
INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

1. Introduction
New applications such as machine learning, web searches,
recommendation engines, and social networks generate
enormous amounts of logs, email, and other technical
structured/unstructured information streams. Such ap-
plications need fast processing of data which is involved
in today’s business processes analysis. These applications
might contain several thousand tables with over hundreds
of terabytes of data which are used heavily for both re-
porting and decision-making which often don't need up-
date or deletion operations [1].
Map Reduce is a programming model for large-scale dis-
tributed data processing with simple and elegant concepts
which are used to build blocks for other parallel pro-
gramming tools. In the same time, it is considered exten-
sible for different applications providing advantages of
Concurrency/Parallelism, tolerating failures and hiding
any complexity from the user. So, Map Reduce has become
the important standard for large-scale data processing in
many enterprises. Also, it is used for developing new so-
lutions on massive datasets such as relational data ana-
lytics, web analytics, machine learning, real-time analytics
and data mining [2, 3].
Hadoop is considered a framework based on Map Reduce
programming model for large-scale distributed data pro-
cessing. According to Hadoop, the applications run on
large clusters. These clusters are built from a variety of
homogeneous hardware. They provide the applications
both reliability and data mobility. Therefore, Hadoop im-
plements Map Reduce concepts Where the application is

divided into small tasks, every task could run or
re-executed on any cluster's node. Also, Hadoop uses a
distributed file system that stores data on the compute
nodes as a tree of distributed blocks, and provides data
privacy and handles software node failures [4, 5].
Many approaches have been introduced to improve the
performance of Hadoop. In particular, they have focused
on supporting efficient index access in Hadoop. But, most
of these indexing approaches have three main weaknesses:
 A high upfront cost required for index creation.
 Only one physical data sort order per dataset.
 The users need to have a high knowledge of data

 work-loads to choose the perfect index to create.
Therefore, structured database start-schema (Star Join
schema) is the simplest style of the data mart schema. This
star schema has one or more fact tables referencing large
number of dimension tables. The star schema is more effi-
cient for creating a simple query. Also, it represents one of
the complicated scheme that requires almost Joining
schema tables to gather information for decision makers
[6,7].
On the other hands, TPC-H is one of the massively used
Star Schema decision support benchmarks. It consists of a
set of business-oriented tables and concurrent data modi-
fications. This benchmark simulates decision support sys-
tems that use massive data set, execute queries with a high
degree of complexity, and provide answers to critical
business questions. Also, TPC-H benchmark provides
multiple aspects of the capability of the system to process
queries. These aspects contain; the selected database size,
the query processing complexity when queries are sub-
mitted by a single flow, and the query throughput when
multiple concurrent users send queries [7].
According to TPC-H benchmark, 19 prepared queries have
been involved to measure DB performance. These queries
will be used to evaluate the performance of our proposed
JOUM methodology relative to the existed systems. TPC-H
star schema tables are presented in Figure 1 [8].

JOUM: An Indexing Methodology for
Improving Join in Hive Star schema

Hussien SH. Abdel Azez,Mohamed H. Khafagy, Fatma A. Omara
Abstract— Now a day, Big data represents an important and complex Issue for information extraction/retrieval due to required
analysis computation power. Also, Database Star schema is considered one of the complicated data models due to the using of
Join queries to extract information and generate requested reports. These Join queries need to scan a vast amount of data

(tera, peta, zeta bytes). On the other hand, HIVE is one of the important and efficient Big data SQL querying tools built on the
top of Hadoop to translate SQL queries into Map/Reduce tasks. By using indexing data for Join queries could speed up HIVE
Join query (map/reduce) tasks especially in Star Schema. According to the work in this paper, JOUM (Join once Use Many)

methodology has been introduced to pre-join the star schema data and build an index for Joined data. Based on JOUM, SQL
queries execution time in HIVE has been improved without changing HIVE framework. TPC-H benchmark has been used to

evaluate the performance of JOUM methodology. The experimental result proves that JOUM methodology outperforms tradi-
tional Join execution time. Also, JOUM performance is improved by increasing data size. Generally, JOUM can be considered

one of the suitable methodologies for Big data analysis.

Index Terms— Big data, disturbed processing, map/reduce, Hadoop, Hive, start schema, Join query, Database.

