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Abstract

Our main object of this thesis is to investigate smooth structures
(topology, uniformity, proximity and topogenity) when some information

are known about their smooth structures and vise versa.
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Summary

A large part of mathematics is based on the notion of a set and on binary

logic. Statements are either true or false and an element either belongs to a set or

not.

In (1965), Zadeh [I11] defined the notion of a fuzzy subset, an element
uel Y was called a fuzzy set in X, with z(x) being interpreted{ as the degree fo

which x belongs to fuzzy set (1, and the elements e/ A are generalization of
subsets of X . Zadeh showed that the notion of a fuzzy set calculus can be
carried over to this larger settings. The notion of a fuzzy set has been used, on
the other hand, by computer scientists and engineers to develop the theory of
fuzzy logic and hence to design fuzzy logic controllers. The most interesting
articles on the applications of fuzzy sets, see, for example, Yager [108]m

(1982).

Since then, mathematicians have been attempting to extend fundamental
mathematical notions to fuzzy setting, like algebra and topology, replacing
subsets by fuzzy subsets and standard notions by analogous fuzzy notions. Smce
there are many meaningful ways to extend notions, there has been a certain
amount of debate on the relative merits of the different fuzzifications of each

classical notion.

Topology and some of their related topics, proximity, uniformity and
topogenity are extended in the fuzzy mathematics and also which developed
itself fuzzy mathematics. In particular, one of the extensions of the notion ot'a

topology was first defined by Chang [14] in (1968) and made an attempt to
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develop basic topological notions for such spaces. Since then, many authors as,
Wong [105], Hutton [45], Lowen [63], Gougen [36], Pao and Ying [76, 77], and
other discussed respectively various aspects of fuzzy topology. In these authors,
a fuzzy topology zon a set X is defined as a classical subsets of the tuzzy
power-set /* . The open sets are the fuzzy subsets that belong tor,ie. e/

is open or not open which is a crisp treatments.

The notions of fuzzy proximity introduced and studied by Katasars [50] n
(1979) on a set X asa binary relation & on the collection of the fuzzy subsets
of IV %7t satisfying certain axioms. Also, the fuzzy proximity is a crisp
relation  between fuzzy subsets, iec., for two fuzzy subsets A, uc/" .
o(A,u)=ltor S(A,u)=0, which is also a crisp treatment. However, this
definition turned out to be unsuccessful, in particular, because of this fact that
fuzzy proximities as crisp relations are in a canonical one-to-one corresponding
fuzzy proximity induced on X the same crisp topology. In (1989) Morsi [74]
found a characterization of the concept of fuzzy proximity introduced by Artico
and Moresco [2]. This characterization of Artico-Moresco fuzzy proximities
show that these fuzzy proximities are much closely connected with ordinary
fuzzy proximities than Katasars fuzzy proximitics. Morsi showed that the fuzzy
topology is determined by a nieghborhood structure in the sense of Lowen [65],
and all these concepts are consistent with Chang fuzzy topologies (or with

LLowen fuzzy topologies [64] as a special case of Chang’s).

Fuzzy umiformities have two roots tracing back to Lowen [66] and to
Hutton [46]. Lowen defined fuzzy uniformities as a fuzzification of the
entourage approach to uniformities, while Hutton followed a variation of the

covering approach to uniformities.
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Mingsheng [71] mtroduced the concept of a fuzzifying uniformity to
developed foundations of the corresponding theory. Fuzzifying uniformities are

the uniform counterparts of fuzzifying topologies [68-70].

In fuzzy topology the classic (Csaszar’s [18,19]) theory of topogenous
structures was reflected mainly in the form of two different theories of fuzzy
topogenous structures: both of these theories were developed by Katsaras and
Petalas. The first one of these theories worker out in [54, 55] presents a unified
approach to these theories of Chang fuzzy topological spaces, Hutton uniform
spaces [46] and Katasars fuzzy proximity spaces. The second one, developed in
[58, 59], establishes common framework to the theories of Lowen fuzzy
topological spaces [63], Lowen-Hohle fuzzy uniform spaces [40, 66] and Artico-
Moresco fuzzy proximity spaces [3]. Thus both of these approaches to the
fuzzification of the concept of a topogenous structures originate from Chang’s

concept of a fuzzy topology ie., realize a fuzzy topology on aset X asan

ordinary (crisp) subset 7 of the family / * of fuzzy subsets of X .

It 1s easy to see that they have always investigated fuzzy objects with
crisp methods. For example, fuzziness in the concept of openness of a fuzzy set
has not been considered, which seems to be a drawback in the process of
fuzzification of the concept of topological spaces. Generally when we extend a
mathematical structure to fuzzy sets we have in mind an extension of this
mathematical object which will work with fuzzy sets in place of ordinary
subsets. we think that it could be more interesting to reformulate the defining
axtoms themselves n terms of fuzzy logic. In the case of fuzzy logic the truth
values is an element in the closed unit interval 7 and can be called “truth degree”

of a particular proposition, in this case an axiom like P = ( as defining a
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constraint between the truth values p,q(of P,Qresp). Here we have

taken p<q .

By the ends of eighties and beginning of nineties many mathematician
remarked that the fuzziness in these extensions is not enough, since we handle

with fuzzy subsets but the handing 1s crisp.

For this reason many mathematicians try to make a fuzzy treatment for
this structures. Sostak in (1985) [93] introduced a new definition of fuzzy
topology as an extension of both crisp topology and Chang’s fuzzy topology
(which we call smooth topology), according to which a smooth topology on a set
X is a fuzzy subset of the powerset It (i.e, amapping 7 : 1Y 5 1) satistying
certain axioms. In (1992), smooth topological spaces in Sostak sense were
independently redefined by Ramadan [80]. It has been developed m many
directions [4, 40, 41, 20-23, 36,43, 71,78, 84].

In (1993) Badard, Ramadan and Mashhour [8] introduced the concept of
smooth preuniformity and smooth preproximity spaces using the concepts of a
gradation of uniformity and a gradation proximity [7]. The concept of smooth
pretopogenous structure is introduced by Ramadan [81]. In(1997) Ramadan
[82] introduced the concept of smooth filter and some fundamental properties.
For more details on smooth topological structures and some related concepts we

refer to [30, 31, 32, 43, 67, 100, 191].

As continuation to study of a framework of smooth topological structures,
our purpose here to investigate more further the structures (smooth topologies,
smooth grills, smooth proximities, smooth uniformities and smooth topogenous)

when Some information are known about their fuzzy structure and vise versa.
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This thesis includes a preface, five Chapters 0-1V, and a list of

Bibliography.

In Chapter 0, we attempt to cover enough of fundamental concepts,
definitions and known results concerning our subject to make this thesis to a

some what self contained.

In Chapter 1, the aim of this chapter is give the notation of the smooth
uniform spaces. We study the relations between smooth topology and smooth

uniform spaces. The product of smooth uniform spaces is studied

In Chapter Il, we introduce the concepts of smooth grills and smooth
proximity spaces and we prove some of their properties. The links between

smooth proximity, smooth topology and smooth uniformity are given.

In Chapter 1II, we deal further with the theory of smooth syntopogenous
structures. In section 3.1 we introduce the basic concepts, some properties,
product and subspaces of the smooth topogenous structures. In section 3.2 we
study the links between smooth (semi-) topogenous order and smooth (supra)

topology.

In Chapter 1V, we investigate further the concept of smooth topogenous
spaces compatible with smooth uniform spaces. In section 4.1 we construct
smooth topogenous spaces from smooth umiform spaces. In section 4.2 we

introduce smooth uniform spaces induced by smooth topogenous spaces.
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Chapter 0

Introduction

For the sake of fixing notation, we recall some basic definitions. We shall

let X be a nonempty and / be the closed unit interval and we let /, =/ — {0}
—(0]], I, =!~{1}=[0). A fuzzy setin X isan element of the set /" of all

functions from the set X into [/, denoted by A, uef X A fuzzy set, which

assigns to each element in X the value r,0 < <1, 1s denoted by « . For any

two fuzzy sets A and u, [-A, v u, A Ay, and A < u have their usual mean-
ings. We denote the characteristic function of a subset 4 of 2% by 1, It
el then we define 4% = {xe X\ u(x)>a) and suppu = {xe X \ u(x) >0},

A fuzzy relation on X is afunction #: X x X > and / Y g the set of all
fuzzy relations on X, denoted by u,ve/ ek

0.1 Topological structures

Historically, the attempt to develop the fuzzy counterpart ol general
topology was undertaken by C. L. Chang in 1968 [14] and is called fuzzy
topology. In the last the fuzzy topeologies were defined as certain subsets 7 of
the power set / voof fuzzy subsets of X . Thus, to be consistent, they are
preferably to be considered as crisp topological type structures on the families of
fuzzy sets than fuzzy topologies while the term a fuzzy topology is related to
some fuzzy structure of topelogical type on the fuzzy power sets /- . For the
first time, the idea of such an approach was probably expressed in U. HOhle’s

paper [40]. However, in that paper, fuzzy topological structures were considered

only on the power set 2% of crisp subsets of X . In more general situations

similar ideas in the mid-1980s were independently discussed in [28, 63, 90, 91].



These kinds of topologies are called smooth topologies. In the sequel we a
survey of the important concepts and some properties of the fuzzy and smooth

topological structures.

0.1.a Fuzzy topological structures

0.1.a.1 Definition [14]

A subset rc /" s called a fuzzy topology on X if it satisfies for
A e I , the following conditions:

Ol L0er,

(O If yaer, then uniter,

(O If y,er,Viel ,thensupy, .
iel’

The pair (X,7) 1s called a fuzzy topological space and the fuzzy set
belonging to 7 is called open in this space.

Soon J. A. Goguen [35] proposed a natural generalization of the preceding
definition by substituting /.~fuzzy sets for fuzzy sets. Namely, according to J. A

Goguen, L-fuzzy topology on X .

0.1.a.2 Definition {14]

Let ('X ,7p)and (Y,7,) be two fuzzy topological spaces. A function

J X =Y i1scalled a fuzzy continuous function if

lery= ' (A)er forall Aelt

0.1.a.3 Definition [103]

A fuzzy set x in afuzzy topological space is called close, if its compl-
ement |- g is open. Itis clear that the family o of all closed fuzzy subsets of a

given fuzzy topological space has the following properties:
(COl) Loeo,
(COH My, leo,then uvier,
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(CO3) If y,er,Viel ,theninfu, 7.
iel
0.1.a.4 Definition |76
The closure, [1 of pel ¥ is the intersection of all closed fuzzy subsets
containing 4, 1.€.,

;t:ﬂ{lf/?,ET\;tSﬂ}

0.1.a.5 Definition [36, 103]
The closure operator is a function /" — 1" satistymyg the
following conditions:
(1)0=0,
@) psp,

(3) ,uvi:;vz,

(4) =t

The concepts of closeness and closure operator, as well as that of the
interior operator *: /% — /Y where x° =Ufler\A < u), can be used the

characterize the continuity of functions of fuzzy topological spaces. Namely. the

following four properties are equivalent for a function f:X >V (see, e.pg.,

[103]).

(1) 1 is continuous,
(D) If Aeoythen /(A eoy,
3) f(w)< flu),Vpuel”,

@ () Yuel

Chapter 0



0.1.a.6 Definition [92]
Let (X,7) be a fuzzy topological space and ¥ < X . The induced fuzzy

topology on ¥ is defined as 7y ={uy =p\} ez}, where 1\, denotes the
restriction of g to the set V.

It is easy to verify that the natural inclusion function 7: (Y, 7y ) = (X.7)1s
continuous, in this case, and, moreover, 7, can be characterizes the weakest (in

the sense of <) fuzzy topological space on Y for which the inclusion / 1s

continuous.

0.1.a.7 Definition [36]
Let {(X,,7,)\iel} beafamily of fuzzy topological spaces, and fet

[

X =TI X, be the product of the corresponding sets and p, : X — X, denote the

iel”
corresponding projection. Let I’ ={u = p,fl(/lj)\/li er;,relfand B={u, ~..
A Hy, \neN,u, €p},ie., B isthe family of all finite meets of elements from
P . The product fuzzy topology r on X can be defined as the family of all joins

of elements from B, ie., r={y =supp’ \{u’: je Al c B}.
g

Similarly, as the standard terminology from general topology to the fuzzy
case, one can say that /* is a subbase and B is a base for the product fuzzy

topelogy 7.

0.1.b Smooth topological structures

0.1.b.1 Definition [80]

A function 7: /" — I is called a smooth ropology on X if it satisfies the
following conditions:

(SO z(@)=7(1) =1,

(SO2) () A pty) 2 7(p2) A (42 ) for each piy,puy €17,

Chapter O



(SO3) r(sup 4,) 2 inf 7(x,) for any {1 }er <17
el

iel i
The pair (X,7) is called a smooth topological space. The value 7(u) of a

smooth topology 7 on X expresses the degree to that 4 1s open.

0.1.b.2 Definition [40]

A smooth cotopology (or a gradation of closeness) is defined as a function
3:/" —» [ which satisfies:

(SCO1) 3(0)=3D) =1,

(SCO2) I(A, v Ay) > T(A) A (A, ) for each Ay, A4, el

(SCO3) S(inf 4,) = inf 3(4,;) foravy {4} <1
iel’ iel’

On the set 7(.X) of all smooth topologies on X we can introduce a partial
ordering < by: 7, <7, iff 75(p) <7y (u), forall e I In particular 7, is coar-
ser than 1, (or 7, is finer than 7)) iff r; <7, . Obviously the function 7, :/ X

~» | defined by 7,4 () =1LVuel 4 is the finest smooth topology on X .

(.1.b.3 Remark
If smooth topology r on X satisfies the following fourth property (5T4)

T/ e {01} (resp. 7: PRy ), then such smooth topology in the one-to-one
way corresponds to a fuzzy topology [14] in Chang’s sense (resp. fuzzifying

topology [68-70] in Ming’s sense)

0.1.b.4 Definition [80]
Let (X,7;) and (¥,7,) be smooth topological spaces. Let /- X — 7Y bea

function. Then:

(1) f is called smooth continuous iff 7, () <7,(f ™' (u)) for each p e I

(2) f is called smooth open iff 7,(2) < 7,( f(A))for each Ael”,

Chapter 0
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(3) 1 is called smooth closed iff 7;,(1-A) <7, (f(1-A4))foreach A€ B
0.1.b.5 Example
Let 7:1" — [ be a function defined by:

() =mf{ (X} x € suppu}

and 7(0)=1. Then 7 is a smooth topology on X .

0.1.b.6 Proposition [80]
Let (X,7) be asmooth topological space. For each e/, let 7, ={u €
1~ \z(w)=za). Then r, is a fuzzy topology on X (inthe sense of Chang),

which the a-level fuzzy topology.

0.1.b.7 Definition [16]
Let (X,7) be a smooth topological space. A function ' ©/ Yy I = I
defined by |
CoAn=mf{pel* \A<pa(l-p)=rl
is called smooth supra closure operator if it satisfies for each

A A4, € I and r,r,r, 1, the following properties:

(10, =0,
(2) A<C (A,r),

() If A, €Ay, then C, (4,7 <C,(Ay,r),

(MHIfn <, then C (A,17)<C,(4,1),

A smooth supra closure operator C, is called smooth closure operator if
it satisfies;

C (A v A,rN=C(A,rvC, (A7),

A smooth supra closure operator C is called ropological if 1t satisfies;

(6) C(C(A,n),r)=C(4,r).

Chapter 0



0.1.b.8 Definition [43]

3

Let (X,7) be a smooth topological space. A function I, 1Y % I =1

defined by

A,

2

I.(A,r)=mf{re " \v<dr(v)=r).

is called smooth supra interior operator on X if it satisfies for

Ay €1 Y and r,r,,r, €/, the following properties:

myI4n=1

2) I (A, F)SA.

I3)If A; £ 4,, then I (A4,r) <1, (4;,7).
IHIf r<s, then [ (A1) <1 (4,9).

A smooth supra interior operator [, is called smooth supra interior v

satisfies:

[5) Ir(’q‘l i j’23’/‘) = Ir(’llrr) A IT(/F{Q,I’)_
A smooth interior operator 1, is called ropological it satisfies:

T6) (1, (A, ), r) =1, (A7),

0.1.b.9 Definition |62]

Let 0 ¢ ®be asubsetof ] YA function B:© — [ is called a base on X

if it satisfies the following conditions:

SENnse!

(BL) 5()=1,
(B2) B(i] AN /12) = B(AI])/\B(/‘LQ),VAI /\/12 e®.

A base B always generates a smooth topology rgon X in the following

Chapter 0



0.1.b.10 Theorem [62]
Let B be abaseon X . Foreach Ae/", we define the functionz, . / i

— [ as follows:

sup{inf B(4,)}, if A=supA,,for 4] jen €O,
oA : A el
Tp(A)=<L it A=0,
0, otherwise.

Then (X,7g) is a smooth topological space.

0.1.b.11 Theorem [62]
Let {(X,,7;)\iel} be a family of smooth topological spaces. X is a set
and, foreach i eI, f, : X — X, 1s a function. Let
1
©={0=2=inf /i (%) 7, (K ) > 0,9k, € K}
J=1 ‘ “
for every finite index set K ={k,..k,}cI". Define the function
B:®—1 on X by
" n |
B(A)=suplinf 7, (A4 )\ A= inff,t.j (A, )}
J=L ‘ J=1 '
For every finite index set K ={k,,....k,} < I". Then:
(1)B 1sabase on X,
(2) The smooth topology 75 generated by B is the coarsest smooth
topology on X which for each i e T', f; is fuzzy continuous,
(3) A function f:(V,7") — (X,rg) is fuzzy continuous iff for each i e I",

Jiod (Y, t)y = (X,,7;) is fuzzy continuous,

1271

0.1.c Mingsheng Ying’s Fuzzifying topologies:
A specific viewpoint on what can be the subject of fuzzy topology was

developed by Mingsheng Ying [68-70]. Contrary to the approaches discussed in

Chapter 0
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the previous sections, all of which could be united under the name of point-set
lattice-theoretic fuzzy topology, Mingsheng Ying’s theory, based on the sem-
antic analysis of concepts and results of general topology, is to be referred to the
so-called model-theoretic fuzzy topology (we make use here of S.E. Roda-
baugh’s terminology, slightly modified, (see {88, 89]). By means of the semantic
method of continuous-valued logic, Mingsheng Ying arrives at the concept of a
fuzzifying topology on a set X (which is, in fact, a function 7:2°' —/
satisfying the same axioms of smooth topology) and then cousistently develops
the theory of fuzzifying topologies.

The theory developed up until now [68-70] includes such items as local
structure  of fuzzifying topologies, their convergence structure axioms of
countability, compactness (including a version of the Tychonoff theorem),
connectedness, and others. All these concepts appear to be predicates of

multivalued logic and can take values from /.

0.1.c.1 Proposition [68]

t 1s a fuzzifying topology iff for any e €/, 7, is a classical topology.

0.1.c.2 Proposition [58]
If 7 is a fuzzifying topology, and z:/-* — I be a function given by:

t(u)=1inf 7'(1t, ) -

ael
Then 7 is a smooth topology.
These observations enables us to reduce the study of certain properties of
a smooth topology 7 to the study of much simpler objects, the corresponding

a-level Chang fuzzy topology 7, .

There are natural injections between the sets as indicated:

Chapter 0
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; )
{Smooth Lopotogy)

5% / \ el

(Fuzzy topology) (fuzzilying topology)

\ 22"" /
(Ordinary (opology)
0.1.c.3 Proposition [84]

If T is a fuzzifying topology, and 7:/* — I be a function given by:
r{A)=sup(T (A, ) re).

ael

Then = is a smooth topology.

0.1.c.4 Proposition [84]

A function f:(X,7r;)—(Y,r,) between smooth topological spaces is a
smooth continuous if /(X ,77) — (V,75) 1s a fuzzifying continuous, 1.e.,

o (MY<t,(f (M) for cach M 2"

0.1.d Smooth filter

The notion of smooth filter [82] is one of the most important concept in
smooth topology. We define a smooth filter as a function /7: /" —> / thatis a

fuzzy subset of the power set / Y rather than a crisp subset. Similar ideas have
been discussed by some other authors (Géhler [26), Garcia, Prada and Burton

[33], Hohle and Sostak [43] and others) with respect to different structure.

0.1.d.1 Definition [82]

A function F:/* —/ is called a smooth filter on X if it satisfies the
following conditions:

(F1) 17(0) =0,

Chapter 0



(F2) F(4 A Ax) 2 F(4) A F(4y),
(F3)If A, <A, then F(A) < F(4,).

A smooth filter is said to be proper if: F(I)=1.
v AN .
Specially, if /e 2!\ . then /7 is a Fuzzy filter; if /7e/~ _then /- 1sa

x
Fuzzifying filter and if /" e 2% _then F is a ordinary filter.

On the set /(X)) of all smooth filter on X we can introduce a partial
ordering < by: F <F, iff Fy(u)y<F(u), for all el Inparticular /is

coarser than F, (or I, is finer than 1) iff I <F,.

0.1.d.2 Proposition [82]

F is a fuzzifying filter iff for any o € 7, F,, is a classical filter.

