

Faculty of Science Physics Department

STUDY OF THE PHYSICO-MECHANICAL PROPERTIES OF SOME NANO-CEMENT SAMPLES

By

Hemdan Sayed Hamed Mohamed

ABSTRACT

of **Master of Science**

in

Physics

(Experimental Solid State Physics)

Physics Department

Faculty of Science – Fayoum

FAYOUM UNIVERSITY

2009

STUDY OF THE PHYSICO-MECHANICAL PROPERTIES OF SOME NANO-CEMENT SAMPLES

By

Hemdan Sayed Hamed Mohamed B.Sc Physics (2006) Faculty of Science Fayoum University

Supervising committee:

1- Prof. Dr. Sayed Taha Mohamed Hassan Prof. of Solid State Physics, Physics Department, Faculty of Science, Vice-Dean for Higher Studies and Research, Fayoum University.

2- Prof. Dr. Mohamed Saad Ahmed Prof. of Physics, National Center of Structure Research.

3- Dr. Ahmed Hatem Hamdy

Lecturer in Physics Department, Faculty of Science, Fayoum University.

ACKNOWLEDGMENT

First, I would like to thank my supervisor, Prof. Dr. Sayed Taha Mohamed Hassan Prof. of Applied Solid State Physics, Physics Department, Fayoum University for effectively supervising this project. His motivation and encouragement for me, along with his in-depth knowledge in cement research, were the driving factors for the success of this research effort.

I would like to extend my deep gratitude to Prof. Dr. Mohamed Saad Ahmed, Prof. of Physics, National Center of Structure Research for his assistance and guidance throughout the project. Thanks to Dr. Ahmed Hatem Hamdy, Lecturer Physics Department, Faculty of Science, for his useful inputs throughout the project.

This research would not have been possible without the support of the National Center of Structure Research (NCSR) and my Faculty. Also, I would like to thank Prof. Dr. Gamal Said for his support and encouragement.

I would like to thank my colleague Hamada Shoukry, assistant researcher in the National Center of Structure for assisting me during the initial stage of the research work. Finally, I would like to thank my family for their love and support, and all my colleagues for providing all the enjoyable moments during this research.

Curriculum vita

Personal Information	Name	Hemdan Sayed Hamed Mohamed		
	Telephone :	0846597494		
	Mobile:	01066036880		
	E-mail:	Hemdan_tajik@ yahoo.com		
	Address:	Egypt, Fayoum , Tamia , Forks		
	Date of birth:	7/1/1985		
	Marital status:	Single		
	Nationality:	Egyptian		
	Job:	Demonstrator, Physics Department, Faculty of Science, Fayoum University, Egypt.		
Languages:	English: Russian	Very good Very good		
Education	B.Sc. form Faculty of Science, Fayoum University, May 2006			
and Qualification:	[Excellent with honor distinction]			
Fields of Research	Physics (Experimental Solid State Physics)			
Interests:	Reading, Compu	ter, Internet.		

CONTENTS

Title		page
CHAPTER I		
Theoretical Consideration and Previous Work		
1.1	Introduction	1
١,٢	Hydration Mechanism of Portland Cement	٣
۱,۳	Kinetics of Hydration	0
١,٤	Morphology and Microstructure of Hydration Product	v
١,٥	Formation of Basic Skeleton	٩
١,٦	State of Water in Hardened Portland Cement Pastes))
١,٧	Conduction and Polarization Mechanisms in Cement	١٢
١,٨	Electrical Conductivity and Dielectric Characteristics of	1 £
	Cement Paste	
١,٩	Hardened Cement pastes	١٦
١,١٠	Cement with Nanoparticles	١٨
١,١١	Review of Previous Work on Microsilica and Nano-Clay	١٩
	Material	
1.11.1	The Silica Materials	19
1.11.2	The Nano- Clay Material	24
١,١٢	Aim of Present Work	۳.
	CHAPTER II	
	Samples Preparation and Experimental Techniques	
		ىيو سو
2.1	Preparation of Samples Casting and Curing	11
2.2	Electrical Properties	٣٥
2.3	Measuring the Electrical Conductivity	٣٦
2.4	Dielectric Properties	۳۸

2.5	Measurement of Compressive Strength and Indirect tensile	۳۸
	strength	
2.6	Thermal Analysis Techniques	۳٩
	Title	Page
2.7	X-Ray Diffraction	45
2.7.1	XRD Samples	٤٥
2.7.2	The Diffractometer	٤٦
2.8	Scanning Electron Microscopy (SEM)	٤٦
	CHAPTER III	
	Results and Discussion	
3.1	The Electrical Properties	٥٣
3.1.1	Electrical Conductivity	00
3.1.2	The Dielectric Constant	०१
3.2	Thermal Analysis with Differential Scanning Calorimetry	٦٨
3.2.1	The Effect of Micro- Silica and Nano-Clay on DSC	68
3.3	Mechanical Properties	٨٢
3.3.1	The Effect of Micro Silica on the Compressive Strength in the Matrix Cement System.	82
3.3.2	The Effect of Nano- Clay (Na- Ca Montmorillotinite) on the	
	Mechanical Property of the Cement Matrix.	
3.4	Phase Composition and Microstructure (X-Ray and Microstructure)	٩٤
3.4.1	The Effect of the Micro-Silica and Nano-Montmorillonite on the Phase Composition and Microstructure of the Hardened Blended Cement Pastes	90
	Summary and Conclusions	١٠٩
	References	١١٣

ABSTRACT

The addition of a material, such as micro- silica and nano-clay (Na-Ca-montmorillonite) to the ordinary Portland cement (OPC) can be considered as a new trend in the production of a new complex cement paste, due to the ultra fine size of nano-particles, which show unique physical and chemical properties different from those of the conventional materials, due to the chemical composition of the additive materials. The complex cement materials with concentration function of the additive materials (micro silica and nano-clay).