——————————  ——————————

————————————————
 Hussien SH is currently pursuing masters degree program in com-

puter science in Cairo university, Egypt, PH-01004860780.
E-mail: hsa01@Fayoum.edu.eg

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

On the other hands, Join operation is considered one of the
high-cost operations in database systems which are used to
gather information from two or more tables. Also, Join
operation represents a special case of Cartesian product
that need to be optimized . These Joined tables are checked
against specific conditions before concatenating them.
These conditions have different forms like equi-Join,
self-Join, Outer Join , Inner Join, etc. [9]. All of these Join
forms are used to extract data from Join tables with com-
plexity O(n^k) where n represents an average number of
records in all tables, and k represents the number of tables
in Join operation. This complexity is non-reasonable for
computation of significantly sized star schema data models
[10].

HIVE is a DB-like software running on top of Hadoop
framework to facilitate executing query and managing
large datasets which are stored in a distributed storage.
HIVE uses a simple SQL-like query language, called HIVE
QL that enables users who are familiar with SQL to query
HIVE data. Also, HIVE QL allows Map-Reduce framework
programmers to be able to write their custom mappers and
reducers to process more complex and sophisticated jobs.
HIVE QL programmers can write their custom scalar
User-Defined Functions (UDF's) which are more like da-
tabase scripts or functions that can query database sche-
mas, write UDAF (User-Defined Aggregations Function)
for custom aggregation operations, and write UDTF(User
Defined Table Functions) for online tables creation [11].

HIVE/Hadoop architecture is shown in Figure 2 explains
how HIVE translating SQL query given by JDBC or ODBC
connection to HIVE thrift server or given through CLI or
Web Interface into Hadoop Map-Reduce job. Translation
steps (i.e., compiler - Optimizer - Executor) translate SQL
Query into Set of Map-Reduce tasks, optimize them, and
then execute it over Hadoop cluster [12,13].

Also, Join Operation is used to match the rows of two or
more tables. By performing Join operation, it will produce
all rows from all tables related to some specific fields or
properties. In order to, understand what is happening in-
ternally by performing the Join operation using HIVE. it
needs to imagine this operation like a Map Reduce task. So,
mapper will read the data from Join Tables then return the
Join key and Join value pair into an intermediate file. This
intermediate file will be sorted and merged in the shuffle
stage. Now, reducer takes this sorted result as input and
completes the task of Join. But, the shuffle step is expensive
since it needs to sort and merge all records. Therefore, the
shuffle operation steps need to save which will improve
the performance, reduce the total storage required to
complete the task [14].

Since, HIVE Join operation translates Join query into Map
Reduce task that visits physical files and selects all data
required by query (e.g., TPC-H dataset Parts table and their
customers, suppliers, Date of Pay, Line of production).
Joining the date of these tables is considered a complicated
task which needs high memory, and computation power
resources.
This paper is organized as;Section 2 discussesthe related
workand their pros/cons. Section 3 discusses the proposed
methodology (JOUM). The comparative study of HIVE and
JOUM methodology is explained in section 4.Section 5
discusses system setup, data set, cluster machines, Hadoop
and HIVE configuration. Also, the performance evaluation
is presented in section 5.Conclusions and future work are
presented in Section 6.

2. RELATED WORK
Several approaches have been introduced to improve Ha-
doop Map-Reduce tasks performance. Some of them de-
pend on good knowledge of data structures and their rela-
tions (data schema), while other introduce general solu-
tions for Hadoop tasks execution pipeline and data scan-
ning pipeline.

Figure 1:PC-H Star Schema completely [8].
Figure 2: Hive/Hadoop Architecture Framework

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2.1. HadoopDB

Two schools of thought are used for data analysis in Big
Data environment. Consultants of parallel databases
claimed that the performance and efficiency of parallel
databases did more suitable to perform such analysis.
Others said that Map Reduce based systems are more
suited because of their scalability, fault tolerance, and
flexibility to handle unstructured data. By considering both
technologies, the performance could be improved. But, it is
still suffered from full block scanning and indexing over-
head in most cases [15].

2.2. Hadoop++

Hadoop++ is based on enhancing task performance
without changing the Hadoop structure by injecting Trojan
Index at the right places through the user defined functions
only, but it affects Hadoop from inside. Figure 3 presents
presenting Hadoop ++ Trojan index.