0.1.d.3 Theorem [82]

A function /7:IY -7 is called asmooth filter on X if it satisfies the
following conditions:

(F1) F'(¢)=0and F'(X)=1,

(F2) F'(M nN)Y2 FF'(M)A F'(N),

(F3)If N c M then F'(NY<F'(M),

(F4y F':1 Y 5 Jis retrieved from its restriction to crisp subsets by the
formula:

F'(Ay=sup(a ~ FF(A,)),Ae I
acl

0.2 Uniform structures

0.2.a Fuzzy untform structure

In [66] Lowen defined fuzzy uniformities as a fuzzification of the

entourage approach to uniformities,

Chapter 0
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0.2.a.1 Definition
(1) For each fuzzy relation # on X andfor A€/ Y the image u|Ai} of

A with respect to u is the fuzzy subset of X defined by
u[A)(x) = sup (A(¥) Au(y,x)),Vx,y e X.

yel
(2) The composition uov of two fuzzy relations u and v on X 1s the
fuzzy relation on X defined by

uov(x,y)=sup u(x,z) Av(z,y),vx,ye X
ze X

(3) The symmetric u’ of uwon X is the fuzzy relation on X defined by

w' (x, ) =u(y,x),vx,ye X,

0.2.a.2 Definition [066]

A subset U c 7Y is called a fuzzy wuniformity on X if it satisfies for
uve I the following conditions: “
(U 0els,

(UDueland vel ffunavel,

(U3)lel,

(UH L uel/, thenl, el/,

(U IfuelU , then u® €U,

(U6) If u e U, there exists v € U/ such that vev <u .

The pair (X,0V) is said to be a fuzzy uniform space.

In [46] Hutton followed a wvanation of the covering approach to
uniformities.

0.2.a.3 Notation

Let X beasetand Q¢ be the set of all functions & :/ Y 1 such that

(1) a(0)=0,
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(2) a(u)z u,

(3) a(sup u;) =supaly,).

iel’ el

0.2,a.4 Remark

For ;a5 € Qv , we define pe I,

(a)(ay A an)u) =infla (un) v a () N =y v 1a ],
(b) a ) =inf{dlel* \a(l-A)<1—u},

(¢) aycay(u)=aq(ay(p)).

Then o) A a5, oaz,afl eQy.

0.2.a.5 Lemma .

Forevery a, f,y,a,, B € €1y, the following properties hold:
(D a<a,f<pfithen an f<a) A f,
QDanfsaanfsfandana=ca,

) (@) =a,

@ a<piffat<p,

(5) Let a function 1% - 1" be define by

1 af g0,

a;(#)—{g i =0

Then alzafJeQXandaAalza

©) (@op)y=p " oa
N anpy ' =a™ep,
) (anByny=an(Bry).

Chapter 0



14

0.2.a.6 Definition [46]

A subset (7 of Qy is called a fuzzy uniformity on X satisfying for
a, [} € €2y, the following condition:

(FUhanpfelliffael/ and gel/,

(FU2)If ¢ el/ and B <a, then pel,

(FU3)If @ e U, there exists S e/ suchthat fof<a,

(FUDIf ael/, then a™' el/,

The pair (X,0/) is said to be a fuzzy uniform space.

0.2.b Smooth uniform structure
(0.2.b.1 Definition [8]
A function U/: /""" 5715 called a smooth quasi-uniformity on X if it

7Y the following conditions:

satisfying for u, w e
(SU)if u £1,, then U(u)=0,
(SU2Y U(unw)=U)ynlU(w),
(SU3) UlxD) =1,
(SU4) U(u) < sup{U(w)/wow <u},
The pair (X, U) is said to be a smooth quasi-uniform space.

A smooth quasi-uniformity is said to be smooth uniformity if it satisfies:

(SUS) U(u) <U(u"), where u*(x,y) = u(y,x)

0.2.b.2 Definition [8]

Let {/; and U/; be smooth uniformity on X. We say U is finer than {/; (or
Uz 1s coarser than Uy) iff U, () < U, (u)for all w e 7%V

0.2.b.3 Theorem [8]

Let (X, U/) be a smooth uniform space. For each ¢ € / 15 let

U% =fue XX U(u)>a}. Then U® is a fuzzy uniformity on X .
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0.2.b.4 Definition [8]
Let (X,U) and (Y,/")be smooth uniform spaces. A function f: X -V

is said to be smooth uniform continuous if
FOYSUWS )7 (), Yve ™
0.2.b.5 Theorem [8]
Let (X,U), (¥,V) and (Z,¥)be smooth uniform spaces. If 7:X —> Y

and g:¥ — Z are smooth uniform continuous, then go f:.¥ —'7 is a smooth

uniform continuous.

0.3 Proximity structures

0.3.a Fuzzy proximity structure

0.3.a.1 Definition [50]

A binary relation & on /% is called a fuzzy proximity on X if & satisfies
the following axioms:

(FPI)If (A, )€, then (1, 1) e,

(FP2)If (A, u)e S, then 2 =0 and 1 =0,

(FP3)If (Av p,v)ed, then (A,v)ed or (u,v)ed.

(FP4) IF (A, 1) ¢ &, then there exist v e 7" such that

(Av)ed, (l-v,m)ed
(FP5)IF A A p=0,then (A,u)eé.

The pair (X,8) is said to be a fuzzy proximity space.

0.3.a.2 Proposition [50]

Let (X,6) be a fuzzy proximity space, The function g —» g =1- sup{p e
G (p,u) e &} is a fuzzy closure operator on 7 and the collection Ts ={ue

I V= =1~ 4} is a fuzzy topology on X .

Chapter 0



0.3.a.3 Definition [50]

A function [/ from a fuzzy proximity (JX,5;) to a fuzzy proximity

(Y,0,) 1s called a proximity continuous function (or proximally continuous) it
(A, 1) e &yimplies (f(A), f(u))ed,for each A, ue 1~ Equivalently, / isa
proximity coutinuous function if (_f'fi(u),f"l(p)) e o) imphes (v, p)e &, for

each U,pe]Y.

0.3.b Smooth proximity structure

In (1993) Badard, Ramadan and Mashhour [7] introduced the concept of
smooth proximity as follows:
0.3.b.1 Definition [7]

A function §: /Y %/ > 7is called a smooth gquasi-proximity on X
satisfying for A,u,v e/ the following conditions:

(SP1) 6(A, t) < {sup A(x) Asup u(x)\ x e X3,
(SP2)o(Av u,v)=8(A,v)vo(u,v),
(SP3) For each A, it € I, thereexists p e I 3 (A4, 1) = (8(A, p)v (1 - p s}

(SP4) &(A, 1) 2 sup{A A p)(x).
The pair (X,d) is said to be a smooth quasi-proximity space.

A smooth quasi-proximity space (X,d)is called a smooth proximity
space if

(SPYS =6, where 5 (4, 1) = 5(u, A).

Let &yand o, be smooth quasi-proximities on X. We say &, is finer than

0| (or 0, is coarser than &, )iff &,(4, u) <8,(A4, ) forall A, u el¥.

0.3.h.2 Remark
It 1s clear that:

(1) sup{A A 1)y < S(A, 1) < (sup A) A (sup u)
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(i) 6(e. Bl =an f

(ii1) &(u, 1) =sup u

(iv) (u.a)=a rsupu

MIfA<A,u <y, then (A, 1)y <54y, 441).
0.3.b.3 Theorem [7]

Let (X,8)be asmooth quasi-proximity space. Define for each » e /| the

family 6, = {(4, 1) € IVt VO (A, 1) 2 1}, 1s a fuzzy quasti-proximity on X .

0.4 Topogeneous structures

0.4.a Fuzzy topogeneous structure

The concept of fuzzy topogeneous structure is introduced by Katsaras

[53] as follows:

0.4.a.1 Definition [53]

A binary relation 1 on Yisa fuzzy semi-topogeneous order on X if it
satisfies the following conditions:

(FT1) (1.1),(0,0) e n,

(FT2)If (. A)en, then u< 4,

(FT3)If p< ), 4 <4 and (p,A) en, then (u,A)en,

A fuzzy topogeneous order on X is a fuzzy semi-topogeneous order

which satisfies the following addition axiom:

(FT4) (e v iz, A) e n iff (u, ) en, {(uy.A) e pand

(. A Ay )en ift (u,A)en, (u,d))en.

0.4.a.2 Definition [53]

Let mand 1, be fuzzy semi-topogeneous order on X, ie Afor an
indexed set A then,

(a) n,1s said to be:
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(1) Symmetrical if (g, A)em = (1-A1-u)en,
(2) Perfect if (u;,A)em = (Ui, U pen

ieA ieA

(3) Biperfect if it is perfect and (u;, A;))em = (A, n p)en
e  igA

(b) r,is finer than 7, (or n, is coarser than r, ) iff

(A pyen = (Au)en, forall A, uel™".

0.4.a.3 Definition

Let 7y and 7, be smooth semi-topogenuous orders on.Y" . n; s finer than

177 (17218 coarser than 77, ) if 17y <1y

0.4.a.4 Definition [54]

A fuzzy syntopogeneous structure on X is a non-empty family § of fuzzy
topogeneous orders on X having the following properties:

(1) § is directed, i.e., for n,,n7, € S,3n;, € S 3my.n, <14

(2) For any 7€ §there exist iy €S such that 77 <7, o7, where o is the

composition of relations.
The pair (X,S) is called a fuzzy syntopogencous space. In case S

consists of a single topogeneous order, it is called a fuzzy topogeneous structure,

and the pair (X,S) is called a fuzzy topogeneous space. S is said to be perfect

(resp. biperfect) if each member of S is perfect (resp. biperfect).

0.4.b Smooth topogeneous structure

The concept of smooth topogeneous structure is introduced by Sostak

[99] as follows:

0.4.b.1 Definition [99]
A function #7:/ Y5 IY 51 is called a smooth semi-topogeneous order

on X, if it satisfies the following axioms:
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ST (LD =n00) =1,
ST2) p—A<l-n(u,A) forany pu,Ae 1%

ST Ay € A, 1< oy (A, Ay, iy € T, then (A, 1) < (A, 1)),

0.4.b.2 Proposition [99]

Let 71 be smooth semi-topogencous order on X and let the mapping
n® 1Y x I =] defined by
7 (A =0 - 1= 2,92, uel”

Then 1° is a smooth semi-topogeneous order on Y.

0.4.b.3 Definition [99]

A smooth semi-topogenous order 7 is called smooth topogenous if
forany A;, 4>, A, pup, po . pi € &

(STS) (A v Ao, ) = 7( Ay, ) A4y, 1),

(ST6) (A, py A i) = 1A, g ) ATy, ).

0.4.b.4 Definition [99]

A smooth semi-topogenous order 7 1s called perfect, if

(STTY (0 Ay 0) = inf (A, ), forany {u, 4 lie Ty 1

iel’ iel
A perfect smooth topogenous order 1 1s called biperfect, if

(ST (A, ~ p1;) = inf (A, p; ), forany {4, y:ie T} o
iel’

iel”

0.4.b.5 Definition [99]

Let 77;and 77, be smooth semi-topogenuous orders on X . n; is finer than

17> (17218 coarser than 77, ) if 77, <7y
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0.4.b.6 Definition [99]

A smooth semi-topogenous order 7 is called smooth topogenous i
forany A;, A5, A, 1y, 1o, 1t € .

(STS) Ay v g, 1) = (A, 1) A (A, ),

(ST6) (4,10 A ) = (A, sy ) Ay, 1),

0.4.b.7 Definition [99]

A smooth semi-topogenous order 7 is called perfect, if

(STTY( 2, 0) = inf (A, ), for any {ua, 4 /i € T o
el fel’

A perfect smooth topogenous order n is called biperfect, if

(ST®) (A, ~ 4,) = inf (A, ;) for any {4, i e T} < I

el’ el

0.4.b.8 Theorem [99]

Let ny,075 1 X 1% 5 Ibe perfect (resp. smooth topogenous, biperfect)
smooth semi-topogenous orders on X. Define the composition 7, ¢ 7, 0f 1, and
17, on X by

m e (4, 1) = sup {m(A,v) A (v, 1)}

velt
Then n, ¢ 17515 a perfect (resp. smooth topogenous, biperfect) smooth

semi-topogenous orders on X.

(.4.b.9 Definition

A Fuzzy syntopogenous structure on X i1s anon-empty family Y y of smooth

topogenous orders on X satisfying the following two conditions: .

(S1) Y x 1s directed i.e. given two smooth topogenous orders 7,7, € I v , there
exists a smooth topogenous order 77 € Y y such that 7,7, <77

(S2) Forevery ne Y y there exists ;€ Yy suchthat n<n on .
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The pair (X, Y y) is called a fuzzy syntopogenous space.

0.4.b.10 Definition

A fuzzy syntopogenous structure Yx is called topogenous if Y y consisting of a
single element. In this case, Yy ={n}is called a fuzzy topogenous structure,
denoted by Yy = {7} =7, and (X, Y y) is called fuzzy topogenous space.

A fuzzy syntopogenous structure Yy is called perfect (resp. biperfect
symmetric etc.) if each smooth topogenous order r7e Yy is perfect (resp.

biperfect symmetric etc).
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Chapter I

Smooth uniform spaces

Smooth uniformities have two roots tracing back to Lowen f66] and to
Hutton [46]. In this chapter we introduce the notions of smooth uniform spaces

throught the above two roots.

1.1 Smooth uniformity by entourage approach

In this section we introduce the definition of smooth uniform spaces
which depend on the entourage approach. Some properties, subspace of smooth
uniform space and smooth topology induced by a smooth uniform space are

studied.

1.1.1 Definition

A function (7 [~ 7 is called a smooth uniformity on X satislying for
u,ve %Y the following conditions:

(SU1) U is a smooth filter on X x X

(SU2) U(u) <U(u*), where v’ (x,y) =u(y,x)

(SU3) Uu) <sup{U(v)/vev <u}, where

vou(x,y) = sup (u(x,z) A v(z,))
zeX

The pair (X, U)) is said to be a smooth uniform space
Let UJ; and {/> be smooth uniformities on X. We say U, is finer than U/ (or

U,is coarser than (/) iff U, (1) <U (u)forall u e IR

1.1.2 Definition
A function B:I¥*Y S Iis called a smooth uniformity base on X

satisfying for u,vel XX the following conditions:
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= sup {sup (A7) A Uy (¥, 2)) Al (z,x)}
zeX yeX

= sup {ua [A1(2) Ay (2, X))

ZEJY
=y [uz [A]](x).
(4) is similar to (3)
(5) Suppose there exist x € X and ¢ e / such that

(Hl N Mz)[/ll AN /’{2](3{) > > ul[ﬂ,l](x) N Hz[iz]()f).

Since (u] A ug)[Ay A Ap1(x) > (, there exists y € X such that

(uy Aug)AL A A () 2 (A A A )W) Ay At )Y, %) > 1
It implies
£ < (A A AW A (g A ) (3 %)
<A A (g Au)(1 )} v (A0 A (g A g X5 X))
<{(A)() Ay (10} v (A AUz (1,30
<[4 ](x) A [ A21(%).
It is a contradiction.

(6) It is proved from:

£ OLAAD@) = VLD ()

= sup L/ (A~ vy, [0}
veY

= sup { /(AL (2N Av(f(2),/ ()]

zeX

= sup {A2) A (X )T ()23}

ze X
=(fx N WA,
(7) and (8) are casily proved.
©) (% £y ) e (F % )7 v Xx%2)

sup{(f x /) 0,20 (f x )T (zx)

ze X
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2%
= sup v(/(x), F (N AV (2): F(x2))
ze X

<supv(f(x)), y) A v(y, f(x2))
veY

=vov( /() f(x)
—(fx ) (vev).

1.1.6 Theorem

Let (X,0/) be smooth umform space. A function 7y /7 —> [ delined

7y (A) = inf {1— A v sup U,
* ujx]<A

where u[x](y) =u(y,x) Then 7y is a smooth topology on ..
Proof
(O1) It is eastly checked.
({02) First, we show that
( sup Uu)A( sup Uoon<( sup  Ulw)),

wx|sA vix|<€4, wlx|SAyndn
suppose there exists 7 € (0,1) such that

( sup U(u)y~( sup Uy)>i>( sup [7(w)).

lf[x.lS/’Ll V[.\T]g/lz W[xlsil /\/12

For each ie {12}, there exists u, with 1,[x] < A; such that U/ (u;) > 1. It

implies (u; A )X}l <A Ay and U (u; Aun) 2U(u) AlUug) > 1 Hence,

( sup UQw)>t.

wlx]€4) ~ds
It is a contradiction.
Suppose there exist 4,4 5 € /X and ¢ e (0,1) such that
1y (g A dp) <t <7y () Aty (Aa).

Since 7y (A A Ay) <!, there exists x € X such that
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(A Ad) QA4 Al i)y sup Ufu) <t

ufxjEA Ada

It is implies
L= (A A A)x) <1

Since
( sup U@)A( sup ) <( sup (w))<t.
ulx]£4, v[xl<A, wlx|gAd; Al
By (A)
(=20 v ( sup U@ < or (1= Aa(x) v sup U</,
vlxi=As

ujx]sA
It implies

ty () ATy () <L

It is a contradiction.

(O3) Since / is an infinitely distributive lattice. Then
7y (supA ;) =inf {1 - (sup 4, )x)) v sup {/{u))

jedt x Jjel u[x)Zsup 4,
Jet
inflnf Q- (2D v sup U@
x jed wlx|gsup A
jed
=inflnf (1 - (A;)(x0) v sup L))
Jooox u|x])ssupd;
jed |
>inf tinf (1 - (A,)(x) v sup UG
oo ul¥)<A;
= inf 7y (4)).
i
1.1.7 Theorem

Let (X,U) and (¥Y.)7) be smooth uniform spaces and f V' —> 1" be

smooth uniform continuous. Then f:(X,7y)— (Y, 7, )is a smooth continuous.

Proof
First, we show that f’1 ([ SO = (] * f)_l (W[ x] from:
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L oD = v DU D)
= v( f(2), /()
~(fx ) E X
—(fx ) M)
Thus '

W[ £ () € Admplies /7 OL/ (D = s .

Hence
ru(ﬂ):inf{(l—i(y))v sup U(vV)}
y vylsi
<inf - ANV sup U
x W FOVEA
<inf (A~ TNV sup HEETANL

(N7 oA
<7 (fTHAD.

1.1.8 Theorem

Let (X, U) be smooth umform space. Define the function
¢ 1Y x> T by
(L'(__,(i,r):inf{,u[/l]/U(,u)>r},
For each /"t,itl,/'lze['\' and r,r,r,€l;, we have the following
properties:

My (0,1 =0,
(2) A £Cp (4,0,

(3)If 4; < Ay, then Cyy (4),7) = Cyr (A2, 1),
(D Cy (A v A1) = Cp(A,rv e, (Ay.7),
(HUrn<n, then Cp; (A, #) < Cy(A,1),
(6) Cp (Cp(an,r=Cy (A,r).
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Proof
(1) Since u(0) =0 then Cp(0,r)=0.
(2) For U{u) > 0, by Lemma 1.15 (1) A<uld] implies A <CpAr)
(3) and (5) are easily proved.
(4) From (3), we have
Co v A1) 2Cy (A7) v Cpy (A, 1)
Conversely, suppose there exist 4,4, € Y and r e I such that
Cp (A v A1 2CY (A,r) v Cpy(Aasr).

There exist x€ X and { €/, such that

Cr(Ay v A, FIX) >8> o (A v Cr (Aq, P HX).

A x X

Since i (ALnx) <, for each e {2}, there exists u; €/ with

U(u;) > r such that
Cy (A, 1)) [ A1) <0
On the other hand, since I/ (uy A 15) >t and from Lemma 1.1.5(5),
Gy A4 A A STl Al
we have

Cpp (A v Ag,r)x) s A uy A A A2 1(X)
<[4 )(x) A gl A2 100)
< 1.
It is a contradiction.
(6) Suppose there exist Ae ! and re [ such that
(TU ((“[’ (/1,’"),7") £ ("U (}"r) -
There exist xe X and t €/ such that

Cr(Cp (A, rx) >t > Cpr (A, r)(x).

Since Cp (4,7)(x) <1, there exists # € 14 %X with U(u) > r such that
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Cy (AP SulA)(x) < 1,

On the other hand, since {/ () > r, by (SU3), there exists u) € 1% such

upouy <u, Uu))>r.
Since Cyy (4,7) <u)[A], we have

Cu(Cy (2,1, <Cy n[ALr)
<uyfuy[A]]
= (uy 01))[A]
<u[A].

Thus, Cpy (Cpy (A1), 7)(x) ulA](x) <1,

It is a contradiction.

1.1.9 Theorem

Let (X,U/) be a smooth uniform space. Define a function 7, : / =

e (1) =auplre ! MU-MH-/”

Then 7;; is a smooth topology on X induced by /.