The additive materials are used in the OPC to get new physical properties, and also on an additive to reduce the cement content. This is leads to a decrease the amount of CO_2 emission during the production of the OPC. The effects arise due to pozzolanic and size parameter and their morphology and microstructure of the cement matrix, together with the concentration of the ions mobility in the pore system. Therefore, they influence the physico-mechanical properties of the blended complex cement under different concentration of the additive materials. This influence is reflected in the changes occurring in the electrical, mechanical, thermal measurements and the pore microstructure analysis for the fresh and hardened blended cement pastes. These changes are closely linked and related to the level of hydration inside the complex cement pastes.

From the above mentioned reasons and the selected parameters, which are required to produce a new complex cement paste, that can be used in the field of construction building, it is necessary to known the changes of the physico-mechanical properties of different blended cement samples. This will be covered comprehensibly in this work.

The mixed samples cement paste, were prepared by replacing the OPC with 10% till 7% of micro silica and 0% up to 3% of nano –clay (Na-Ca montmorilloneit) by weight. These specimens were investigated at W/C =0.3 ratios and relative humidity 100% and different concentration of additives materials in the plank ordinary cement paste (OPC) with the curing hydration time.

The hydration mechanism of these samples (M_0 , M_{01} , M_{02} , M_{03} and M_{04} systems) were investigated by the electrical conductivity and dielectric constant(σ , ϵ) thermal (DSC) and mechanical (compressive strength) measurements, as well as the morphology and microstructure of the different systems characterized by the X-ray diffraction and scanning electron microscopy(SEM and EDAX) techniques .

The OPC containing these materials (micro-silica and nano-clay) have been found to have lower permeability than those without these additives. This is because the additive materials especially the micro-silica react with the calcium hydrated CH phase in the cement pastes resulted in more calcium silicate hydrate CSH gel phase , that precipitate in the available pore system (packing effect). The mechanism, the concentration of the additive materials and its chemical composition were being also investigated.

The critical condition for the changes of the hydration process inside the matrix of mortar cement systems (M_0 , M_{01} , M_{02} , M_{03} and M_{04}) occurs at the concentrations 0.8% and 0.9% for the micro-silica and 0.1% up to 0.2% for nano-clay (Na-Ca montmorillonite). The changes obtained from the electrical properties (σ , ε) at the setting time, the mechanical measurements (macrostructure changes), the DSC measurements and the morphology microstructure analysis of the hydrated CSH and CH phases through the Ca/Si molar ratio. Microstructure changes are attributed to the rate of physical pozzolanic effect, not to the chemical effect of the concentration of the additive materials and the important role of the nano-clay (Na-Ca montmorillinte) through the swelling effect (crystalline and macroscopic) in the matrix cement system, that are clearly observed in the two M_{02} and M_{03} cement matrix system.

The degree of hydration in blended cement paste (M_{01} system) can be linked to the changes in the microstructure, due to the pozzolanic effect of microsilica inside the matrix M_0 system, and through the transformation of mortar into solid. This leads to less macroscopic capillary pores (i.e.) an increase in the packing density (due to the specific surface area) and a decrease in the air content. These effects lead to a change and improvement in the microstructure (increase the mechanical properties) of M_{01} system and this contributes changes in cement matrix physical parameters. The addition of the nano-clay (Na-Ca montmorillonite), have a negative effect on the rate of hydromechansim and on the microsturcture on the cement matrix system M_{01} . This is clearly observed through the decreases of the mechanical properties of the different M₀₂, M₀₃ and M₀₄ systems. This negative effect is mainly attributed to the amount absorbed water observed by the nano-clay (Na-Ca montmorillonite), in the mixed water inside the matrix cement system (swelling effect). The Ca- montmorillonite in the nano-clay produces a crystalline swelling which is easier to separate and this increases the hydration reaction of cement paste. However the Namontmorillonite results in a macroscopic swelling and that is the most difficult to separate inside the matrix cement system, due to the large decrease in the rate of hydration and an increase in the capillary pore system. Here, the microscopic swelling effect is larger than the crystalline effect leading to a decrease of the mechanical properties (which creates a weak zone in the form of voids) and a change in the density of the

microstructure of the hydration products which are dependent on the diffusion of the nano- particles inside the matrix cement system. That is clearly observed in the M_{04} system, a result that is supported by other measurements. From the above mentioned consideration, the variation in the dense of microstructure and the degree of stability of each system depends on the concentration of both micro-silica and Na-Ca montmorillonite. From these it, can be concluded that the addition of micro-silica and nano-clay to the M_0 matrix system depends upon the intended use and required of performances, e.g. resulted mechanical properties, durability....etc, which can be employed in the construction building fields.