

(Abstract 3)

## "The enhanced photocatalytic performance of SnS<sub>2</sub>@MoS<sub>2</sub> QDs with highly-efficient charge transfer and visible light utilization for selective reduction of Mythlen-blue"

Published in: Nanotechnology, 31 (2020) 475602.

DOI: 10.1088/1361-6528/aba212.

**ISSN**: 0957-4484, **IF** = 3.551.

تاريخ النشر: ٣١ أغسطس ٢٠٢٠

## Abstract:

Molybdenum disulfide (MoS<sub>2</sub>) has recently been considered as an effective material for potential photocatalytic applications; however, its photocatalytic activity was limited due to the low density of active sites. In this work, MoS<sub>2</sub> Quantum dots (QDs) were synthesized via the ultrasonication technique to construct heterostructure with SnS<sub>2</sub> nanosheets  $(SnS_2@MoS_2 QDs)$  and the prepared materials were tested for photocatalytic applications for Methylene blue (MB). Pristine  $SnS_2$  and  $SnS_2$  (*Q*)MoS<sub>2</sub> QDs nanocomposite were analyzed by XRD, TEM, PL, and Uv-Vis. Both SnS<sub>2</sub> and SnS<sub>2</sub>@MoS<sub>2</sub> QDs exhibited a single trigonal phase with the P-3m1 space group. The TEM analysis confirmed the coupling between the pristine SnS<sub>2</sub> and SnS<sub>2</sub>@MoS<sub>2</sub> QDs. The results of photocatalytic activity toward MB indicated that SnS<sub>2</sub>@MoS<sub>2</sub> QDs material exhibits much superior photocatalytic performance compared to pristine SnS<sub>2</sub>. The excellent photodegradation performance of SnS<sub>2</sub>@MoS<sub>2</sub> QDs is due in the main to the formation of heterojunction between  $SnS_2$  and  $MoS_2$  QDs with narrow bandgap formation, which results in a facile carriers transfer and thus high photocatalytic efficiency. A representative mechanism of the photodegradation for SnS<sub>2</sub>@MoS<sub>2</sub> QDs photocatalyst was proposed. Such an ultrasonic technique is capable of producing small metallic particle size that can be used to construct new heterostructures for water remediation applications.