Proof
(O1) Since (. (0,7 = Oand C;; (1) =1,for all rel,,then

(=70 =1
(02) Suppose there exist A;,4, €/ Y and ¢ € (0,1) such that
T (A A Ag) <<t (A A T (A2)-
Since 7, (4 ) > and 7, (A,) >, there exist 1,5, >/ such that
|- 4, =Cy(=A,r),i=12,
Putr = 1 A ry . By (4-5) of Theorem 1.1.8, we have
Cp(t=(A4 A Ay)ry=1- (4 A A)
Consequently, 7, (A4 A Ay)ZF>1 Hence
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(A A Az (A A 7 (A2)- .

(O3) Suppose there exists a family {4, € [YVjeljandre (0.1) such

o (sup Ay ) <f<mf Ty (A,)
jel' Jel
Since inf 7, (4;) <!, for each j eI, there exists /; > ¢ such that

jel

1-4, =Cu(l= 4.7

Put »=1nf ;- By (4-5) of Theorem 1.1.8, we have
Jjel

Cpy(l=supl;.r)= 1—sup4;.
jel jeT

Consequently, Ty (sup A )z r>1. Hence,
jel

ry(sup A )= inf 7y (A;).
‘ el '

jel J

1.1.10 Theorem
Let (X,U/) and (¥,V) be smooth uniform spaces. Let [ (X, U=, V)

be smooth unitorm continuous. Then:

M f(Cy (1)) 0y (f(A),1), for each A& &
QL < f 7 Cp (), for each i€ .
Nf (X,rp)— (V,7,) 18 a smooth continuous.
Proof
(1) Suppose there exist A eV and r e/, such that
F(Cy ) £C (A1)

There exists yeY and f e/, such that

FC (AN > > Cr (I,

Since ' ({y})=¢, provides a contradiction that /(Cp (A,m)(0) =0,
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-1 ({y}) such that
(MJ’))(,}(‘(X))-

<Y ith ¥ (v)> 1 sueh

re exists X € I

DELE and the
)ZCU(l,r)(x) >1>Cp(f

F(Cy AN
(A), NN <T

Y

Since Cpr(f there exists vell

that
y <o fIS (x) <t

mooth uniform confinuou

Cp (FALI )

g, from

ther hand, since f 18 as

On the O
e have, U{(f tonzv

Definition 02b4,w (vy>r.
It implies

() = (= ) O

~ sup (A A X Y )X}

zeX

ZCU(/”L,F)(x).

V[ f (NS

a contradiction.

ch ne 77 and rel,, put A€ j"‘(/,t)‘ From (1),
1), 1) < Cp(FU T NS Cy (1,7

Thus, Cy (A, r)x) <t it is

(2) For ea
FCuf(C

1t implies

Co (G0 £ CU T = FHC (1))
(3) From (2), Cp(pr)=H implies C'U(f‘]l (p),r)= ff1 (u). Itis casily

proved.

1.2 Product smooth uniformity spaces
ts of the product and the subspa

ce of

In this section W€ study the concep

the smooth uniform spaces.

1.2.1 Theorem
X aset and

Let 4 Xk Vilke I'}be a family of smooth uniform spaces,
for each kel i X X, a function. We define, for each u € R
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U () =sup{inf Vy, (ug,) Vinf (Fi, % T, IRCIRELS
i=l =1

where the supremum is taken over every finite index K ={k;,...k, 1.

Then:

(1) The structure U 1s the coarsest smooth uniformity on X for which each
#, is a smooth uniform continuous.
(2) A function f:(Z,W)—>(X,U) is smooth uniform continuous iff for
cach kel f, o f is smooth uniform continuous.
PP ) RS S | .
(3) Co(xr) =inflinf (fe, % fi )™ 0L ATV, ()= 7y € K3,
=
where the infimum is taken over every finite index K = {k;,...k,} =T

(4) 7, induced by U/ coincides with the coarsest smooth topology 75 on
X for which each f; :(X,75) = (X;,7y,) isa smooth continuous.

Proof

(1) First, we will show that U is a smooth uniformity on X.

(SUD) If U (u) > 0, there exists finite indices K = {k,...,k,} < " such that

H H . . ey
Ulw)zinf Vi, (1, ) = 0, i@; (fy, x e ) (Y S 1

i=1
Since Vi (u,)>0 forcach k; e K, by (SF1), there exists 1, € LA

with 1, €ug . Hence

1 o . _ 1 . } -
Ly inf (fi, < fe) ") <ing U, < i)™ (ug ) < e
[ =| i=1

=

Since U(u ~Av)<U(u)and U(u A v) <U(v), we have

Ul avysU@uyanll(v).

Forany u,ve 1X%X e will show that

Uunv)sU@) AlU().
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If 1/ (x)=0o0r /{v)=0,1tIs trivial.
If U@)>0 and U(v)>0, for ¢ >0, such that U/ (u) Al/(v)>&> 0, there

exist finite indices K = {k,,...k,} and L=1{/,....0,} c I'such that

inf Vi, (g )2 U ) - e inf (fi, < fi ) g, ) <,
i=1 i=l

4

inf V) () 2U0) ¢, inf (fy, %1y, v,y s v
J=1 J=1 ! )

Since u/\v>(mt(f/\ X f/L ) (ﬂi ))/\(mf(f/ X f/ ) (Vf ).
i=l J=1

U(“/\V)>(1nf Vi (g, ))/\(mf V/ (V/ )
A=t !

> (uyAU(w)—e.
Since ¢ is arbitrary, this gives the desired result.
(SU2) Suppose that there exist u € 7% and re(0,1) such that
U@y <r<Uu).
Since U(u)>r, by the definition of U, there exist a finite index

K =1{k,,....k,} < I'such that

s

U(“)>1ﬂfl‘VL (g )>r, mf(fA X fr. ) (”/t )<u.
i i=1

For each &, € K by (SU2), since V. (up )=r for each £, € K,
Vi, (up V2V (g ) >
It follows that

if{g e % S 0 Y Sinf (U, % 71,7 i, )’
i= ! i=1

<u®

Hence,
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Uu*) zinf Vg, (g ) > r

i=1
It is a contradiction.
(SU3) For u e 1Y We will show that
sup{l/(u )/ uy ouy Sup2U(u).
If U(u)=0Itis trivial.
Suppose that there exist u € /¥ X and r e (0,})such that
sup{l/(u)/uy ouy Sup <r<Uu).
Since [/{u)>r, by the definition of {/ there exists a finite index

K =k, k,} < T such that
n 5
U)zint Vi, (v, ) > 7, inf (fr, x Ji, ) (v )sut
i=) =l
For each &, € K by (SU3),
sup ¢V (w)/ wow<=v 2V, (v ).

. . ; . NpoxX,
Since Vi, (vi, }>r for each k, € K, there exist w; €/ U0 and

r, & {(0,1] such that

wp owp Sv Vi (g |

i

Put w= iI::f (fr, x J4, y! (wy, ). For each k; € K, we have

i=]

wow<(fy % fi ) Ow Vo (fy, % fe)™ (%)

Hence

wowinf (fi, x fi, )7 0n o (o > )7 00,

n
L N

<inf (i, ¥ i) (g, o)
i=

<inf (fy, < fi,)7 (Vi) <
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Then we have wo w < gand
n "
J(w)z 1,n=f1 Vi, (W, )2 ig n>r
Hence, sup{{/(uy)/u ouy <up>r Itisa contradiction.
Second, it is easily proved that, by the definition of U forall kel
Ui )7 ) 2 Ve (), e e 1770
Ience, each f; 1 (.V,0/)— (X,17)is smooth uniform continuous.

Finally, if /. :(X,U') —3 ( X,V )is smooth uniform continuous, that 1s,
U'((fk x fi )‘l(v)) >V, (v),Vk eI, then it is proved that [ =l
from the following:

1 7 . _
U (u) = suplinf Vi, (v, Minf (fr, % S, ) (v, ) S0}
i=l i=l

i 1 X . _ 1 ) . B
< Sllp{inf U ((.fkr- x .f};,— ) I(Vk,- ))/lnf (j’,‘-_;‘ x .fkf ) l (Vj"(r )= H}
i=1

i=]

= sup{U (inf (e, % £i)7 0, WAnECfi, x ) g, ) <
=l

i=1
< U'(u),v,u e 1%
(2) Let /'be smooth uniform continuous. From Theorem 0.2.b.5 and (1),
the composition of smooth uniform continuous functions is a smooth
uniform continuous function.

Conversely, suppose that f:(Z,W)—(X,U)is not smooth uniform

[XXX

continuous. There exists u € such that

WS> ) ) <U @),

By the definition of U/, there exists a finite index K = {k,....k,} T such

rergliy,

that

W) )< iﬁg Vi, (v )SUG), i_ﬁg o % fie) () <0
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On the other hand, for each £; eK and fofisa smooth uniform

continuous, we have
Vi, ) Sy, 2 /)< U 0 RS
W< e U $ k) )

It follows that

i 0 0, D) S 0E W (U 2 (i 2T 03,

i=l
SW(i;t; (o) el % fi) )
W) (i;fl e x fi) ™ o W)

<W((/xf) ).

It is a contradiction.

(3) From Theorem 1.1.8, we only show that

n
inf{u[ AV U @) >r} = inf{inf ( /¢, * Tk, )_l(v,(_ WAV V., (v ) > rNk, e K}
i=l ' o

Where the infimum is taken over every finite index K =1k, k3T

Since
Uy % ) )2 Vi i)

we have
inf{ulA1/U ) > r} < inf{if{g(_f;;,. « fi) O AWV, () > 1
i=
Conversely, suppose that
inf{ul2)/U () > 7} 2 inf{ir’i'g i 1) O DAV, 05,) > 13-
j=
There exists x e X such that

(Ul A) U ) > Py () <infling fr, xS, ) 0 AWV, (0> 1)
i=1
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There exists u € 1% \with U () > r such that
n -
u[i](x) < inf{iﬂf (fk,- x fk,- ) l(vkj )[ﬁ']/Vk, (Vk,- ) > r}(x).
i=1

Since {/(u) > r, there exists a finite index K ={k,....k,} < I such that
U@)z mf Vi (vp,) > 7 mfm < fi,) 7 g ) S
i=1

It implies

iﬂf{i;tl' (fo % fe) W ANV () > 1) € mf (i % fi) 0 A
i=
< u[/l].
[t is a contradiction.
(4) Suppose there exists A € 1% such that
rp(d) <ty (A)
By the definition of 7 from Theorem 1.1.9 there exists #, € /, such that
Cpl=Ar)=1-Aand
rp(A) < r <7y (d).
Since C;;(1—4,n)=1-4, wehave
[-A=Cy(1-A4,r)
=inf{u[l — A)\U/ (1) > #, )

= nf{ mt]"(fA < Ji,) Y L - AN U, (g, ) > 1)

where the infimum is taken over every finite index K = Sy, Lk, y

ni

From Lemma 1.1.5(6), since
i * i) i = A1= f, " O, L3, A= 20D
we have
inf{(fy, i) 0 L= AV, () > 1 = 1 (Co U, (L= 200))
It follows that
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. ’I P -y -
A=1—inf{inf f ' (Cp, (fy, A= 200D}
i=1 '
= sup{sup /i (1= Cuy, (i, 1= 201}
i=l ‘
where the first supremum is taken over every finite index K = {k....,

kil .

i

Since  Cy, (fi (1= A),n)=Cy, (Cu, (fi, A= A)r),r)  from Theorem

1.1.8 (6), we have
7y, 1=Cy, (s, (1=2)r))=zr,.

Put i, = ]‘/'l (1-Cy, (/% (1-4),#)). From Theorem 0.1.b. 4 we have

B 2y, U-Cy,, (i, (- An) =7

n
It implies 75(supu;) = r,. By the definition of 7 from Theorem 0.1.b.14
i=1

we have
1
rp(A)zinf rg(supuy) =7,
i=1
[t is a contradiction. Therefore, 7g(A) = 7y (A1), VA4 € i
We will show that r5(A)= 1 (A).¥Ael¥ . equivalently, the identity
function id y (X,1y)— (X, 7p)is smooth continuous. We only show that
froidy (X,1,) = (X;,ry ) s smooth continuous from Theorem 0.1.b.14 (3).
1t is obvious from Theorem 1.1.12.
from Theorem 1.1.12 we can define subspaces and products in the

obvious way.
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1.2.2 Definition
Let (X.[/)be a smooth uniform space and 4 a subset of X. The pair
(AL 4)is said to be a subspace of (X,U)if itis endowed with the coarsest
smooth uniformity structure induced by the inclusion function.
Let 4 be a nonempty subset of X and let u e 14 We define the
extension of # to X x X , denoted by u v, v by:
u(x,y), if X,y e A,
1

otherwise.

?

i x (6Y) 2{

1.2.3 Theorem

Let (X,UJ)be a smooth uniform space and 4 be a nonempty subset of X.
The function V : /4 — /1 is defined by

Viuy=Ul(uy, ¢ ), Vue 4

Then V =0U/,.

Proof

Let 1:A—> X be an inclusion function. Since {7 4(x)=sup{l/(v)\
(IXI)_[(V) <u} from Theorem 1.2.1 and (i x j)_l(uXXX):u, we have V' </ 4.

Suppose there exists we I such that Vuy<U 4(u). There exists

ve I with (i x f)_l(v) <u such that

Uy )=V )y <UUwvysl 4(u).

Since v<uy, v, Uty x)=0U(v). Itis a contradiction.

1.2.4 Definition

Let {(X,,l/;)/ieT} be afamily of smooth uniform spaces. The coarsest

smooth uniformity structure (/ =®0/, on X = [1 X,induced by the collection
iel
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. X = X,/ 1e}  of projections is called the product smooth uniformity

structure of {V, /ie T}, and (X, U)ts called the product smooth uniform space.

As an immediate consequence of Theorem 1.2.1, we have

1.2.5 Corollary

Let (Xp.U/p)perbe smooth uniform spaces. Let X = T1 Xy be a set and
el

for each kel , @ X > X2 projection. The structure {J =®lJ, is defined by,

for each u € IESE
o _ n 1 ‘
U(“) = Sup{l]’lf Uk‘- (Vkr» )\Hlf (ﬁk{- X, ) (V/c,- )suj,
i=1 i=1

where the supremum is taken over every finite index K = {k;,...k, <1

Then:

(1) U is the coarsest smooth uniformity on X for which 7 is smooth
uniform continuous.

(2) A function fZW)y—=(X,U) is a smooth uniform continuous 1iff
mpefisa smooth uniform continuous.

(3) The smooth topology 7y induced by U coincides with the product

smooth topology 7p oOn ¥ for which each 7, (X.,7p) = (Xi,rl;‘,) is a smooth

continuous.

1.2.6 Corollary

Let (X,U,);er be smooth uniform spaces. We define, for u e jrx

n i
1 () = sup{inf Uy, (vg, )/ inf Vi, S0},
i=! =1
where the supremum is taken over every finite index K = {k,...k .

Then:
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(1) The structure {/is the coarsest smooth uniformity on X finer than (/,.
(2) The smooth topology 7,; induced by U/ coincides with the product

smooth topology 7 on X of a family {(X;, 7y )ier-

1.3 Smooth uniformity by covering approach

In this section we introduce the definition of smooth uniform spaces
which depend on covering approach where the conditions (FQU3) and (FU) are
defined in a somewhat different view of Samanta [91]. We define a bases for a
smooth uniform spaces and we study the smooth topology induced by a smooth

uniform space.

1.3.1 Definition

A unction U : Q — [ is said to be a smooth quasi-uniformity on X 1f it
satisfying the following the conditions:

(FQU1) For a, B e Qy,wehave U{a A f)2U(a) nU(B),

(FQU2) If « < 8 then U{a) <U(f),

(FQU3) For every a € Qy we have U(a)< sup U(B)
Pefza

(FQU4) There exists a € Qy such that U (a)=1.

The pair (X,U/) is said to be a smooth quasi-uniform space.

A smooth quasi-uniform space (X,U) is said to be a smooth uniform

space if the following condition is satisfied:

(FU) for every e € 2y we have U{a) < sup U(f)
fA<a!

Let {/; and U; be smooth (quasi-)uniformities on X. We say U, is finer

than U/, (or U;is coarser than U Yiff U, (a) <U(a)forall e Qy .
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1.3.2 Remark

(1) Let (X,I7) be a smooth quasi-uniform space. By (FQU), (FQU2)
and Lemma 1.3.1 (2), we have U(a A S)=U(a)nU(B).

(2) Let (X.UJ) be asmooth quasi-umform space. By Lemma 0.2.a.5 (5)
and (FQU4), since e <a; forall e e Qy , we have U(ap)=1.

(3) If (X,0/) is a smooth quasi-uniform space, then, By (FU) and
(FQU3), we have U(a)= sup U(p).From Lemma0.2.a.5 (3), we have

ﬂga']

e~ Y=Ula).

1.3.5 Definition

Let ®y be asubset of Qy . A function B:0y — I 1s said to be hase tor
a smooth quasi-uniformity on X if it satisfies the following conditions:

(FQB1) For a, f € ®y , we have B(a A B)= Bla) » B(f).

(FQB2) For every a € ® y we have B(a)< sup B(f).
Pofza

(FQU3) There exists « € © y such that B(a)=1.

The pair (X, 5) is called a smooih quasi-uniform base.

A smooth quasi-uniform space (X,B) is said to be a smooth uniform base
if the following condition is satisfied:

(FB) for every ¢ € ©®y , we have B(a)< sup B(f)

f<a B
1.3.6 Remark
(1) Let (X,0/) be smooth uniform space. For each r e /,, let
Ul ={aely \Ula)>r}.
Then {/"1s a Hutton fuzzy uniformity on X'
(2) Every smooth (quasi-)uniform space (X,U }is a smooth (quasi-

yuniform base in the sense of @y =Q .
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A base B always generates a smooth (quasi-) uniformity /5 on X in

following theorem.
1.3.7 Theorem
Let (X,B) bea smooth (
sup B(f) it {ﬁe@X\ﬁéa}-:ﬁq/),

{*]B (a) = ﬂéa
0 otherwise.

quasi-) uniform base. Define, for every a8y .

Then U g is a smooth (quasi-)uniformity on X generated by B.

Proof
(FQU1) For any a,Bely,we will
Uglan B zUglay~ ()

show that

If Upg(a)=0o0r Up(p)=0,1s trivial.

If Ug(a)=0 and Ug(B)=0,for ¢ > 0 such that UglaynUg(p)=e,

there exist ay, i € © x such that
B(al) ZUB(GY) -£,01 5,

BB zUg(P)—&.pr=p,

Since ay A Sy San f,we have
Upglen B)2 Blay A Br)
z B(a) n B(f)
2[]8(01) N (]B(ﬂ) - &
Since ¢ is arbitrary, this gives the desired result.
(FQU2) It is easily proved from the definition of Uy

(FQU3) If Upgla)= 0, then there exists the identity function e Qy

with £ o E <a such that Ug(£)=0.
Suppose that there exists y € Q) and re(0,1) such that

sup{UB(a)\aoaSy}<r<UB(y).

By the definition of U/, there exists 7, <y such that
Chapter |
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Ug(r)zB(y))>r.
Since sup{B(a))\ajca; <y }2B(y))>r from (FQB2), there exists
pe®y suchthat pegp <yjand B(gp)>r.
It follows
sup{Up(a)\aoa <yi= B(p)>r.
[t is a contradiction. Hence,
suptlUg(a) \aoa <y =zUp(y).
(FU) It is similar to (FQU3).

1.3.8 Definition
Let (X,B) and (X,B’) be smooth (quasi-) uniform bases. We say 7' is

finer than B, denoted by B’ > B, iff for any B(a)>0 and &> 0, there exists

S <o suchthat B'(f) = Bla)-¢.

1.3.9 Theorem

Let (X,B) and (X,B") be smooth (quasi-) uniform bases for (X ,7/)and
(X, U", respectively. Then U <l iff B<B'.

Proof

Forany B(a) >0, since [/ </, we have

U'{ay=U ()= Bla).

From Theorem 13.7 of the definition of UU', for &> Othere exists

3 < such that
B'(przUa)-e=Bla)-«¢.
Hence, B'< 5.
Conversely, suppose that there exist & € Q y and r e (0,1) such that
Ula)>r>U'(ar).

By the definition of U, there exists /3 <a such that
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Uleyz B(p)>r>U'(a).
Since B< B, for B(f)>rand &=B(f) . there exists ¥ < /3 such that
B(y)= (BB -e)=r
Hence, U'(a)2U'(y)2B'(y)zr.

It is a contradiction. Therefore U <U".

1.3.10 Lemma

Define Up Y /¥ as follows.

0 if =0
Uy(A)=3p if0=A<p,
1 otherwise.

Then:

() U,eQy,

@) (U, =Upp.

(3)U,olU,=Uyand (U, AU e U,y Uy )=, AU L),
Proof

(M, (and U, U, =U, of (3) are easily proved.

Since
0 if A=0,
HUAP if0=Asunp
: it A< udAé

Uy nli(A)= “ 1 “ o

yo, WAL, A<p
JIAvae, fASuv p, At uALp
] otherwise

wehave (U , all,)o(U, AU ) =W, AU ).

1.3.11 Example
Define Band B’ on X as follows:
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1 ifa=a,
Bleoy=a1
5 ifa=a,
and
| if'a:al,
Blay=32
3 fa=a,na,.

