1s a fuzzilyig topogenous order on Y.

Proof.
0. 6)=n(lte). (OO ) = (. §) =
TONX, Xy = n(f(x), (FONT ) =n(Y. Yy=1.
2) To prove l“_l(r])(A, B) < (1= A(x))v B(x}or all xe X we prove

only mi(A, B) = 0 il xeA, xeB. Since [(A)c([(BS NS =4, then
'y (AL B) =0,
AForAcC,DaB, 17 (A, By=n(I(A). (F(B))
2f(C). (D))
=1 o, Dy

H A UB. C)=n(f{A U B). (F(CE)°)
= N(F(A) I (B), (1(C)°)

=AY (FICTN Y ANTB). (¢
=7 AL Cyaf T OB, O,
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fH AL BRC)=n(f(A), (((BS L0 )Y
=(f(A). ([(B ) f(C)%)

= (0A), (DB ) AC )
= A (FB ) Y ALA), (FCNY)
=1 "(O(A, By~ TOp(AL O)

Lemma 4.5. 3.

Let f be a surjective function from X to Y, and 1, 11y be two

[uzzifying topogenous orders on Y. Then
) For A, B € 2Y we have f”l(n,)({'_'(/\), t‘""(B)) = 1A, By
2) If ) < 1, then f"(nl) - f"'(ng ).

3) I {ni:i el}is a family of fuzzifying topogenous orders on Y.

then f_l(un,-):sqp(f"(ni))..

4) If n is perfect (resp. biperfect), then 1'(y) is perfect (resp.
biperfect).

S ) =171,

0) If n is symmetrical, then £'(1} is also symmetrical

7) 7 (njomy) = (= mpof "(n,).

Proof.
D £ ) (A £ By =y (1 (A, (R (B )

S AL (B
=1, {A, B)
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2) £ (AL By = (f(A). ((BE)NS)
S LAY (1))

= AL B)

3 PO AL BY = (oA, (FIBS)S)

=supn; (f{A). ([( B )©) = sup l"'(:]i),

l 1

O FHUAL B =n(OA )L (B
i 1

=l A, (BB )Y
=infn(f(A ), (I(B" )
=inff "(A, . B)

Stmilarly £ '(n)(A, :’_\Bi):ini’f"’(n)(/& B,)

5) (F ) (AL By =1 1B, AY)

= n(f(B). (r(A)))
= {(f(A), (1B )")
=1 (' XA, B).

0) Since, (f’*l(n))C = f"I(nC)._ n=n".

Then f71(11) Is symmetrical .

7)Let A, Be2™, Ce2Y and D = £'(C). Then

£ (N A, D)= nL(F(A), (DY) ) = . (F(A), ©)
DL BY =, (D), (£(B)") = n,(C. (£(B )",

Hence f'-l( mony XA, BY=nj0n, (1(A), (F(B" )%

:sup(nz(t‘f/\). (")/\q,((_‘, (F(B )¢ ))
CoY

= sup (£ O (AL DYAT g XD, By
Do X

=t ](nl)()!‘ml(nz)
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and so i""'l(nlonz) = '(q)of Ty

Lemma 4.5.4.

Let £ X—=Y and g Y—Z be functions and let 1y be a fuzzilving

topogenous order on Z. Then

(goi‘)rl(r]): [ I(g 'l(n))_

Proof.

For A, Be2*, we have

(zof) ' (YA, B) = ni(gof A). ((gof B )®)
= nlgl(f(A)). (g(F(B))Y D
= n(e(f(A)), (g (B H™n")

= o7 ONCRAY, (F(BS)Y)
=7 (g (MNAL B,

4]
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