From Lemma 1.3.10, Band B’ are smooth uniform bases on X . From

Definition 1.3.8 we have B < B’
From Theorem 1.3.7 we obtain the followings:

1 if & =a,

Upla)= if ¢, <a<a

1
2
0 otherwise
and

1 ifazal,

Ugle)= fa,na,sa<a

2
3 o b
0 otherwise

Then U/ <Up:.

1.3.12 Theorem

Let I/ : Qv — I be asmooth quasi-uniformity on X . Defiﬁe a function

Cpidt I =17 by

Cpy(A,ry=mff{a(A)/ U(a)>r}.

For each A,A4,.4,¢€ [Vand r.r ely, we have the following
statements hold:

D€y 0,r)=0,

(A <CL(A,r),
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(3)If A, € 2y, then Cp; (4,,1) S Cy (Ag. 1),
(4) Cpy (A v A1) =Cy (A, ) v Cy(Ag,7),
(5YIf r <y, then Cp (A1) =Cy(4,7),

(0) Cp (Cr(A,m),r)=Cr(4,r).

1.2.13 Theorem

Let /:Qy — T be a smooth quasi-uniformity on X . Define a function
71t =1, by
(A =sup{rej|Cyl-A,r)=1-4}.

Then 7, is a smooth topology on X induced by U.

1.3.14 Definition
Let (X, U) and (¥, ¥) be smooth quasi-uniform spaces. A tunction

/X =Y is said to be smooth guasi-uniform continuous if
Vi) <U(S" (@), VaeQy
where 1< (a)(A) =/ Ha(f(A)) forall Le IS
From Theorem |.3.7, we easily prove the following theorem.

1.3.15 Theorem
Let (X,B))and (V,55) be smooth quasi-uniform bases. If By(e) <

Bi(J (@), VaeQy then [:(X,Up )— (Y, Ug, }is smooth quasi-uniform
continuous.

1.3.16 Theorem
Let (X,U),(Y,V) and (Z,#) be smooth quasi—uni\form spaces. [f

FAX N> (YY) and g:(Y,F)—>(Z,W) are smooth untform continuous,

then go f (X, [))—(Z,W) is smooth quasi-uniform continuous.
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[t follows that for each, z € Q7 ,

U(feg) (@) =/ (g ()

2V (g ()
=2W(a).

1.3.17 Theorem
Let (X,0U) and (Y,)7) be smooth quasi-uniform spaces. Let f: X —» ¥

be smooth quasi-uniform continuous. Then:
() f(Cy (A7) Cp-(f(A),r), for each e 1,
@Cy (f ' (wr s fHC(f(w),r), foreach e 1"
(3)f :(X,1,)— (Y.7)-) is smooth continuous.

Proof

The proofis similar to the proof of Theorem 1.1.10.
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Chapter 11

Smooth grills and smooth proximity.spaces

In this chapter, we introduce the notions of smooth grills and smooth
proximity spaces with a somewhat different point in [1,5,7,30] and investigate
some properties of them specially we make a characterization of smooth
proximity by smooth grill. The subspaces of smooth proximity spaces and the
relationships among smooth proximities, smooth topologies and smooth

uniformities are studied.

2.1 Smooth grills

In this section we introduced the concept of smooth grill with the notions
(homogeneous, weakly stratified, stratified and strongly stratified). We give
some example to show that weakly stratified smooth grill and stratified smooth
grill are independent notions. Finally we study the relation between smooth

grills and fuzzifying grills.

2.1.1 Definition

A nonzero function S: 7" — 7 is called a smooth stack on X if it
satisfying the following condition:

(SSDif g < Athen S(u) < S(A).

2.1.2 Definition

A nonzero function G-/ — / is called a smooth grill if it satisfying the
following conditions:

(SGHG0) =0,

(SGDYG (v Y <G v Gv),

(SG)if v < g then G(v) £ G ).
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2.1.3 Remark

In the above definition, the conditions (SG2) and (SG3) are equivalent to

the following condition:

(SYG(u~vv)=Glu)vGv).

2.1.4 Notation
ForasetX, S(.X') and I'(X) denote, respectively, the sets of all smooth

stacks and smooth grills on X. Of course, the requiring that G be nonzero is

equivalent to requiring that G(1) > 0.

2.1.5 Theorem
For S S(X) we define, g1 — 1 by
Og(v) =1-S(1-v)
For {S;:1e/} c §(X), we have the following properties:
()65, € S(X)

(2)if S, <5, then 6(S,) < H(S,),

(3)8s o5 =0 foreachiel,
(4)8( sup S, ) = inf 6(S)),
jel” iel”
(5)& inf S;) =supB(S,).
iel’ iel’
The proof is straightforward because sup S,,inf S; € S(X). .
ier  iel

2.1.6 Definition
Let (7" -7 be anonzero function and JTR= [Y We define

(GY: 1" =1 by

(GY(u)=sup G(v).

v
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A function (;: /" =/ is called a smooth grill base on X satistying the
tollowing conditions:

(SGBNG(0) =0,

(SGBQ)(G)(;[ vwISG v Gv,Yu,vel,

Naturally, a smooth grill is a smooth grill base.

2.1.8 Theorem
If a function G: /" — / is smooth grill base, then (G) is a s-grill.

Proof.

The condition (SG)) is easily checked. From the definition of ((}, we
have
(GY v vYSGluyv Gv) {GY ) v (GY(v).

Suppose there exist #,ve /" and fe/, such that

(GY v vy <t <{GYu) v (G)v) (A)
If G(u)>1, there exists y € I with 0 £y < g such that

(G)(ﬂ) 2(GY ) >t

Thus (G)(,u vV (G)(pl) >1. It is a contradiction for the equation (A).
Similarly, if G(v)>1, it is contradiction. Hence,

(G)(,u Vi) 2 <G>(,u) v <G>(v).

Then <G> 1s a smooth grill.

2.1.8 Definition

If (7 15 a smooth grill base on X, we define the characteristic, denoted by
c((5), of G by
o(Gy= sup G(v).

velt
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s for smooth grill we have

1t follows from definition that c(G) > 0. Just a

the following lemma:

2.1.9 Lemma
4 smooth grill base on X, then

c({GY)y = ().

If a function (7 RNy 't

Proof
¢((G)) = sup (GYv)

ve]k

= sup ( sup G(e))

velt  usv

= sup Glu)= C((J)

yelx

2.1.10 Definition

If G is a smooth grill (base) —cthenfor 0o s¢, W

on X with ¢((7)

per) a-cut grill (base), denoted by G%, associated with GG by

GE =fvelt Gv)>al.

cut grili (base), denoted by

define the (up

and, for 0 <a ¢, We define the (lower) a-

Gy associated with G by

G, =1V el Gvyzal

2.1.11 Theorem

If G is a smooth grill (base) on ¥ with «(G)=c, and:

¢ . then G is a fuzzy enill (base) on X

(Hho0=sa<
is a fuzzy grill (base) on X.

() 0<asc, then (5,

Proof
Let G be smooth grill on X Gh=c>a, implies 1€ G* . Thus G*=¢
Since G(0)=0, then 0¢ G ouvveG® implies a <G(u v V) < Glu) v GV)

implies, & < G{u) or ¢ < G (v)implies 4 & G®or veGe.
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Finally, if yeG* and v = u then a < G(v)<G(), and Hence,, (€ G
To prove (FGB;)  let v < Vo V V3 and v eG?.  Then
a <{GYv)<(G)vy vvs) = G(v,)v Glvy)  and  Hence,, o< (G{vq)or
o <C(vy) then v, € G or v, eGY. The proof of (2) is clearly and left to the

reader.

2.1.12 Lemma
If G is a smooth grill (base) on X with ¢(G)=c, then for 0<a < A<,

G, <GP <% <G

The proof is strai ghttorward.

2.1.13 Definition

Let (i be a smooth grill on X with ¢(G)=¢> 0.For uel A define
Se(w)={ae(0,¢/: pecG)

Then S () =¢ or Sg(#) is the interval of the form (0, 8].

The proof is straightforward.

2.1.14 Theorem

If G is a smooth grill on X with ¢(G)=¢>0. We define SG: 7% — /1 by
SG(u)=c¢ A (supla € Sgli)})-

Then SG is smooth grill.

Proof
(SG1) Since 0 G* . for O<a =c, S;(0y=¢ Hence, SG(0) = 0
(SG,) and (SG;) are proved from:

SG(AV w)=c A(suplo € SglAv p1)y)

= ¢ A (supfa e S} v (supla e Se)}))
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— (c A (supia e Sg(A)} v (c Asupla € Se;()1))

= SG(A)y v SG(u).
2.1.15 Definition
(1) A smooth grill is called weakly stratified if and only if it satisties
vaecl, Glayza.
(2) A smooth grill is called homogenous if and only 1f it satisfies
vael Gfaj=a.
(3) A smooth grill is called siratified if and only if it satisfies
Vael Yicl', Glav A)<avG(d).
(4} A smooth grill 1s called sirongly stratified i and only if it satisties

vielt, G =supl(anG(l; )

ol
2.1.16 Remark
If G is a homogeneous smooth grill then G is stratified and weakly

stratified.

2.1.17 Theorem
Let (G is a smooth grill base on X such that G(D=1. lfGisa strongly

stratified, then it is homogeneous.

Proof

Since G(1) =1, we have

y | if0<a<p
(I(l(.[ﬂa):{() ifa>ﬁ

Thus,

vpel,G(B)=supla AG(]E?_)a N=p.

ael
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2.1.18 Example
(1) A function <7 -5 defined by S{v)}=sup v(x) 1sa strongly
xe X

stratified smooth grill on X. By Theorem 2.1 17 and remark 2.1.10. Sis

homogeneous, stratified and weakly stratified.

: : 1 . -
(2) A function G- 1Y 5] defined by S(v) =sup 3 y(x)1sa stratified
yve¥

ogeneous nor stratified because

smooth grill on X. 518 neither hom
< not strongly stratified because.

0.4%=S(04)

$(04)=02. Furthermore, it 1
sup (@ ~ G4 N =
el e

G- 1X 5] defined by S(v)=min{l,sup 2p(x)} isa

xeX

(3) A function

weakly stratified smooth grill on X. S 1s not siratified because

0.8=5(04v03)>(04vG(03)=006.

Furthermore, it is neither homogeneous nor strongly stratified.

(4) A function §- 1Y — I defined by
S(v)= [1 if‘v =0
‘ 10 if v=0
is a weakly stratified and stratified smooth grill on X, It is neither
stratified.

homogeneous not strongly
he weakly stratified smooth grills and stratified

(5) From (2) and (3), 1
siooth grill are the independent notions.

2.1.19. Definition

A nonzero function £ 2V 5 ] is a fuzzifying grill on Xif and only 1f 1t

satisfying the following conditions:
(fghg(¢) =0,
(fg2)g(Au B) < g(A)v g(B),
(fg3)if A < Bthen G(A) < G(B).
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2.1.20 Theorem
Let X be a set and A(X) denote the collection of fuzzifying grills on A’

Let £(X) denote the collection of strongly stratified smooth grills on X For
ge A(X), let G¢ - [Y —> 1 be defined by

Gy = sup (a A g4 )

el

For GeS(X). let g% :2% =1 be defined by
g7 (A =G,
For ge A(X), let ¢ ACX) = Z(X) be defined by
Y(g)=G*.
For GeX(X),let @ Z(X) > A(X) be defined by
DGy =g"

Then it has the following properties:

(1) G¥ e Z(X),

(2) g e AX),

(3) W o ® = Ly, thatis & = G for each (i € Z(X),

(4) ©o¥ =1 0> that 1s gGg =g foreachge A(X),

(5) Y is bijection .

Proof.

(1) To prove G¥ € Z(X), the axiom (SG1) follows from (fg1), since
0,=9. The axjom (SG3) follows from (fg3) and the fact that A < ¢ immplies
Ay © HysVAE .

(SG2) Suppose there exist A, i €1 Y guch that

G (A p) > GHA) Y G ().

There exists t €/, such that
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GE(Av ) > 1> GEA) v GR Q). (13)
From the definition of G , There exists « € /, such that
GE(Av u)zangl(Av )y, )>1
Since (A v i), =4y V Hy and g((Av p), ) =g(A, )V 24, ), we have
GE(A) v GE(u) 2 la A g ) v e~ gl )]
o gl 1)
> 1.
Hisaconﬁadmﬁonﬂxtheequmkﬂ1Gﬂ.Thu&
GH(Av ) < GHA)Y v GE ().

Now, to prove G* is strongly stratified, since G¥(1, )= g(4, ) for each

Ael A . we have

G (A =sup (o A g4, )

ael

=sup(a A G, ).

aal

Thus, G* € 2(X).
(2) The axioms {fgl) and (fg3) follow from (SG1) and (SG3),
respectively. The axiom (fg2) follows (SG2) because
g9 (v g i (B =G v Gy
=G0 vly)
=G, p)
= g(; (Awu B).

Thus, g('; e A(XY}.

(3) Because (7 13 strongly stratified, it follows that .
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G (A)=supla~ g (i)

asl

= sup (o A G(1, )
ael

=G(A).
(4) Since g is a fuzzifying grill on X, it follows that

gt ra)=Ge(1,)
=supf(oa~gl( 1y )y )

el
=g(A4).
(5) Follows from (3) and (4).

2.2 Smooth proximity spaces

This section consists of three parts: definitions and general properties of

the smooth proximity, smooth topologies induced by smooth proximities and

smooth quasi-proximity induced by smooth quasi-uniformity.

2.2.a Definitions and general properties

2.2.a.1 Definition

A function &/ x /Y ~» [ s called a smooth quasi-proximity on X, 1f it

satisfies the following axioms:

(SQP1)6(1,0)=46(0,1) =0,
(SQP2) if 6(A, 1) =1, then A £1— p,
(SQPH (oA, pevv)=06(A,v)vE(A,v),
Q)Oo(Av y,v)y=6(A,v)va(u,v),
(SQP4) 5(A,11) 2 inf, WA pIvo(l-p, 10}
pel

The pair (X,9)1s said to be smooth quasi-proximity space.

A smooth quasi-proximity space (X, &) is called smooth proximity space

if 1t satisfies:

(SP3)5 =5", where S (A, 1) = S(p, A) .

A smooth proximity space (X,8) is called principal if it satisfies:
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(PSP) S(sup i, 1) <sup (A, )
jed jed '

2.2.a.2 Remark

(I} A smooth proximity space (X,8) is called hasic smooth proximity
space it it satisfies the conditions (SP1-SP3) and (SP5).

(2) Let (X,&) be a smooth quasi-proximity space. Then the structure
5 is a smooth quasi-proximity on X .

(3) Let (X,0) be a smooth proximity space, then for each r e (0.1] the

family &6, = {(A, 1) e A& VO(A, ) 2 r}is a fuzzy proximity space on X

Now we identify the relation Son /7 with the mappine & - /¥ — 1
pping

such that

F(u)=0(u,A).
It 1s clearly that, & s a smooth grill on X .

Let & be smooth basic proximity on a set X and let (; be a smooth grifl
on X . Then we define, ¢: M (X )xI'(X) > I'(X) as follows:

e(8,G)A) = inf\. (O(u, ) v Glu)),
pel

where M (X)) is the set of all smooth proximity spaces.

2.2.2.3 Theorem
(1) e(6,5)e G(X)
(2} e(8,.G) G
Proof.

Smcee for v € /, we have §(12,0)=0 and G(0)=0, then &(&5,G)0)=0.
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e(5, YAV 1) = inf (S, Av ) vEHAY 1)

vel”

= mf\' ((5(!/,/1)\/(S(V,,Lt))v((j(ﬂ.)v(f(,u)))
vel”

= inf\. (S(v, A v GAN Vv (S(v, ) v G(a))
vel”

= inf (B(v,A)vGA) v inf\, (S(v, 1) v G(u))
vel vel” w

=e(85,G)A) v e(d,G)u).
Therefore, e(&,(7) e G(X).
Second, since, G(A) £8(u, A)v G(A) forall pe 1~ , then

GA) < inf oG A)v G(A)=e(6,G)A).
pel”

Therefore, ¢(5.(0) 2 G

2.2.a.4 Theorem

A smooth basic proximity is a smooth proximity iff e(5,8,)=0, for
each Vie /"

Proof

Since &; is smooth grill on X and Hence, by Theorem 2.2.a.3 we have
¢(5,G) 2 G . Before proceeding further let us note that for some v e /% can be
expressed as 1—v and by symmetry of Sand Aed, iff e d,. Now, by
definition of smooth basic proximity § on X is a smooth proximity it
S(A,0)vS(l—v,u)<S5(A,u). Since

e(5,8,)(1) = inf (8(0, () v 6, (L))
¥

<6(1-v, 1) voOo(4,0)
=5 (A,L)vo(l-u, i)
<S(A, 1)
=0, (1).
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Then, e(8,6,)C 0, e(5,51)=01-

we will construct the coarsest smooth quasi-proximity on X finer than

ogpand oo

2.2.a.5 Theorem

Let (X,5)) and (X,5,) besmooth quasi-proximity spaces. We define.
forall A,ue I
5y w83 (4, u) =mi{sup (S1(A, )~ 62 (A Hie Ny
gk

Where for every finite families (AJ),(;zk)SLlcil that A =sup4d; and

L= Sup gy -

Then the struct

ure Oy dyis the coarsest smooth quasi-proximity on

X finer than &,anddy.

Let (X.,0) be a smooth quasi-proximity space. For each A, u < 1 we

define
5H () =008 (A,u)

By the above theorem, we can easily prove that (X 07 1s a smooth

proximity space.

2.2.a.6 Definition
Let (X,6pand (¥.62) be smooth quasi-proximity spaces. A function

/X = Yisasmooth quasi-proximity (proxintity) cOntinuous if it satisfies

S (u,v) = 9y (f (), f(L)) for every y,0 € i¥

Equivalently,
51(_)"-1(/1),.1(}71(/9)) <&4(A,p) forevery 4,p¢€ I

e definition, we can easily prove the following lemma.

Using the abov
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2.2.2.7 Lemma

If a function f:(X,68)) > (¥.5;)is asmooth quasi-proximity continu-
ous, then:

(a) /: (X,(S]“I }—> (’Y,é‘gi) 15 a smooth quasi-proximity continuous.

(b) f(X, 67> (Y,55) is a smooth quasi-proximity continuous.

2.2.a.8 Theorem

Let (¥V,0) be a smooth proximity space, X a set and /: ¥ — ¥a
function. We define &, IR YRy by

8 Uty = SCF(AY. £ (1))
Then:

(1) The structure 0 y 18 the coarsest smooth proximity on X for which f
1s smooth proximity continuous.

(2) A function g:(Z,0™) > (X,(S‘/-) is smooth proximity continuous

iff /o g 1s smooth proximity continuous.

Proof

(1) First, we will show that & r 1s a smooth proximity on X .

(SQPL) Since 0 ¢ (1,0) =4(/ (1), /(0)) £6(L,0)= 0. Similarly & (0, 1)=0.

(SQP2) Let 5‘/-(/1,,11) =0(f(A), /(u)#1. Then F(A)<1- f(u) implies

RS A CAV3) EN A B A 1)) E B e G 707 P P
(SQP3) and (SP) are trivial.

(SQP4) Suppose & (A, 1) 2 inf Wr(Apyvo,d-p,ul.
pel

There exists » & (0,1)such that

5 () <r < inf A8 {(Ap)v 8 (- p,u0)}
pel

Sincer >0 (A, 1) = 5(f(A), f(w)), by (P4), there exists ye 17 such that
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Sincer > & (4, 4) = S(F(A) S (), by (P4), there exists 7 €17 such that
SNV U=y, [ <r
It implies
5 (A1 Y (7 A=)

~S(FALTUT MY ST A= NS G0)
<S(fANV -y fun<r

Thus, inf {5,«(/1,/3) v O /'(l‘ Py <.
pelX ‘ |

It is contradiction for (E). Hence,

5 (A )z inf {0 (A, p)v S - papli
/ £ !
PE

From the definition of & 4. 7 is smooth proximity continuous.
Let /(X 00— (Y,5) be smooth proximity continuous. Since
5'(A,u)=8(f(A) S (u) = S (A, 1) 5

O is coarser thand’ .
(2) Let g be smooth proximity continuous. So,

5* (A, u) <6 p(g(A). g = S(f (g2 f(g()
Hence, [ o g is smooth proximity continuous.
Let fog be smooth proximity continuous.

SHA,m) <8/ (AN, (gl = S p(g(A).8(1)

Then gis smooth proximity continuous.

7.2.42.9 Definition

Let (X;,0,)es bea family of smooth quasi-proximity spaces. Let X bea

set and, for each i€ At X = Xa function. The ritial structure S 1s the

coarsest smooth quasi-proximity on X with respect to which for each 1€ A, f;

1S

a smooth quasi-proximity continuous function.
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2.2.a.10 Definition

Let (X,5)be a smooth quasi-proximity and Abe a subset of X' . The pair
(A,04) 1s said to be a subspace of (X, &)if it 1s endowed with the initial smooth

quasi-proximity structure with respect to the inclusion function.

2.2.a.11 Definitien

Let X be the product [T X;of the family {{(X,,5,)\/e A} of smooth
ieA

quasi-proximity spaces. An initial smooth quasi-proximity structure & = ®¢, on
X with respect to all the projections z, : X — X, is called the product smooth
quasi-proximity structure of {8, \ie A} and (X,®4;) is called the product

smooth quasi-proximity space.

2.2.a.12 Corollary
Let (X;0,)eabe a family of smooth quasi-proximity spaces. l.ef

X =T114X; be a set and, for each ieA,x;: ¥ — X, a function. The structure
el

o =&, on X is defined by

G(A, 1) =nf{supinf &, (m; (4, )7 (. )} -
ik IEA

11 1
Where for every finite families (A;),(424 ) such that A = sup A,z =sup gy
' =l ==l

Then:
(1) o 1s the coarsest smooth quasi-proximity on X with respect to which

for each i € A, 7, is a smooth quasi-proximity continuous.
(2) A function f: (¥,6") = (X,d) 1s a smooth guasi-proximity continuous

iff each 7; o f:(V,6") — (X;,8,)1s a smooth quasi-proximity continuous.
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On the other hand, since

PP (A A L)) <8(p 1= AV 8(py 1 - Ay)
<l-r.

we have 15(2) A 25,72 (o) A ©2)>1. 1t 1s a contradiction
(6) Sincel (4,1 <A, Ls(Us(A,r),ry<15(2,r).
Suppose 15 (I5(A,7),r) # Is(A,7). There exists xe X and ¢ e (0,])
Such that
IsUs () ry <t <1g5(A.7). (C)
Since ls5(A,r)(x)>1, there exists pE I with o(p,1—A)>1- rsuch that
Ts(A,r)(x)= p(x)>1 (D}

Since jnfl{5(,0,;/)\/5(1—;/,1ﬁ/1)}£§(p,1—/1)<l—r from (SQP4),
ye!A

there exists y e / X Such that
Spy)<l=r,8(l-yl-2)<l~r.
Since &(1-y.1-2)<1—r, we have P54, ry21—y . Thus,
S(p = 15(Ar) <S(p,y) <1 - r.
By the definition of Is(Is(A, 7)), Is(Is(A,rm) 2 p.

It 1s a contradiction for (C) and (D).

2.2.b.2 Theorem

Let & be a smooth proximity on X . Define a function 7, Ay, by
ts(A)=suplrel/1(A,r)=1).

Then r5is a smooth topology on X induced by & .

Proof

The proof 1s similar to the proof of Theorem 1 1.9
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2.2.b.3 Theorem
Let (X,7)be asmooth topological space. Define a function o, : R

— / as follows:
. l—sup{z’(u)\ued);v_ﬂ} if GDL# =g,
‘ST()“’””):{l if O, , =¢
Where @ :{Ue]X VA<usl- ).
Then we have the following properties:
(1) &, is a principal smooth proximity on X,
(2)If § is a principal smooth proximity on X, then & S04,
(315, =7,
Proof

(1) (SQP1) and (SQP2) are obvious.
(SQP3) From Remark 2.2.2 (1), we have

5, (A, p1v p2) 26 (A, p) v, (4, 02).

Suppose there exists 7 € (0,1) such that

5. (A, o1 v p2)> >0 (A, p2) V{4, p2)

Since &,(A,p;) <rfor each je{l2}, there exists v; € 1 with A <
<1=p; such that 7(v,)>t-r. Since A<uyAvy <(I-p)a(l- 27) and
(v Ay ) > 1—r we have

S (A, prvpy)sl—t(uo nvy)<r.

It 1s a contradiction.

(SQP4) Suppose there exists # € (0,1) such that

6.(L.p)<r< inf {6 (Ay)vo(l-y.p).

vel”
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Since 4.(4,p)<! there exists VE/ Awith Asvsl-p such that
r(u)>1-r.Since L=V <| - p wehave
5. (A,1-0)<1- vy <r.é6.(v,p) <t
So

inf\_ 5. (A7) )v S (L-y.p) <7
yel”

It is a contradiction.

(SP5) Suppose there exists # e (0,1) such that

S(supd;,p)>7 >supd(4;,0).
jeJ ‘ Jed

Since supc?(/lj,p)<r implies 5(/1,,p)<f'f0r each j there exists
Jed ‘ ‘

v e with A/- SU; <l-p; such that r(u]f)>l—r. Since

supA; Ssupv; s 1-p.
J J

We have

S (suply,p)<l- r(supv;) < sup (-r(v;)<sr.
/ g 7

It is a contradiction.

(2) Suppose & £0; - There exists A, u e/ X and r e (0,1)such that
S(A, 1) >r >0 (A, 1)
By the definition of &, there exists pel Xand e (0,)with

A< p<]l—p such that rs(p)zl-s>1- rl(pl=-5)=p,
Since & is principal and

p=I(pl-s)= sup{ A VS, - p) < s},0(p.0) ssupd(4;,l - p)<s<r
{

Since A < p <1— 4, we have

S(A,u)2o(pl-p)<r.
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It 1s a contradiction.
(3) Suppose there exists A e [Xand re (0,1ysuch that

Ts . (A)Y<r<z(i).
Since 7(A)>r, we have 6, (4,1-A)=1-r(A)<l—-r.50 5 (1.r)=4

Thus 75, (A)=r. Itis a contradiction. Thus 75 (1) 2 7(A).

Suppose there exists A € /¥ and se (0,Hwith /5 (A,5)= Asuch that
p o
75 (A)zs>7(1).

Since A =sup{p; \ &, (p;,1 - A) <1~ s}, by the definition of &,(p0,,1 - 1)

for each i, there exists v, with p; <u; < Asuch that r(v;) > s. Thus,
A=sup p; £supu; £A4 imphies A =supuv;.
i i ‘

I
So,

7(A)=r(supy;) Zinfr(v;) = s .
i i
It is a contradiction.

Thus 75_(A)<7(4).

2.2.b.4 Example

Let X = {a,b,c}be a set. Define a function &' I %1% 57 as follows:

0 if A=0oru=0,

O(A,ut) = 3 if;{{a}zl¢90r1{b}2y¢9,

1 otherwise.

where y 4 1s a characteristic function for 4. Then & 1s a principal smooth

proximity on X . From Theorem 2.2.1, we obtain [ ¥ x Iy =1 asfollows:
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l if/l:L,rEJ,lj
. ]
[()‘(ﬂ‘uu): Z{a} le{;LC} Si¢1,03r<:l1
3
0 otherwise.

From Theorem 2.22, we can obtain a smooth topology 7 1Y =1 as

follows

| if A=0orl,
0 otherwise.

T5(1)={

From Theorem 2.2.3 (1), we can obtain a principal smooth proximity

Ory X < 1% 1 as follows:
. 0 if A=00r u=0,
5oy (Ao pt) = .
‘ I otherwise.
Hence, 6 <6, but o =0, .
2.2.b.5 Theorem
Let (.X,0) be smooth proximity space. Define a function Z‘s,l,- 75
by:

SE(A) =inf{(1- S(x,A) v A(x)}.

Then S}; is a smooth cotopology on X .

Proof
(CO1) Clear.

(CO2) Ss(Av )= inf {(1=8(x, v ) v (A v ()}
=inf {(1=(8(x,A) v &Cx,uN) v (A v 1))}

=inf {1 -8 AN A Q=806 m) v (A v u)x)]

Chapter 11



2 inf {(1- 806, ) v 2000} A (- 8 1)) v pufx)!
X
=inf (=30, v A A dnf {(1-8(x, 1)) v 1 x)]
= 35(A) A Sh(p).
(CO3) Since 7 is an infinitely distributive lattice, we have

35 (inf 4) = inf {(1 = (6, inf 2)) v (inf 4;(x))}
J £ J J

Zinf {(1- 8.2 v (inf A,(x))}
x J

= infinf {1 = 5(x.4) v 4 ()}

Joox
el

=inf 35(4;).
J

2.2.b.6 Theorem
Let (X,d))and (¥,5,) be smooth proximity spaces. if /X — Visa
smooth proximity continuous, then £ : (X, 75, )= (Y.75,) is smooth contin-

UOous.

Proof

For each pe /! , we have

35, (e = inf (=610 (oM v /™ o))
zinf {(1 - Six oMV T (o))
zinf {(1-5, (ST PN plf ()
inf {16, 0 S eIV P

~1
= ‘552 (}9)

Chapter II



2.2.b.7 Theorem. Let (X,o) be smooth proximity space. Define a
function r(‘;- IR by Tg(i) =1-6(A,1-A4).Then rg- is a smooth topology
on X . Conversely Let (X.r) be smooth topological space. Defined a function
5.1 <1t > 1 by

O (A ) =1-supfr{v) VA< < — .

Then ¢, is a smooth proximity on X .

Proof. Only we prove the first part since the second part 1s trivial.

(O1) Tt is obvious.
(O2)Forany A,ue /", we have,
FAA L) =1=8(AAp 1= (A w)
=1=-0(Anpu(l=A)v (=)
=1—{0(A A, 1 =AYV Oold A )= f1})
=l =02 A, L= A=A A ] 1))
>(1=0{A = AN Al =01 — 1))
= T3 (A AT (4.

(03) For cach family {4\ je J} c /™, we obtain

rg(sqp/l_,-): I -5(supif-,1 -quxll-)

/ ! /
=1-d6(sup4,.,inf(1-2;))
i /

Z1=supd(4,.inf(1-4;))
i !
= lI‘lf(l - (5(/1]’11’110(] - A'Jr )))
J /
Zinf(1-6(4,,1-4;))
/

~inf 75(4;).
!

Thus rf; 1s a smooth topology on X .
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2.2.b.8 Theorem. Let (X,6,) and (Y,0,) be smooth proximity spaces. A
function f: X — Y is a smooth proximity continuous ift f :(X,rj y > (Y, rj, )
I el
Is a smooth continuous.

Proof. Foreach pe 7 ,

5 e =1=810 et = o)
=180/ (o)t - p))

>1 -8/ "o Ta - p
21 =-565(p1-p)

=5, (o)
Foreach A,ue/ .

O, (Ay=1=supi{r(u)i Ao~ uj

>1—suplr (f o £ S oy - ()

=5, (T T )
2.2.b.9 Example

Let X =!a,b,c! be a set. Define a smooth proximity o : IVt ST oas

totlows:
0 ifA =00or =0,
DA, ) = i if_();tisrz:“: ,0;&;:51—%”: e (0,
l otherwise.

where y , is a characteristic function forA4. Then ¢ is not a principal

smooth proximity on X because

2
L= 00y b ) > SUp Ol Xip )=
re(0.1) 3

7
S -

We can obtain 7 I > I as follows:
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| itA=0orl,
73(A) =+ % it A=t,, te(0l),
LO otherwise.

Then

, |
OZT(%(Z{G})=T§( sup tx=(,§)< sup Tf%(t)f{n}):;'

t=(0. ({0, 1)

Thus, rg is not a smooth topology on X .

2.2.b.10 Theorem
Let (X,8) be a principal fuzzifying proximity space.

Then

(1) I5(A) = inf (1=6(A4{x}),

xe A"
; | 2
(2) 15 =75,

Proof

(1) By Theorem 2.2.5, we have

LAY = inf {1 -8UxY, ANV 2400

xeX

=1'111;{(1—5({x},/4))\/,?5,4(x)}f\ inf {(1-0({x}, AN v x4(x)}
xe xed’

= inf (1-56({x}, A4).
xe AC

(2) For each A« 2 X , we have
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75(4) =354
= inf (1-8({x}, A%))
xe A

=1-sup&(fx}, 4°)
ye A

=1=0( U {x},4%)

xe A
=1 —5(A4,4%)

=T()‘.

2.2.b.11 Theorem
It a function S (X, 6) > (Y,5,)is a smooth quasi-proximity

continuous, then:
(a) /5] (\f'_l(p),r) > f‘l(/é—;2 (p).r)), foreach pe 17 and rel0l).
(b) / (X, 75, ) — (}/=T(52 )1s a smooth continuous,
(c) 1 (X’Ta‘]" } > (}/’To'g' )is a smooth continuous,
(d) f: (X’Tfff )= (Y=r55 J1s a smooth continuous.

Proof
(a) Since f'is a smooth proximity continuous, we have
ST sy (phr) = 17 sup (e 1T\ Sy (1 - py<1- 1)

<sup{ /(D el* NS/ T ALL- 7 ey <1 1)
ssuply e 108 (r. 0 - 7 (p)) <1 - 1)
=15/ (p)r).

(b) Suppose that f is not a smooth continuous. Then there exists
A eIt such that r5 (1) > s, (‘f"l(}t)). Hence, there exists » € / such that
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r5,(A)>r > (7))
Since 75, (4) > r for some ¢ > rthen
A= Is, (A, ) =sup{p\dy(p1-A) <c}
Since /' is a smooth quasi-proximity continuous, by Lemma 1.1.5, then
S A =suplf T () 82 (p 1= A) <}
<sup{/ T (V& (p)1- /T A < o
<is (SN (A)C).
So, by Theorem 2.2.1, we have 5, (f! (A),cy=F7 ()

It follows that 75 (/' (4) 2 ¢ > . It is a contradiction

(¢) and (d) are easy from Lemma 2.1.12 and (a).

2.2.¢c Smooth quasi-proximity induced by smooth quasi-uniformity
In this part we show that every smooth quasi-uniform space induce
smooth quasi-proximity space.

2.2.c.1 Theorem
Let (X,U7) be a smooth quasi-uniform space. Define, forall A, pe 1 ,

_ I=sup{l/)\ue®; ,; ifO, ,=¢,

Sy (A, p)= .
| lf ®/?-,P = ¢

Where ©; , ={ue § X \u[d]£1- p}. Then:
(1) (X,dy )is a smooth quasi-proximity space.
(2) Ty = f()'(; .

Proof

(1) We will show that &;; 1s a smooth proximity on X .
(SQUT) Since u[0]=0 and u[l] =1 for U/(u) =1, we have &;;(0,1)=0 and
o (1,Q)=0.
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It follows that {/(uy Auz) > 1 —r (uy Anua A v A 1<1=(p)

Hence,, we have &y, (4| v Ay, p) < r. It 1s a contradiction. Therefore
Sy (A, p) v S (A, p) 28y (A v Ao, p)

(SQP4) Suppose there exist A, pe [/ X and re (0.1) such that

Oy (A, p)<r < inf {6y (A y)voyd-r,p))

yeIX

Simce &y (A, p) < r, there exists u e 1% with Uay>1—rulAl<l—p.

]XXX

From (SQU4), there exists v e such that vev <wu and U (v)>1-r.

Since v[A] <v[A] and v[V[A]] <1 - p, there exists 1 —v[A] e /% such that
Sy (Al-v[A]) <rand Sy (v[il.p)<r.
So,
inf {0y (4,7)voyl-y,p)}<r.

yeIX
[t 1s a contradiction.

Thus

oy (A,p)z inf 16y (Ay)voyl-v,0)
yvel

(2) We only show that [, =/ Sy -

Let p e/ such that u[p]<Aand [/{x)>r. Then
Hence,

IU(A,F)S] (/’t,f")

Sy

Let pe /¥ such  that oy(pl-A)y<l—r. By the defimtion

‘x X

of &, (p,1 - A), there exists ue 1% quch that [J(u)>rand u(p) < 4. Hence.

Iy (A, r) 215, (A,r).
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2.2.¢.2 Theorem
Let (X.[/Yand (¥,V) be smooth uniformity spaces. if"f X —VYisa

smooth uniformity continuous, then [ (X ,8;,)—> (¥,dp ) 1s smooth proximity

continuous.

Proof
Suppose there exist A, pe { Xand re (0,1) such that
Sy (A, p)=r>0p (f(A) f(p)).
Since &y (f(A), F(p)) < r, there exists ve /77 such that
Vv)>1-ryf(D)]<l-f(p)
Since, V[ f(A1)]<1- f{p) by Lemma 1.1.5, implies
(/= N A= F O s £ A= F(p) L= p
Since f is smooth uniform continuous, (/ x f_)_l WzVwy>l-r

Thus &;; (A, p) < r. It is a contradiction.

2.3.3 Theorem

Let ( X,{/)be smooth uniform space. Then r(l] = T(ISU .
Proof

Since 75 (A)= inf (1= 6y (x.1 = ) v (L= A0}

= inf{(1- A(x) v sup U(u)} =1},
X u|x|<A
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Chapter 111

Smooth syntopogenous structures

In this chapter we introduce the concept of smooth syntopogenous
structures. The relation between smooth (semi-) topogenous order and smooth

(supra) topology is studied.

3.1 General definitions and basic properties

Iﬂ ille seque] we Ae 1'118 f]1e concept of smooth semf~t0pogenous order
which the condition (ST2) is defined in a somewhat different view of Sostak
(See Definition 0.4.b.1.) and we study the product of smooth topogenous spaces.

3.1.1 Definition

A function n:1" xI' 7 is called a smooth semi-topogeneous order
on X, if it satisfies the following axioms:

(STH (LD =n(00) =1,

(ST2)if 77(e,A) = 0, then A < g,

(ST A <Ay, 4y € pu, then (4, M) (A, p).

3.1.2 Example

We define 77,75 : 1% x 1" =5 I as follows
L i Al=0o0rpu=1,
M5, 0 ASpnl,
6 otherwise.

=

172(A, ) = inf {(1 - )(x) v u(x)},
re X

Then 7, is a smooth semi-topogenous order but not a Sostak smooth semi-

topogenous order because |



82

= 11(0.4,0.5) 2 (1 - 0.4)(x) v 0.5(x) =0 6

W | 2

Moreover, 77, is a Sostak smooth semi-topogenous order but not a smooth

semi-topogenous order because,

0.5=1,(0.5,0.4),0.5 £ 0.4.

The following proposition is easily proved from the above definition.
3.1.3 Proposition

Let n be smooth semi-topogeneous order on X and let the functionping
"IV x IV o> 1 defined by
7 (A ) =n(l~ 1,1 - ), VA, uel”

Then 1" is a smooth semi-topogeneous order on Y.

3.1.4 Definition

A smooth semi-topogenous order 7 is called smooth topogenous if
forany A;, A>, A, 14y, 115, p1 € 7

(STS) (A} v Aa, 20) = 0{ 2, 1) ~ap( Ay, 1),

(STOY (A, gty A pty) = (A, 1) A (AL 1ty ).

3.1.5 Definition

Let (X,n) and (Y¥,7,) be smooth topogenous spaces. A function

J X =V s said to be smooth topogenous continuous if

naAa) < (AL ST YA el

3.1.6 Theorem
Let (X.,n), (Y.py) and (Z,7;) be smooth topogenous spaces If

JiX =Y and gV —>7 are smooth topogenous continuous, then

ge f 1 X = Z isasmooth topogenous continuous.
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3.1.7 Definition

Let Yy be a fuzzy biperfect syntopogenous structure on X (Definition
0.4.b.9). A function S: Yy — 7 is called a smooth syntopogenous structure on
X satisfying for 17,171,175 € Y , the following condition

(TT) there exist 77 € Y y such that S(77) =1

(T2) SOn )~ S(m) < sup S(x)

A1z S??

(T3) S(my < sup ().

ez
The pair (X,S) is said to be a smooth syntopogenous space,
A smooth syntopogenous space (X,S) is said to be a smooth symmetric
syntopogenous space 1f 1t satisfies

(ST)S(m)y < sup S(&).
gz

3.1.8 Theorem
Let (X;,7;);er be afamily of smooth topogenous spaces. Let X be a

set and, foreach /e[, f; : X' — X, a function. Define the function
r;:]X < I* = Ton X by

(A, 1) = suplinf 7, (f; (4;).0 = fi(L= ;. )}
Ik

" In
where for every finite families {4, \ 4 =sup A;dand {g \p=supp, ).
J=1 k=1
Then: .
(1) 7 1s the coarsest smooth topogenuous structure on X with respect to

which for each i e[, f; is smooth topogenous continuous.

(2) A tunction f:(Y,7) = (X,7)is smooth topogenous continuous
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iffeach f, o /:(Y.n") = (X,,n,) is smooth topogenous continuous.
()Y (X;.m);er 1s symmetric for eachi e I, then (X,7n)1s symmetric.
Proof

(1) First, we will show that n1s smooth topogenuous structure on X .

(ST3) Is easily proved.
(§T1) From (ST3), it is easily proved from:;

n(C,0)=n,(f:(0),1~ f;(1)=7,(0,0) =1,
LD =m(fiD1- (0N =n(LD=1.

(ST2) If (A, 1) > 0, there are finite families (A;) and (g4 ) such that
A=supA and g=inf 1y with

A, )z inf 1,0/ (), = fi(l= p.)} > 0.
ok

It follows that for any ;& there exists an /% € 1"such that
M sy Q)= 1 (=)
Itimplies 4, <4,

(ST4) Forany A, u,v e /A , we will show that
A, u A 0)Z (A, 1) An(A,0).
Suppose that there exist A, z,v €/ Yand 1 e (0,1) such that
A, ~n0) <t <n(A,u) A n(A,0).
Since 7(A,u) >t and n(A,0) >, there are finite families |
A VA =supd ) {4, VA =sup A, ), {gy \ g =inf g }and
vy \u=infu}

such that

Chapter 111



85

inf (supr, (/iA1= fi(0= ) >,
Sk fel

irnj (supn; (f; (A )1 = Fi{l=v))) > 1.
m.dojel

It follows that A =sup(4; A Ay )and g Av=(inf z;) A (inf v;) - Since

J.m
supn; (fi(A,), 1= fill = )y ssupm, (Fi(A, A dp), L= fill = g )
el iel’
Sup7; (f: (2’;?7 )sl = fr (l -y )) < supn; (ff (/1/ A /11’17 )71 - f{ (1 =y )) .
el iel”

We have

DA v 0) > Gnf sup, (F, (A, L= £,0 - )

Jkder
A(nf supn (fi (A1 = f,(0-v))
mt el
z (inf'supn; (/i (4, A )= (0= 1))
IR

~linfsup i (f (A A Ay ) 1= (1= 0p))

m.i jelr”

>1
It 1s a contradiction.
Similarly, we have n(A v p, ) <n(A, uy An(p, 1)

(S2) We will show that n<noer.

Suppose there exist A, u e Y and re (0.1) such that 2
A 1)y>r>non(d, i)
Since n(A, 1) > r, then there are finite families
7 g
{A; A =sup,} and {u; \ g =sup .} with

J=1 k=1

(A, ) = {inf supr (Fi(A )0~ fi(L= g ) > 7
Sk iel

It follows that for any ;,k there exists an & € 'such that
By U A= o L= ) > 7.
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Since M 1s a smooth topogenous structure on X i and By SHiy 7y, -

X,
there exists p . e/ # such that
Dig @y Uiy (A= i (T )

205 Ury (Apdp ) A1 (P i b= iy (B= )

>F.

Since 1- f, ; (1- ijfl ('Pﬂ{— )) = P j-and f:"&,-;‘. ('f}':/\»] (P./k }) < £ i > We have
Mo iy b=y, A= £ o) 2y, (G ) =7,

My Uy (.}",-I,A_1 Pt Tp, Q=g Nz, (L= 1 (- ag).

Put
i ) P
Pj= mff, " (p_/‘/c)’ P =supp,;.
k=1 K /=1
Then, by the definition of 77, we have (4, ;) > r. Using (ST3), we have
i, p)>r.

In a similar way, since

My iy P L= C= e D2, (P = £, (1= g ))r we have

n(p, ) >r Thus
non(A,w)zm A, p) Ao, p)>r.

It 1s a contradiction.

Second, from the definition of 7, for two families { 7~ [ (A )} and,
(7' (1)}, we have

N RV RS AT G VS ERATER A7)}
21 (A, u) -
Thus, foreach /€T, f; :(X,n) - (X;,7;) is a smooth topogenous

continuous.
Chapter 111
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Let f;:(X,n") = (X;,n,) be smooth topogenous continuous. For every

iel , we have

(A, u) = Stlp{in/f sup; (fi (A 1= fill = g )
FNT

<suplinf sup nT L ADAT A= A0 )
j.ejel

=17'(A, 1),

we have

M A )2 (A1), Vi, ue v

(2) Necessity of the composition condition is clear since the composition

of s;ooth topogenous continuous functions is smooth topogenous continuous

Conversely, suppose / is not a smooth topogenous continuous function.
Then there exists A, e/ Yand re (0,1} such that
7T T ) < <A, p)
Since 77(A, 1) > r, therefore there are finite fami!ies(ﬂj ). (22, ) such that
P g
{A, VA= supA;} and {z \ g =supyy }and

j=1 f=i

A p) zinf g (Fi(A,0 = fil = D >
Tk

It follows that for any /, k there exists an ! i € I"such that
T Uiy )= A=y ) >

On the other hand, since f; o / is smooth topogenous continuous
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and £,/ (/T (A0S F(4)),

rein (G, (A=, (= )
F . ‘ '

Sinf 7'/, /)" Tig AU, o /)

RS

<inf ' AT )

gk

= (/AL )

[t 1s a contradiction.

Ia
(3) For every finite families A, VA= supA,} and (g \ g =sup ).
j=1
n(A, 1) = sup{inf supn;( f, (A= 7l -

Ik el

=suplinf sup#; (f;(4;),1- £,(1 -

Ik el

=supiinfsupz, (f;(1 - ;)1 -

Sk fer
=nl-ul-2)

(L) .
3.1.9 Definition

KIEVART

¢

b=l

4 )i

)

T

— A )

et (X,77) be a smooth topogenous spaces and A be a subset of X . The

pair (A,n4) is said to be a subspace of (X, n)if it is endowed with the initial

smooth topogenous spaces with respect to the inclusion function.

3.1.10 Definition

Let X" be the product [T X;of the family {(.X,,7,)\/ e A} of smooth

=

topogenous spaces. An initial smooth topogenous spaces 77 = ®r;on X
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with respect to all the projections 7, : X — X ; 1s called the product
smooth topogenous spaces of {n; \i e A} and (X, ®n,) is called the product

smooth topogenous spaces.

3.1.11 Corollary

Lel (X, 17;);c 4 be a family of smooth topogenous spaces. Let Y = 11X,

ich
be asetand, foreach ie Az, X - X, a functionping. The structure

n=®n; on X s defined by

(A, 1) = mf{supinf n,; (7 (A7 (g )Y -
ik rel

where for every finite families (4, ),(44 Ysuch that A = sSp A= S:jp s
=l o=

Then:

(1) 77 1s the coarsest smooth topogenocus on X with respect to which

for each /e A, 7, is a smooth topogenous continuous.

(2) A function f (¥, n") = (X.7) is a smooth topogenous continuous 1T

cach 7, o f1(¥,n") = (X;,n,) is a smooth topogenous continuous.

3.2 Smooth (semi-) topogenous order and a smooth (supra)

topology

In the sequel we present some relations between Smooth (semi-)
topogenous order and a smooth (supra) topology.

3.2.1 Theorem

Let nbe a smooth semi-topogenous order on X. Define a functionping

I,]:["vx11—>l,by
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1,7()u') =supf{u e R (g, A)> k.
Then we have the following properties:
(1) 1, 1s a smooth supra interior operator.
(2) If 5 satisfies STO), 1, is smooth interior operator

(3) If 77 satisfies ST5), I”_,. is smooth interior operator

(M If n<yon, foreach A e /¥ and rel,,
L, (L, (A r)r)y =1, (4,1).
(5) If »nis a smooth topogenous structure, 1, 1is topo'l‘ogical smooth

Interior operator.
Proof
(D) (I Sinece p(L,h =1, 1, (lLLry=1
12) Since n(x, A) = 0, < 4 implies 1, (4,r) < 4.

(13) and (14) are easily proved.
(2) From (13), we have
L, (A4 A 4dy,7) <L, (4L A 1,(2,,r).

Conversely, suppose there exist 4,4, € /Y and r e I, such that
(4 Ade,r 21 (4 YA LA, 1)
There exists x e X and ¢ € [;such that
I,?(/ll A Ay, F) <l < l,?(/ll,r) A I(Zz,_r).
Since 1, (4, J)(x) > 1, for each 1 e {1,2}, there exists u; € 7 with
n(u,,A;)>r such that
I,](A,,r)(x) > (x)>t.

On the other hand, since

Chapter LI



by

91

1,7(],](A,r),r) <t < I,T(l,r).

Since 1, (4, r)x)>1, there exists w2 e 1" with 5, A) > rsuch that
1,, (A, P)(x)z pu(xy>t.
Since i <rpeny, we have
<Ay i on(i,A).
Since 770 n(u,A) > r, there exists p e /" such that
non(u,Ayzn(u,p) An(p.A)>r.

Hence,

HE l,r(p,r) o< I,F(ﬂ,,r) .
Thus

I,](I,T(;t,r),r)(x) > u(x)>1.
It is a contradiction.

(5) It is trivial from (2) and (4).

3.2.2 Theorem

Let 7 be a smooth semi-topogenous order. Define a function 7,, 1/ S

T, ()= sup{re /1, (4,r)= A}
Then

(1) 7, is a smooth supra topology on X induced by 7.

(2) If  satisfies (ST6), then 7, is a smooth topology on X.
(3) If 77 is a perfect, then 7, (1) =n(4,4) for each e/
Proof

(1) (O1) Simce I,](Q,r):Q and [, (1,r)= 1, forall re!,,then

T}; (Q) = T;} (1) = ] :
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(02) Suppose there exists a family {4, el \jeT} and £ e(0.1) such

that

7, (su;l) Apy<i<i fl‘ T, {4;).
ie /€

Since inf r,y(ﬂ,j) >i, for each jel, there exists o> such that
jel ' ‘

ﬂ,f - L) (;“j’r‘/’) :

Put »=inf »;. By Theorem 3.2.1, we have
jel™

l,(supd;,r)=z supl,, (4,,r)
jer jel’ '

=supl, (ﬂj JF)

Jel

=sup ;.
jel’

So,

L, (su}? A.F)= S,ul[,), A, .Consequently, 7, (sul]) Ayt
JE JE 1€

It 1s a contradiction. Hence,

7,(supd;) = inf 7,(4,)
. . .

jel’ J

Thus, 7, is a smooth supra topology on X.

7
(2) Suppose there exist A, 4, € / Y and 7 € (0.1) such that
T, (A A dy) <t <t () ATy (dy).
Since r,,(/l,-) > 1 for each / € {1,2}, there exists # >/ such that
By (A k().
Put r = A r,. By Theorem 3.2.1, we have
(A4 A Ay, 1) =T1,(2, 1) AL (A7)
21, (A0~ (A, 1)
=4 Ady
Consequently, 7, (4 A dy)zr>1. It 1s a contradiction. Hence,
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Thus, 7,15 a smooth topology on X.
(3) Suppose there exists A €/ *and e (0,1} such that

T, (A <r< n(A,A).
Since (A, A)>r.A=1, (A,r). Thus 7, (1) = r. It 1s a contradiction.
Suppose there exists u € [/ and s e (0,1)such that

T, (1) > 8 > 1, 41).
There exists 7, & (0,1] with g =1,(z,%) and » > & . Since

L, (u,r)=supipe & \n(p, 1) >+, }. and n71s perfect, (g, u)=r, >3

It is a contradiction.

3.2.3 Theorem

let Ibe a smooth supra interior operator on X. Define a function
mo 1t x IV 1 by
(A, )y =supir\ A <1}
Then:

(1)myis a perfect smooth semi-topogenous order on X such that
L, (A, <l(A,nand [, (A,r- )z T(A,r) foreach A e IV ore [, and ¢ >0.

(2) If I is a smooth interior operator on X, then 7, is a smooth topogenous
order on X.

(3) If 1(1(A,7),r) = 1(A,r) foreach Ael" rel|, then m Lo

(4) If I is a topological smooth interior operator on X. then 7, is a smooth

topogenous structure on X

(5) If 77is a semi-topogenous order, then <7,

(6) If nis a perfect semi-topogenous order, then n = m,
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Proof
(D) (T Since 1=1(l,/Yand 0 =1(0,r) forall re/,, then
m(L1) =700 =1.
(T2) if (A, ) >0, there exists rel, with 2 <I(z,r) such that
m(A)zr >0, Thus, A SHu,r)<u.
(T3) Let A<A,puy<u and A <I(y,r). Then A<I(x,r). Hence,
m{A, 1) < (A, ). From (ST3) we only show that

(sup A p0) 2 inf (A ).
iel

iel’
Suppose there exist A, and r < (0,1) such that

msup A;, u) <r <inf {4, 1)

el iel’
Since 7;{(A,.u) > r foreach i eI, there exists rwith # > r such that
A <1(p,1) .

Put », =inf r.. Then
el

A <) <1pr,).
[t implies

sup A, S, r).

iel’

Thus, m(supA,,u)=r, 2 r. It1s a contradiction
iel’

Thus, 7, 1s a perfect smooth semi-topogenous order on X

Since (4, 4) > r then p<I(4,r). Itimplies 1, (4,r)<1(4.r).
Siace 7 (1(A,r),A) > r for each & >0, then l,,l (A, r-e)=1(A,r).
(2) From (1) we only show #; satisfies (ST6).

Suppose there exists » € (0,.1) such that

mA,py A gy ) <r<m(A, ) nm{A, py) .
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Simce (A, z;)>r for ie{0,]}, there exists rwith 7 >r and A <)
such that
m(A,u)zr >r.
Put s =5 Ay Since lis a smooth interior operator,
A=W m) AWy, 1) <1, 8) A Lpg, ) <1y A p,s).
Thus, 71(A, 1 A gy) = s > 1t is a contradiction.
Thus (A, A p) = 11( A, 1) Ay (A pt).
(3) Suppose there exists » e (0,1 such that
meemiA,u)<r<n(du).
Since 71( L, 1) > r, there exists Awith 5 > rand A < I{z,#) such that

m(A, )= r > r

On the other hand, since [Tt 7)), 0) = 1,1y,
meem (A, i) 2m (A 1Gn ) A (W R ) > 1 > v

It 1s a contradiction.

(4) It is trivial from 2) and 3).
(5) Suppose there exist A, e/ and re (0,1}

mMAu)>r>m (4 p).
Stnee (A, 1) > r, we have A <1y, ). Thus

m, (A u)=r.

[t 15 a contradiction
(6) Suppose there exist A,z e /" and re (0,1) such that

m, (A p0)>r>n(A, ).
Since i, (A, 1} > r, there exists r, € (0,]) with 4 < L, (4¢,73) . Since

Ly (,rg) =sup{p\n(p,u) > r,} and nis perfect, n(L, (i) ) =

From (ST3), it is a contradiction.
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3.2.4 Theorem

Let 7 be a smooth supra topology on X.

(1) m_(Ap)=supl{r(p)\ A< p=suj.

(2) Ty, =T

Proof

(1) Put 7. (4, ) =sup{r(p)\ 2 < p < i} - We will show that y =n, .

Suppose there exist A, i € /Y and re (0,1)such that
m, (Aop)<r <n(A.p).
Since 71, (A4, ) > r, there exists p € " and rwith A < p < such that
Do) 2 1(p) > 1, > 7.
It implies A <1, (p,#)=p <. Thus,
m (A zn (A u)zr>r.
[t is a contradiction.
Suppose there exist A, u € [Yand re (0,1) such that
M (Aot) >8> 1, (Ap1).
Since 77; (A, u) > s, there exists sy <s, 2 <I.(u,5) < p. Since
LT Cees).8) =1 (et,80)
We have
(A ) 2o () 2 8 > 8

It is a contradiction.

(2) Since 77;_1s perfect semi-topogenous order on X, by Theorem 3.2.2,

i (A)= M. (4,4)
=supi{r(p)\ A< p< i}
=7(A)
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3.2.5 Example
Let X ={x, vy, z}be aset Define smooth the topologies 7, Y st

where i =1.2.3,4 as follows:

I LitA=0o0ru=1

2 -

— 0 A<y LlFruz g

3 1] [T
m(A,u)= |

_2_ Jfg#isl{p;:l*# ZZ[.\',)’,'

0 otherwise

1 ,ifA=0o0ru=1

2 .

? JfQiflSZ:»-::].*’*!JEZ{_\;L‘:
na (A, u)= ]

E :ifgi/lSZ{_\'}-:li—f"tEZ{,\x\.‘,’

0 otherwise

Jl JfA=00r u=1

{0 otherwise

1 ,ifA=0o0ru=1

Na(A, 1) = AF 0= < =l

S Lok

otherwise

(1) m is a smooth semi-topogenous order on X but not topogenous

because:
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0= m (Z:x: A4 Z{_\,»})X—.’,\‘,y})
# UI(Z{,\'} ’Z.’\'.y',) AT (Z{y: >Z{.\:\‘E)

From Theorem 3.2.1, we can obtain smooth supra interior operator

L, 1Y x 1, — 1" as follows:

i fA=lLrel

: 2
Xixyo if ¥ow S/’L;tl,%gr«q—
117] (i,f‘) = ]3
Xivwy if yroy 4= 0<r< 5

0, otherewise
From Theorem 3.2.2. we can obtain smooth supra topology

(S ]t — I as follows:

L f A0l
] .

Ty (Ay= E if A = X
0 otherwise

Since 7,1s not perfect, by Theorem 3.2.4 (3),

1
'2— = T,“ (Z{\y})i nl(Z{x,)'}’Z{x,);}): 0.

From Theorem 3.2.3 (5), we have 1 < . but 7, # M, as tollows:

L fA=0,u=1
2 . 1 2
3—, lf,}f{x_},}gllil,gﬁ.’”(?

Z{x,y}v if Z{\\g S/lil,ogf‘<;

0, otherewise
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(2) n,is a perfect smooth semi-topogenous order on A" but not

topogenous because:

O=n (v xle vt A x{viaD) =m(x{vh. el y) Am(ty) piv.ol) =

From Theorem 3.1.1, we can abtain smooth supra interior operator

2

3

1, (2.r)= |
2

, otherewise.

But 1t 1s not a smooth interior operator because

Ly

1 I |
0= 1’72 (Z{-\t}‘} ’E) > lfrz (Z{.\:y} ’E) N I!lz (Z'I-\‘,,l'l Nty }') =4

IFrom Theorem 3.2.3 (5), since n, is perfect, we have 1, =n;  as

follows:
1, it A=00oru=1
2
-, if0=A<y hl=puzy
) 3 1 [ R,
m,, (4. H)= |
5 F0=A<syo =2 uzpy, o
0, otherewise :
Furthermore,

L it Ael0])

T )L) =1 ;L,/l) = .
m (A4 0, otherwise.
(3) n,1s asmooth topogenous order on X but not topogenous structure

from the following statements: For any pe I with Xt SO X n» WE

have

(X P)AT2(0: X ) =0

Chapter [11
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Thus,

O=n50 U3(Z.:_,Y}V»Z{.x-,y}) <7 (Z{x}?zv{x,y}) =7

From Theorem 3.2.1, 1, is a smooth interior operator from:

1, if A=1,
L, = 1% i 2 £2¢],0gp<%
0, otherwise.

From Theorem 3.2.2(3), since 173 £ 15 o 173, In general, we have

Xy =1 (e ,;) # 1 Uy (X ’]5)7:,3*) = 0.

4) We easily show that 7,7, and ry are not symmetric.

5) 1, is a symmetric smooth topogenous structure on X from:
1, it A=0o0r =1,

, fO0zA<u=l,

, otherwise.

(6) We define a smooth interior operator 1: /" x [, — 1Y as follows:
L, ifA=1,
: 2
[(A,r)= Xivys 1f X <A#l0<r<-
. 2
lQ, otherwise.
From Theorem 3.2 4 and Theorem 3.2.2, we obtain the followings:

1, if A=0or =1,

I (Aopt) = if 02 2% 2{x)1% 12 21y

2
3 ”
0, otherwise.
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L if 2=1,

[FS I ]

[;71(;{%#)= Xixhs if][{x’y}é/lil_,OSr(--

0, otherwise.

We havel,, (A,1)<i(A,r)yand L, (A, r—e&)zI(A,r) for £>0.

3.2.6 Theorem |99]

If (X,n)and (X, )are smooth semi-topogenuous spaces, then their
supremum 77, \J 775 1s also smooth semi-topogenuous on X
(Notice, however, that If (X,n)and (X,7,)are smooth topogenuous

spaces, then it generally does not follow that n; W, is smooth topogenuous on
X)
3.2.7 Corollary

Let (X, 77) be smooth semi-topogenuous spaces. We define, n" =npun’.
Then from Proposition 3.1.3 and Theorem 3.2.6 we have 7" is smooth

semi-topogenuous on X . Obvious 7" is symmetric.

3.2.8 Theorem
Let (S, X) be a smooth syntopogeneous space. Define a function
Co 1% <1, > 1% by
Co(A,ry=mf{u/n(A,p)>0,5) > r}.
For each A4,4,4, € ¥ and r, R, % €1, we have the following properties:

(HCs(0.r)=0,
(2) A 2Cg(A.r),

(3) If 11 < /12, then (-"5'(/11 )< (5 (ﬁz,f’),
(4 Cg(hy v Ag,r) = Cg (A7) v Cg(dg, 1),
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S)Ifn<pr,then Cg(A,1)<Ce(A, ),

(6) Co(Cg(A,r),ry=Cg(A,r).

Proof

(1) Since n(0,0) =1for S(7) =1, then (';(0,r)=0.
(2) Since A < gfor n{ A, 1) >0, implies 4 < Co(A4,F).
(3) and (5) are eastly proved.

(4) From (3), we have
Co{ Ay v Ay, )2 Co(A),r) v Cg( Ay, r).
Conversely, suppose there exist 4,,4, €/ Y and r e / such that
Co(A v A, ) LCe(AL, v (A, ).
There exists xe X and ¢ e /| such that
Co(A v A, r) >t >Cy(A,r) v Co(A,,0). (1)

Since C¢(A4;,.r}x)<r, for each ie{l,2}, there exists 1€ ¥ with

S(ny>r and 1,(A;, ;) > 0 such that
ColA,,M(x)< (g, Xx)<t,

On the other hand, since S(r7) A S(17,)>r, by (T2) of Definition 4.3.5,

there exists 77 with =, and S(#n) > r such that

ALY A, gty v ) 20 A, gy v ) A Ags iy v s ))
= 1Ay, 1)) A Ag, 13 ))
Zm(AL ) A1 (Ao )
>0

Hence, Co(A) v A5, r)(x) < {1, v 1o )(x) <t

It 1s contradiction for the condition (F).

(6) Suppose there exists Ae /" and re/ i such that
Co(Ce(A,m),r) > Ce(A,F).

There exists xe X and ¢ e (0,1) such that

Co(Co{A, ), ix) > 1> Cg(A,7)(x).
Chapter 111
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Since  Co(A,r)(x)<i, there exists pue [/ with S(my>r and
n(A, ) > 0such that
Co(A,F)x) < ul{x) <.
On the other hand, since S(77)>#, by (T3), of Definition 3.1.11, therc
exists (e 1y such that
gogzm SE)=r
Sinced o (A, 1) >0, there exists pe I such that
G(ApIng(p,p)>0
It implies Co(A, 7)< p,Ce(p, 7)< 1.
Hence,
Co(Ce (A, <l
Thus, Ce(Ce(Ad, ) r)(x) s u(x) <t

It 1s contradiction.

3.2.9 Theorem

Let (X, S) be a smooth syntopogenous space. Define a function
ro: 1t =1 by
To(A)=sup{re/ | \Cc(l-A,r)=1-4}.
Then 7 1s a smooth topology on X induced by S.

The proot is similar to the proot of Theorem 1.1.9

3.1.10 Theorem
Let (X,n) and (¥,7,) be smooth topogenous spaces. Let f: X — 1 be

smooth topogenous continuous, then it satisfies the following statements:

(DS(C, (AnY<C, (f(A),r), foreachie ™

(D, (7,1 £ £ 71C,, (f (), 7)), foreachpe "

(3)f :(X.z, ) —>(¥,z, ) is smooth continuous.

2
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Proof

(1) Suppose there exists A € IYand re [, such that
FCy (A > Co (FAL ),

There exists y e} and 7 e/, such that

F(C (Aar)) > 15 Coy (F (A,

Since 77 ({y}) =g, provides a contradiction that f(C", (4, #))(v)=0

7Ny = ¢, and there exists xe /7 ({y}) such that
S (AN 2 Cp (A XX > 1> o (FIA)L PN ()
Since €, (f(A), N/ (x)) <, there exists ve " with
7, (01— f(A)) > r such that
oSNNS N SA=)F ()= (1 =v)x) <1
On the other hand, since /'is smooth topogenous continuous,
(O ST A= S z (] = (A >
Since 7, (/T (1= ) 2 (ST )L ST F(A), we have
C (A = (1= f 7 ())x)
= = v)x) <t
Thus, ¢, (4, #)}x) <1, it is a contradiction for the equation (A).
(2) Foreach e’ and re{,,put A= f'(u). From (1),
FC, ) ) <O, U 00 SOy ().
It implies

Cop (F T < FTHAC, (T 0, D < 7 (C ().

(A)

(3) From (2), Crpa(ue,r) = g implies Crp(f7 ()7 = 77 (). 1tis easily

proved from Theorem 3.2 8.
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3.2.11 Theorem
Let (X,m)and (Y,77;)be smooth semi-topogenuous spaces. 1.
f‘:X—>Y be smooth topogenous continuous. Then il satisfics (he
following statements:
(1) f:(X,n{)—> (Y,n3) is smooth topogenous continuous.
(2) f:(X,ry_f")—-) (Y,n;) 1s smooth topogenous continuous.
Proof
(D) my (A, ) =n3(1— 1= 2)
ST U, f 0= A)
=07 (A ST ey
(2) Suppose there exist 4, e IV and re 1, such that

(A, ) >r >0 (F A, T w)

n
Since n5(A, ) > r, then there are finite families A, VA=sup 4,
.‘"--’-}

g
and {4 \ ¢ =supy;} such that
k=1

(A, 1) 2 inf (024, 1) v 15 (A 20))
Ik

=inf (12 (A 1) v i — e 1= 4))
Ik

>F

Since f is smooth topogenous continuous,

m AT 2inf (n T A f T ) vl (G

jik

2 ir_llf(fiz (Aot ) v (A, )
Js
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=inf (72(A4 ;) v (L= 1= 25))
Sk

> Fr

It 1s a contradiction.

3.2.12 Theorem

Let X Dbeasetand (Y,77)be smooth topogenous space. Let /X — ) be

a function. We define _f'“l(fy) 15 < 1 5 1 as follows:
P A =n(f (1= f- ).
Then:

(1) (X,,)""l(r])) 1s the coarsest topogenous spaces for which /s

topogenous continuous.

D jai, ()= 774, 02.m) for cach Ae /¥ and re 1,
(3) Tty =Ty where
Proof

(1) See the proof of Proposition 3.2 [99].

(2) Since ¢ (A7 =inf{l = p\ F 1= ) > r)

Fa)
=inf{l - p\n(f(p),1 - f(4)) > #]
7, ()= 17 nf (- w\ ptud — F(2))> 1))
=inf{l~ £~ () Va1 = S (AN > 1)
Let pe % such that n(f(p),L- f(A)>r
Put 4= f(p). Then

- w=1- N en<t-p.

: 1,
Thus, € o (402 /70, (A0r)
Conversely, let s € /7 such that (el — () >r.
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Smee f( f - (1) < p wehave
AU T = FA) 2 () = f(A) > r

Thus, ( (/1 r)< ( A4, f’))

(3) Suppose ¢ 5§ r,. There exist 4 € {Yand re (0,1 such that

o
SPNCNOEYES e, )

There exists », € /,with #, > r such that

1_i=(7_f71(,7)(/1,f"0)~

It implies

A=l (A1)

- /7N, (A
= 1= (C,(An)
Since C,?()L, r)= C’,? ((_,’,? (A r)E)
T,?(l - (,f,r(ﬂ,ro)) N A
It 1s a contradiction.

27, Thereexist A e [ X and r e (0,1} ,such that

Suppose Ty 2T

O (]7)(/1) <r<1,(4)
There exists pe/ T with f_l (@) = A such that
T (U)()L) <r<t, (M) ST p(4)
From the definition of 7, ,
I = =CLun,), b, >r

o T U= )= NC U= )

< /7HC, A= )
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S A ()

Thusr T (f (/u)) (A)zr,

Erton

It 1s a contradiction.
3.2.13 Theorem

Let (X,r)be a smooth supra topological space. We define a function

1Y 5] as follow

T (A) = SUPuan T(/qt WA= mf j- }
J

where the supremum 1s taken for every finite family | A VA= mi )b
=

Then 7' is the coarsest smooth topology on X finer than r
Proof
First, we will show thatr' is a smooth topology on X .

(O1) It is easily proved from:
7 (0) 2 7(0) =1,
' ze(h=1,

(O2) Suppose that there exists a family {4, €/ Y\ 2=supA} and
el

€ (0,1) such that

(D) <r<inf r’(lj).

iel’
Since  r'(A,)>rfor each iel’, there is a finite family

{)L el \/1 =inf 4 } B such that

JEJ

t'(A.) 2 inf T(;t y>r.

jeld,
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Since the unit interval / is complete distributive lattice (ref [10]), we have

A=sup(inf 4 )= inf (sup4; )

el jeJ, welll, jel i)
and
inf Ginf o(4, D= inf Gnfz(d ).
iel” jed, / pell/, iel Wi
Thus

(A2 inf (r(supd; )

i
welll/, iel vl

> inf Gonfe(d, )

welld, iel’ wly

=inf (inf T(')L,-j )

el jed,

=T,

It is a contradiction,

(O3) Suppose that there exist 4, €/ *and r e (0,1)such that

T Anaw<r<t (DAt ()

1

1
Since 7' (A)>rand ' () >r, there are finite families {4, VA =mf 4,1,

P

i

{u, = infu 4, } such that
/=

r'(A)zinfo(A) > r. T () zinf T(u;) >
J=1 7=l

m M
There exist a finite family {4, 2, VA A g0 =(inf 4;) A (inf 2 )} such that
' i= j=

o' (A A )2 Ginf 7(4,)) A (inf 7(42,)
1=1 J=1 ’
>
It is a contradiction.

Second, it is proved that r' >zfrom the following: for a family

A\ A=A
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(A2 ().

Finally, if 7, = zand r,is smooth topology on X, then we have
' (- M 1
7 (A) =supiinf 7(4,)]
i=l '

" )
<supiinf 7,(4;)}
7=l '

<7,(4)
m
for every finite {1, VA =inf AL
' J=1
3.2.14 Theorem
Let nbe a smooth semi-topogenous order on X. We define for all
Apel o ,

7' (A, ) =sup {in}“ (A, 1)}
+K

where the supremum is taken for every finite families {4, \ A =sup4, |
and {u;, \ g =supy, ;. Then:

(1) " is a coarser smooth topogenous order on X finer than n.

(2) 1 is a coarser smooth topogenous order on X' iff 1 = n'.

(N If n<non, then n' <y’ oy’

M fnp<non, then 1, <(z,)

(5) If nis perfect, then 7, < (r,,)’ :

Proof
(1-3) See the proof of Theorem 2.2 [59] and Proposition 2.9 [59].

{4) Suppose 7,, & (T”)’ _There exist A< /" and r e (0,1)such that

4

7, (A)>r>(1,)(A).

There exists #, € [, with £, > r such that
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A= I)?, (L,7).
It implies
A= Ir}’ (A,1)
=supiu e A n' (u,A)>r).
Since 77’ (u,A)>r,, there are finite families {,uj \u= sxlllp ;4 and

i=1

m
{4, VA =1inf 4, } such that
k=1

7 ()= in‘f ey Ag) >,
IR

i.e. forall j,k,n(A,, 1) > 7, It implies
Ly (o) 2 4.

Thus,

m H
A=zinf {supl, (A,r )z 1
k=1 /:l

Put p, =1,(4;.%).
A = I’?{ (A"?”D.)

=supfue T\ (Al
= sup{i_l’;lt; (Sl’;[?]) P} .
i=l =
Since n <non, by Theorem 3.1.5(4), we have
LAy r) =1, (L (A1), 700
r,,(pﬂ,)z ro>
it implies

it
T}] (Supp;‘. ) 21, >F
=1

From the definition of (z,)",
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(z,)' (inf (sup py ) 2 7,

i=l j=i
Thus
(7, IRCAET AT
[t is a contradiction.

(5) Suppose 7, 2(r,) . There exist A& 1 and r e (0,1} such thai
! iy

N

T, (Ay<r< ('T.,;,)t (1).

. - - . . ' '”I
Since (7, Y (A) > r, there exists A, € I with inf A, = Asuch that
s=r

L
(5 (Ay<r< mfl Tfr(;L.f) _
I:

From (6) the definition of 7, ,

A, :1,7(/1» N A

isho
Since 7r7is a perfect semi-topogenous order,

nA, A ) zr,.
From the definition of 7",

' (A,A) =1,
Thus, there exists nwith r < # <, such that

7 (A, A zn (A, )2 > >T

Hence,

A= I”, (A,1).
Thus,

T (A)zn>r

It 1s a contradiction.
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3.2.15 Theorem

Let rbe a smooth supra topology on X. Then
(m, ) (Ao )=, (£-42).
Proof

Suppose there exist A,z €/ Yand r e (0,1)such that
(n, ) (Aop)<r<my , (A.p0)
Since M, (A,1)>r, by Theorem 3.2.4, there exist p € It and r e (0.1)
with A1 € p < g such that

m (A2t (p)>r>r.

™

Since r'(p) > #,, there exists a finite family {p J\p=inf p;) such that
. Hae

'(p)=infr(p;)> 1 >r.
p=l

Since 7(p;) > 1, for each y=1..,m,wehave A<p=<1.(p;.0)=p;
Thus,
m, (A, pi)=zr,.

From the definition of (7 )',
(m V' (Ap)=infm (Ap)zr>r
Jl:l

So, (77, )Y (A1) = (g Y (A, p) > r. It is a contradiction,

Therefore, (m ) 21y .

Conversely, suppose there exist A, e/ Vand re (0,1)such that

;) (A ) > 1>y (A, p0).
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Since (7 Y (A, 1) >r, by Theorem 3.2.7, there exist two finite families

'

{A;VA=supA;}and {g \u= /jnf 4+ such that
l jed ek

(. Y (A, u) = in}‘“ m (A )
.k

For each je.J and k € K, there exists p ;. €/ * with A <P Sy
such that my (A;,44) > 7(pp)>r.

Foreach ke K, A=supA, <supp; <uy . Put @ =sup py
= = Jed

Thus, 7(w; ) =supz(p ) >»because ./ is a finite mdex set. Furthermore,
ied

A=sup il- < inf @; < inf gy = 4.
jed = kek ek

From the definition of 7’,

i . .
7' inf @; 2 inf (@, ) >r.
kek kek

It is a contradiction. Therefore, (77;_ ) < (. )

3.2.16 Example

Let n, be defined as same as in example 3.1.11.

e

From theorem 3.2 3, we can obtain smooth supra topology

A 1, fie{0l}
T =
i 0, otherwise.

1, it Ae{0,1}
1 .

T (A)= 3 if A=z,
0 otherwise.

2

We can show T2 (r,) =7,
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3.2.17 Example

Let X ={a,b,c.d} be aset. Define a function 7. IV > 1Y 51 asfollows:

| ifA=00r u=1,

2 .

o liQi/lslmh'»liﬂzxmhw

3 1 - . ] k] b
A, 1) = |

5 if Q =A< Z:b,c}:l F MU 2 Z{h_c:: a

0 otherwise.

Then 771s a smooth semi-topogenous order on X with n=1701.

1 fA=00r u=1,

2 .

3 1fQ¢j¢SZ{(;J}}Jiﬂzl{mh;,

: 3

_2- if Q-‘f—'ﬂ,SZ{/LU;,,li[,IZZ{/,_L.;,
7]’(&,/.1): ali.uzxmltc}

] .

5 iF 0= A< ygLl#uzyy,

H > Z{r),b}ﬂu z Xib.c

0 otherwise.

Then 7'is a smooth topogenous structure on X. from Theorem 3.2.2, we

can obtain smooth supra mterior operator 1,/ Sy | >  as follows:
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i if A=1lrel,
| 2
0 i, 1f f o \a_£l¢],—£r<—
Ziu,b,- Z-,Ll,l_j 3 3
|
Of ¥1aby A2 Xiabe) ,0 sre< :)
If)(/lar) = | -
Kibel» if Z{f:,c} Sﬂ“:’t/}f—{u‘hwc}=0£r< 5
: I
Aiab.els if Xiahet Sﬂil,(}é}’ <§
0, otherewise

From Theorem 322, we obtain smooth supratopology 7, :/ Y as

follows:
l, if Ae10,1}
3 .
Ev ‘fﬁ:Z:a,h}
T?] (/1) =9 1
; if e {Z{h,c}-’ Z{u,h,c} }
0 otherwise.
We can show T (r,])’ as follows:

1 if Ae{01}
2 .
3 if A=y,

(r,)(A)= ]
5 if j‘E{/Y{I‘?}9.2{/7,(;}71[(1,/)‘(:}}
0 othewise

But 77 is not perfect, that is, the converse of Theorem 3.2.3 (5) 1s not true

because

0= U(Z{ajb} N AT RS ’Z{ﬂ.h.c})
L]
* n(l{a_h} }a}({a,b:c} A U(Z{bﬂ}vz{a,bjc} )= E
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3.2.18 Theorem

Let (X;,n)ier be afamily of smooth topogenous spaces. Let X bea
set and, for each i e T, f;: X — X, afunctionping. Define the function
r]:/X < [* = Ton X by

(A, 1) = suptinf 1; (fi: (40,0 = fill = 1))y

Ik
H il

where for every finite families {4,V A = supA;jand {gy \ g =sup iy 1.

7=1 ‘ =1

Then:
Fn = et i

Proof
Suppose 7, £ l"i_ierr‘ ren

There exist A€ /¥ and re (0,1 such that

(4).

(> r>lliert g

There exists r, € /, with 5, <rsuch that
A=1,(A.1).
It implies
A=1,(A,r,)=supiy e 1* \n(u,A)> k).

7
Since n(u,A) > r, there are finite families {4, \ p=sup s and
‘ J=l
1

{2 VA =supA,}, such that
k=1

(i, A) z in/f supr (i, 1= fil=A ) >r
Jkodjel”

ie forall j &,
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SUP 7]1(]!1(/"[])91 - f.' (1 - /1,’; )) >h.
el

It follows that for any /,& , there exists an / ; €I’ such that

It implies

1/};;_ ) 4 )(’1/‘"%) ZHy
Thus,
moon
2 01 1, )2
Put
Piy = ]./}f,", 7; 4 )(/1’5 o) Z 4
Since
A=1,(4,r)
=supi{u e AR Ay > 7,
moon
=sup {iflf {Sﬁ]? iyt
Since
/ Frg G ¢ 0 i (Aot )t} = rton, RS

T, ; Zr >F. .
£ 0y y(Piy)

it imphies

ﬂ,-erz'j_r__] (”{_)(/1) Zr >

It is a contradiction.

Suppose 7, 2117 , There exist g, € " and re (0,1 such that

7
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f,](/l) <r< nierf_

/! (m)m '

i
There exists u; € 17 with sup(inf f,fj‘,l(y,- }‘)) = A such that
J=b ‘

I
Ty (A)<r< inf(infl Ty, )(,Lt,-j B
=

From the definition ofz,,,

H = lgyl.f)(ﬂ;\j,ro)’ro > 1.

J
Since
n(f e A 2 (U ()= = ) >,
(A2 70U, A= £ 7 ).
Thus,

Ly o) 2 7 Uy, (= 1 (7 (o).
=, Uy Q=S 7 0= )
=/, )
[t implies

m

m
(LyGnf /7 g o) =inf £ )
=t ' ' ‘

j=1
Thus
' amo
177(2’) = Sup ]]](lnf.f” (/Ui i ): f'o)
J=l - ‘
]
= sup(inf .f,]_ (4 ))
/=t '
= Aﬂ./.
Thus

1,7(/1)2r0 >r.

It 1s a contradition.
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Chapter IV

Smooth topogenous spaces compatible with smooth

uniform spaces.

In this chapter we study a natural relationship between smooth

topogenous structures and smooth quasi-uniformities. The family ['1(#) of all
smooth gquasi-uniformities {/ compatible with smooth topogenous structure 77 on
X is neverempty and it contains smooth quasi-uniformity U, which is the
coarsest member of T1(77).

4.1 Smooth topogenous spaces induced by smooth uniform

spaces.

4.1.1 Lemma
To every a € Q2 -, we define 7, 1Y %IV ST as

1 if A2 a(w),

0 otherwise.

Ua(#,fb)={

Then it satisfies the following properties:

(1) The function 1, € Yx is a biperfect smooth topogenous order.
(D)t a<p, thenny <n,.

U fsay nay, thenn, .., <71

(4) For each ¢ € 2, we have 77, = 7,1

() If pof<a,then g ong =m,.

Proof
(1) Since (1) =1 and «(0)=0, then 77, (1,1)=7,(0,0)=1. Let

17, (u, A)# 0.
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Then 7, (¢, A) =limplies gy <a(u)<A.Since <, and 4 < A, implies

o) <afu ), then

Mo (p1, A1) S (1, A).

To prove the biperfect condition, since a(sup ;) =supa{u, } < A iff
iel’ iel”

;£ foralliel,
T (SUP g, 4) = Inf g (4454
iel’ "‘Er‘

Since g < inf A;iff p< A forall jeA,
jeA

Na (4, inf A,) = inf 7, (1,4;) -
JeA JeAN '

Others are similarly proved.
(2) Since a(u) < Bk, 75 <7,

(3) Since a; Ay (p) Sa () Aey(0), we have oy A ay <. From (2),

Nay SN . Similarly 77, <714.
(4) It 1s easily proved from a”! (<A tao(l-A)<l—u.

(5) From (2), we only show that 1, e 77, =5, 5. Since

ng ong(u,A)= sup {ng(i, p) nnp(p,A)}, we have

pe]“

b Az B(A(w)

(s} ;‘2_ = .
M o1 4 A) {0 otherwise.
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From Lemma 4.1.1, we easily prove the following theorem.

4.1.2 Theorem

Let B:Q)y — [ be a smooth quasi-uniform (resp. smooth uniform) base on

X Define Sg: Yy — [ as
Sp(n,)=Bla). "

Then Sg is a smooth (resp. smooth symmetric) syntopogenous structure on '

4.1.3 Theorem
Let (X,B))and (¥,B,) be smooth quasi-uniform bases. Then

By(a)< By(f (a)for each a € Qy iff [ (X,Sp)—(Y.S5,)1s syntopogenous

continuous.

Proof
Letn, e Yybe given. Since / (a)(p)=f " (a(/(p)))

I N A CTOA A IT)))

] otherwise.

N W eY) ={

Since A = a(u) implies

A E A 1) EN A CIOAC A 1))
We have

7 ey WA 2 (1, A).

Since B, (@) S B,(/(@)), Sp, () S S, (7 e o)
Thus, fis smooth syntopogenous continuous.

Conversely, since Bg, = B;for ie{1,2}, it is easily proved.

4.1.4 Theorem

Let (X.l7) be smooth quasi-uniform space Define
Chapler |V
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my (s p) = supil/ () \a(p) < pj-
Then (X, Yis smooth topogenous space. If (X,U/) 1s smooth uniform
space,
Then (X,7, )is a symmetric smooth topogenous space.
Proof
(ST1) From (FQU4), there exists a € Q y such that U{a)=1. Since

a(l)=1and «(0)=0, then 7, (L) =71y (0,0) =1.
(ST2) If (i, p) # O, then there exists ¢ e Q y such that {/ (&) = 0and
a(p)< p. ltimplies p<p.
(ST3)If A< Ajand g < u, then for each o € Qy witha(4)) < gy, we
have a(A) <a(A)) < gy < . Thus, 7 (A ) <n (A, 00).
(ST4) Suppose there exist 4,4, 1 € /¥ such that
nu (A v A, 1) 21 (A ) Ay (A, 1)
From the definition of ny; (4;, 1) for i e {01}, there exists a; € £y with
o;(A;) < u such that
Ny (A v A, ) 2U(ay) AUas).
On the other hand, since (e A )(A v A2} < aq(A) v aa(dy) < . then
my (A v Ag 2 U e nag).
Since Ulay A o) =U () AlU{a3), 1t is a contradiction.
Thus, 77, (A4 v Ag, ) 217 (A, 1) A 1y (A, 1)
(ST5) Suppose there exist A, 4y, 1o € /% such that
e (Ao pty A g2 ) 27 (A1) Ay (A )
From the definition of 77 (1, ;) for i e {0,1}, there exists a; € {2y with

a; () <y, such that

Chapter IV
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ny (A ~ ) 20U a) Al (an) .
Since (@) A ay ) (A)Sa(AYAar(A) S A,
A, py A )2 U oy Aay). Since Ulay nag) >l (a) nli(ap), itisa

contradiction.

(ST6) Suppose there exist u,pe ! X such that
My oMy (4, PYZ 1 (4, 0).
From the definition of 77, (u, p) . there exists ¢ € Q y with a(u)< p
such that
Since sup{l/(F)\ f o B<al, there exists feQ y with
fo Blu) <a(u) < psuch that
ny ey (. pY2U(B).
On the other hand, since A(u)= S(u)and So f{u)< p, we have
My ey (e (1)) 2 U(B).

Hence, 1, o1y (1, p) 2U(f) . It is a contradiction.

Let (.X,1/) be smooth uniform space. From Lemma 4.1.1, since

a(u) < piff o ' (p) < and Ua)=U(a™"), we have 1, =)  Hence,

(X, nr7)1s a symimetric smooth topogenous space.

4.2 Smooth uniform spaces induced by smooth topogenous
spaces.
4.2.1 Lemma

Let Yy be asmooth biperfect syntopogenous structure on X where for each

n e Yy the range of 7 1s finite. We define as
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o, (uy=inf{iel™ \n(u,i)>0}.

Then it satisfies the following conditions:
(1)0( S Q_\' 5

(Dlfp<fanda, eQy,thena, <a,,

) y,g<nande,.a, eQy, then o, <a, na,,

"> n =

-1
e, =@, .
(5) Foreacha), € Q2 , thereexists a,, € Q  such that @ e, <a,
) a, =a.

Proof
Since 7(0,0)=1,,(0)=0. Since 77(x,A)>0, then u< 4.

Thus, p<a, ().

Since the range of nis finite,

inf 77(44;,4) > 0 1ff 7(p;,4)>0,Viel".
iel’

It implies

a,(sup ;) =inf{ A/ n(sup u,,A) > 0}
iel” il

= inf{ A/ inf 74, 2) > 0}

il

=sup(mf{A/n(u,,A)>0})

iel’
=supa, (4, ).

iel”
(2) Since {(p,A)2n(p,A)>0, we have o, <a,,.
(3) From (2), we only show that &;,a, = B implies a; A a, = § for each

a0, Feldy.
Suppose there exists g e/ Vand e (0,1) such that
(o nay)p)(x) <t < flu)(x) . (E)
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Since (¢, A @y )(p)(x) <1, there exist g, 4 € 1Y with g = g1, v s such
that
(o) A 02 YO(X) < 0 (a0 )(x) vy (g )(x) <1
On the other hand,

)= Pl v Blug) Soy(py) v aa ().
Thus, B(u)(x) <t . ltis a contradiction for the equation (E).
(4) Since a,, (@) =inf{2e ! \a,(1-A)<1- 1}, and
s (p)=inf{A el \n(l-A,1-p) >0}, we only show that
a,(l-2)<l-u iff p1-4,1-)>0.
(<) It 1s trivial.
(=) Since (1~ A)=t{p, € IV \n(l-2A,p,)>0}, we have the

following:
T](l_‘ )L71~ ,ll) 2 ’7(1_ ;{'-»af; (l_ /1))

=n(l-u,mnf p;)
=inf n(l-u,p;) >0,

because the range of 77 1s finite.
(5) Let a,, €Qy . For nely and n(A, ) > 0, there exists ¢'e Iy, such that
ol =n. Since o (u,A)>0, there exists p € /Y such that

S, Py~ G, p)=>0.

[t imphes
a () S pag(p)<A.

Thus, a,(a, (u) s 4. Hence, ar (o () <o (p). Thus, ap cap <ay.
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(6) oy (p) =nf{A/n, (u,2)>0}
=mf{A/n, (u,A)=1}
=inf{A/A) = a{u)}
=a(u).

From Lemma 4.3.13, we easily prove the following theorem.

4.2.2 Theorem
Let §': Yy — / be a smooth (resp. symmetric) syntopogenous structure on .\’
where for each 77 € 7% the range of 7 is finite. Define By : Q2 —/ as
Bg(a, ) =sup{S(n)\ninduces a,, } .
Then:
(1) Bs 1s a smooth quasi-uniform (resp. smooth uniform) base on X

(2) If B:Q — [is a smooth quasi-uniform base on X, then B¢ = 8.

4.2.3 Theorem
Let (X, §)) and (¥, S,) be smooth syntopogenous spaces. Let

S (XL,8) = (7,8,) be smooth syntopogenous continuous then we have the
following properties.
(1) If the ranges of 7 and ¢ are finite sets for cach ne Xy and {ety , then

Fi(X,Ug )= (Y,Ug, }is smooth quasi-uniform continuous where U/ 1s
generated by By for 7€{0,1}.
(2)F(Cg (A7) £Cg, (f(A),r)), foreachAe I ¥

(3, (F () ) S/ H(Cs, (f(10),7)), foreachpe /.

(DHf: (')(,rxl )— (}’,rs2 ) 1s smooth contimuous.
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(1) From Theorem 4.3.10, we show that
By, () < B, (f (@),
Since [ (a, WA= £ (e (f (),
£ e (fGY) = £~ (nflp 1 S(F(A),p) > 0})
=inf{ /7 () $(f(A), p) > 0}).

Since f'is smooth syntopogenous continuous, for each {'e 1y, there exists
nerrwith (/7 (fON.f 7 (0D 2£(f(A),p) such that S,(5)<S,(m).
Since 7(A4, £ T (PN = (/T (AN ST (PN, [ (@ NA) = oy (A) . Itimplies
Bg, (/< (ag )z By, (ay)
2 BS2 (e ).
(2) Suppose there exists A e/ Yand r e /,such that
F(Cs, (AP > Cs, (f(A),7)
There exists y e ¥ and ¢ €/, such that
J(Cs, (A, 7Ny} > 1> Cg, (J(A), 1))
Since /7' ({y}) = ¢, provides a contradiction that S(Cg (A7) =0,
7741 = ¢, and there exists x € f_l ({y}) such that
S (A, N) 2 Cg (A, 1) x) > 1> Cg, (JLA), PN (X)),
Since CSZ (F(A), N (X)) <1, there exists ey with S,(£) > r and
C(f(A), 1) >0 such that
Co, SALN () < u(f (X)) <L
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On the other hand, since fis syntopogenous continuous, for each e 13-

There existspe iy with 70/ ™ (f(A),f 7 (#0) 2 {(f(A) ) such that
S{m =S5, (E)>r.

It implies, Cg, (A,7)(x) < £~ (u)(x) <. ltis a contradiction.

4.2.4 Lemma
Let (X,77) be smooth topogenous space. Let

0 =4 pye I x 1 A np(u,py= 0}

For every (u,p)en’ we define o, , 1% = 17 as follows:
0 ifd=0,
a, (A)=yp f0=A<p,
1 otherwise.

We have the following statements.

(Neay, ,eQy.

@If Aspuvpanda,,ecQy thena,, <ay ;.

(3) For each a,, ,there exists ve 1% such thatar), , o, , =0y .

(4) If (X,n) is a symmetric smooth topogenous space and «, , € Qx, then

=1 _
(@) =y o

(5) Foreach i=1, .na, , with(u,p;)en’, denote

F={/c{l,..,m\A<supu,}
JjedJ

and put 7; =sup p,for any nonempty subset ./ of {l,...,n}. Then
jed
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1 - ) . -
]‘nfa’{,‘l.ﬁ[)‘. (i): lnf TJ ]f r ?‘:¢,
i=] Jel

| if [[=¢. -
Proof

(1) From the definition of « we havea,, ,(0)=0.1f 0= A<y then

£ po
ay, »(A)=p.Since(u,p)en’, thatis, (g, p)=0,by (12), < p. Hence.

A Saﬂ,p(ﬂ). If A<£u,then A Saﬂ’p(ﬂ):l. It follows that ,15(1“/,(/1)

Finally, we easily show that aﬂ,p(s.ulE) v;)= ;u?al,,p(u,) from the
i€ e

following conditions (a) and (b):

(a) supv; <pu iffforall rel”, v; <,
iel’

(b) supy; £y iffforsome /e, v; £ 1. Henee, a, , € Q.
iel

(2) From defimtions of &, , and &, , itis trivial.

(3) From (T6), since non(u,0)= sup (n(u.v) Anw,p))2n(u,p)=0,
X

vel

there exists ve 7% such that n{u,0) = 0and n(v, p)# 0. Hence,

ay,u:au,p & QX :

Moreover, it is easily proved «,, , o, ,(d)=a, ,(A)forany de 1
(4) Since (X,n) 1s a symunetric smooth topogenous space and
&, peQy, then n(u. p)=nip', 1) =0 It follows that ¢, ;- €2y We show
that
a’ﬂvp(/l) = apr,#:(ﬂ,).

From the following statements (a),(b) and (¢):
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(@) IfA =0, then (&, ,) ') = inf{v\a, ,(V)<l}=0=a, ,(0)
(b)1f 0= A < p’, then, by the definition of Ay > WE have

aﬂjp(u’) < ANff a#‘p(u') <piffo<uy.

Hence,
(@ p) (i) mf{ue] p(u)</’t"
:inf{uefX \p >}

=u

= apf_ﬂn(/l).

(¢)If A=0and a#!p(u') < A', then , by the definition of Ay WE only

have

Ay p (0"y=0_ It imples that v=1. I-Ience,(ay!p)”l(/l) = (xl,f_ﬂv(it) =

(5)IfA=00r I'=¢, then it is trivial.

We only show that for I' = ¢, mf Ay py (AY=1inf 7.
Jelr

Suppose mf Ay p, (1) £ inf 7, Since I"# ¢, there exists ./ €T with
i=1 Jelr

A <sup g, such that
jed

1nt Q. p; (A)E1,.

1_

Put for 1 e{l,...,n},

- AN p; ified,
"o otherwise.

Since A =supA;and A; <y forall 7eJ, we obtain

iel
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I
inf oy, p (1)<Supaﬂ p, () Ssupp =1

i=l te.t

It is a contradiction. Hence, mfa# P (AY<inf 7.
i=l Jell

1

Suppose mf‘aﬂ (A Zinf 7y There exist 4; € 1Y with A =sup4,
i=] Jel’ 7=

such that

1
SLlpO.’ru P (ﬁ_ YZ inf Ty.
1=l Jel

1
Put v =supea, , (4) and K ={kef{l,..,n}\ p; <v}. Weobtain rg Sv.
i=

ifie K, then p; v . Hence, a, , (4;}=0. which implies 4, =0.
If keK,then A, <y because @, , (A)=1.

It implies that
= supzl = sup A, <sup gy -
i=1 keK keK

Then there exists K € I" such that

b
SLlpOf}u ey (ﬂ, ) v2Tg inf 7x -
i=1 Kell

It is a contradiction. Hence, mf o, 5 (A)Zinf 7).
i=1 Jel

4.2.5 Example

Foreach /=12, a,. , with (u;,p,)en”, we have

Chapter IV



0 if =0,
pinpy  HO0FAS A,
P if A<y, ALy,
Xptyopy Ny = 09 i AL, A<y,
PV P2 A <y v gy, A%, AL .
1 otherwise.
4.2.6 Theorem

Let (X,7) be smooth topogenous space. Define a function {/,, :Qy —/

by
H ) n
Ui; (@) =sup {H'lfl‘ P \ ll_l'lfap,,p,- <aj.
i= f=]
Where the supremum ts taken over every finite family
{am’p‘, \i=1,..,n1}.

Then U/, 1s smooth quasi-uniformity on X . If (X,7) 1s a symmetric
smooth topogenous space, (/ p 18 smooth uniformity on X"

Proof
(SQUI) It is trivial from the definition of U,].

(SQU2) Suppose there exist «, f € £y such that
Uplan BY2U, (a) A U,](,B).

Frdd H
There exist finite families {inf @, , <oa}and {inf ﬁ“rw:‘ < f}such that
i=] re /:l o

m "
(fry (Q’ A /[7’) Z (il’lf ’7(#1 2 )) AN (inf T](Uj 5 W_]- )) -
i=1 J=1
m

7
Since a A f2(infa,,. , )~ (inf ﬁuj_wf),we have
i=] j=1 " -
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Unlan ) zU,(a) AU (B).

It 1s a contradiction.

(SQU3) Suppose there exists o € Q2 y such that
sup{l/, () fo fsa} U, ()
Put = sup{U,?(,B) \ fo f<a}. From the definition of {/, («), there

m
exists a family {&,, , Vinfay,, ,, <} such that
i=1

n
tZ2inf n(u;.00)

1=1

Since 1 2n{u,, ), forall 1=1,..,m by (T6), we have

(20 n) )= SUD (1(4,0) ATV, )

ue]A

There exists v; € / A such that

m
{ é l]‘lf (n(fu,{' :Uf) A U(Ufapi )) '

i=i

On the other hand, let §, =@, , A @y, ,, »be given. It satisties

Bie p SGEU’_: 9, Ny =% pi s U;y(ﬂ)z (4, 0;) M ;. p;)

H
Let p= jnf]‘ f;be given. Since f; 0 f§, <, , ,foreach /=1, m, we
=

have
11 I
(infB)elinf fYSfioff sy, , -
[ i=1
Hence, by Lemma 1.1.5, we have

1 1 n
(inf B elinf B)<infa,, p <o
f:l i=1 J:1

Then we have o f <eand
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()it U (B)

Thus,

mn

U, () z inf ((a,00) A (L, 0;)) -
i=1

It implies, sup{l/,(f) \BoB<al=t. Itisacontradiction.
(SQU4) Since 77(1.1) =1, there exists a; | € Qx such thatl/, (o) )= [
Then {/,, is smooth quasi-uniformity on X .

Let (X,n) be a symmetric smooth topogenous space.

(SU) Suppose there exists a € Qy such that
supll/ (BN f<a ' §2U, (a).
Put. &= sup{(_/,?(ﬁ) \ g Saf"l} . Since U,](a) £ s, there exists a fimte

it

ST o
family tau, p, \mfl Ay p. <) such that
| =

Iz
inf 9, p ) €.

f=|

Since n(y;,p;)£s forall 1<i<n and (X,7) 1s a symmetric smooth
topogenous space, we have (4, p; ) =n(p{ 1),

Since (&, p, )7 =0p from Lemma4.24 by Lemma | 1.5, we have

v

o o
a = (lnf‘a(l[i,'(_),. )
i=1

-1

" -]
- mf (af‘"f-Pf )
I=

n
B lllzfap;~/[v '

Hence,
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n
(--/rzy(a‘]) = 11'1f 77(.0;,#;)

i=1

7
=inf 7y, o).
i==1

1
It implies s > inf 17{4;,p;)- It is a contradiction. Then {/,, 1s a smooth
i=l1

uniformity on X .

4.2.8 Definition

The smooth quasi-uniform space (X ,l/)1s said to be compatible with

smooth topogenous space (X,n) if 17y =1.

F]

The class I1(7) denotes the family of all smooth quasi-uniformities which

are compatible with a given smooth topogenous structure 77.

4.2.9 Theorem

Let (.X,7) be smooth topogenous space and the smooth topogenous

structure 77, mduced by (/, . Then we have:
(1) M, =1 that is, U/, € [1(77)

(2) U, is the coarsest member of T1(77).
Proof
(1) First, we will show that M, 2N If n(u, p) =0, then it s trivial. If

n(u, p) =0 then by Lemma 4.2.4 (1), there exists «, , € €2y such that

£p
Upley, p)zn(u, p) from Theorem 4.2.6, It follows that a,, ,(u)=p from

Theorem 4.1.4, m, (e, p)zU (a, ,). Hence, M, =0
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Suppose that m, £ 77. Then there exist s, p €/ X such that

iy, (i p) £1(4 ) - (1)

From the definition of m, (4, p) there exists a € Q2 y with a{u) < p such

that
Upla) £n(u,p).

From the definition of 17, , there exists a finite family

n
§ U
i=

i
inf n(u, p) £n(u, p). (1)

i=l
On the other hand, put I'={J c {I....m}\ g <sup ;.
jeJ

"
IfU=¢,infa,. p (1) =1<p.Thus, p=1,and n(u,p)znL.hH=1.
’zl b i

It is a contradiction for the equation (I).

If p=0by m, (11, p) = 0and (ST2), # =0. Hence, 7(0,0)=1. It1sa

contradiction for the equation (I).

¥ =g¢and p=0, by Lemma4.2.4 (5), then there exists

['={Jc{l,.,m}\ u<supp,} suchthat
jed

n
infey, p(H)=inf 7y =p.
1=1 Jel

Hence, p = inf (sup pj-). Moreover, we have u < inf (sup ;). Since
Jel ]r:-] JeT ’lg] ‘

m
1(sup g ;.sup £ ;) Zinf (4. P1) -
Jjad 1ed 7=l

we have
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) m )
n(u, p) = n(int (sup ;). inf (sup 2 ;) 2 inf 704 9;)-
Jel je.] Jel ]gJ ’ =l
It is a contradiction for the equation (11).
Therefore 17 = ny Ly

(2) By (1), we have that {/,, is compatible with 7. Let {/ be an arbitrary

member of (7).
We will show that U,](a) <U(a),forall aeQy.
Suppose that there exists & € Q y such that
U (a) £ U{a).

m
There exists a finite family {a#,,_p{_ Vinf @y, p, <@} such that
' =1

nt )
inf 7(a, p ) £U( ().

i=1
Since [/ € T1(n), thatis,n(u,, ;) =y (g, 0,) fori=1__m, there exists

e Oy with B;(4,) < p; such that
f X i

m
infU(B) £ (a). (111
i=1

m
On the other hand, put 8 =inf 3;. Since f;(x;) < p;, by the definition of.

i=l
Ay, p, > WE have f;, <« PR [t follows that
m m
i=l i=
"
Hence, U(a) > U{(f) = inf U/(S;) . It is a contradiction for the equation
i=1
(I11).
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4.1.14 Example

Define a function 5 17X %1% 51 asfollows:

1 if A=0or =1,

2 :
W(/?*;#): g ]fQ;t/’],SZ{\:},lr,t‘ugz{\}’
0 otherwise.
Where y 4 is a characteristic function of 4. Then (X ,7)is smooth

topogenous space.
From Theorem 4.2.6, we can obtain a smooth quasi-uniformity

/, Qy =1 on X asfollows:

] ifa =()le
2 n

U,](a): ; it Q’;{.‘lv‘_}_xh: SO':(I_I‘;,
0 otherwise.

If 02 A< ypp.1# 4 € gy, then, by Lemma 4.2.4 (2), Ay S

2 .
Hence, m, (A, )= 3 By a similar method, we have M, =17

4.2.11 Theorem

Let (.X,n) be smooth (quasi-)uniform space. The smooth (quasi-

Juniformity ¢/, . induced by 7, 1s coarser than {/ .

Proof
Suppose that {/,, £1/. There exists €y such that

U, (@) £U(a).

Chapter TV
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From the definition of [/, (&), there exists a finite famiy

n
1 1

{ay,-,p,. \mtl"a#‘.,pl <} such that
==

i1
infry(p.p) €0 ().

=1

From the definition of 7, for each 1 € {I,.. n} , there exists A, ¢ 2wl
Bi(u;) < p; such that
n
]”I’UWI) fé(../goc).
=

n AR .
Let £ =inf B, be given. Since B;(u,) < p;, by the delmition ot 7z,

i=]
we have
frzay,

Hence, [ <a and

Ula)2U(B) 2 infULB, ).
i=1

<{/.

It is a contradiction. Therefore, {/, = <(.

Chapter
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