Hadoop++ has three important consequences:

 Hadoop++ performs better than Hadoop.
 Future changes of Hadoop will directly use Hadoop++

without rewriting any new code.
 No need to change the Hadoop interface.

Hadoop++ is considered more suitable for tasks related to
indexing and Join processing than that Hadoop and Ha-
doopDB. However, it still suffers from non-suitable
workloads because there is only one Indexed Attribute, so
queries which not related to that attribute will turn it back
into Hadoop for execution [16].

2.3. HAIL (Hadoop Aggressive Indexing Library)

HAIL changes data uploading pipeline of HDFS to create
different clustered indexes for every data block replica,
which improves run times of several classes of queries by
choosing the most suitable index/replica to run
Map-Reduce jobs [17]. HAIL creates a win-win situation by
improving both uploading data to HDFS and the runtime
of the actual Hadoop Map-Reduce job. HAIL increases data
uploading over HDFS up to 60% with the default replica-
tion factor of three. HAIL demonstrates that runs up to 68x
faster than Hadoop and even out-performs Hadoop++ as a
result. So, the users can speed up their Map Reduce jobs by
almost two orders of magnitude. However, this improve-
ment only happens if the users create the most suitable
indexes when uploading their datasets to HDFS. This

means that HAIL requires users to decide before uploading
which indexes suitable to create. So, HAIL is not suitable

for unpredictable/dynamic workloads, as well as, tradi-
tional indexing techniques for users who often do not
know which indexes to be created beforehand [18].

2.4. LIAH (Lazy Indexing and Adaptively in
 Hadoop)

Based on LIAH, building adaptive indexes at minimum
costs for Map Reduce systems, automatically and incre-
mentally adapt users’ workloads by creating clustered
indexes on HDFS data blocks. Besides, distributing index-
ing costs over multiple nodes. All these operations are
done without any extra data copies in the main memory
and with minimal synchronization. Also, LIAH Postpones
index creation on map tasks that read related data from
disk to main memory anyways. So, LIAH doesn’t consume
any extra read I/O-costs and also has a very small indexing
overhead, usually for the first job. LIAH can speedily
converge to a complete index where all HDFS data blocks
are indexed with low overhead of 11% than HAIL for the
first Map/Reduce job only. However, LIAH is considered
better than Hadoop and HAIL by factor of 52 and 24 re-
spectively. The main drawbacks of LIAH are; the users
must have good knowledge about their data and choose
index fields carefully. It has. Index overhead because of
cluster nodes synchronization for online/dynamic index
building which consumes I/O and network bandwidth. For
every execution time, the same job/query is needed to
rebuild the index at run time which needs high memory
and consumes more computation power [19].

3. The proposed Join Once Use Many (JOUM)
 Methodology

By executing Join, all related operations suffer from
re-joining all data tables. Then, extra computing resources
will be consumed (e.g. CPU, I/O, and Network Band-
width).This is considered one of the main issues because an
index is needed to be built for each pipeline execution
which will consume the computing resources and time.
Therefore, the main principle of our proposed solution is to
build joined data table for all-star schema tables to be one
table at the data uploading phase. The joined data table
contains all schema Fact/Dimension tables which will be
uploaded into HDFS. Every Join query will be executed
like a normal selection statement using the Joined-Indexed
table. Unfortunately, the structure of The Joined table will
affect the performance of Join query execution, and the
needed storage of this table will be a problem.SQL query
parser is needed to parse SQL statement and convert it into
an equivalent one that will run over Joined data table and
produce the same result. In fact, the Joined data table needs
to be re-structured and loaded into HIVE, and then it will
be processed using a new parser on HIVE. At this moment,
there is no need to modify HIVE or Hadoop. A new parser

Figure 3: Hadoop ++ Trojan Index injection

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

will convert SQL Join query into a suitable form for the
modified Joined table structure then pass it to the HIVE
which will process it as one task of Map Reduce over Ha-
doop. So, the proposed system won't change HIVE archi-
tecture, but some up-front parser is added for HIVE and
some index technique will be built inside Joined table by
some user defined function.

3.1 The Proposed System Framework

The proposed system framework components are pre-
sented in Figure 4. Showing that The proposed system
Framework is independent of HIVE because Added com-
ponents are on top or at back end of HIVE engine. these
components interact with hive without need of hive ar-
chitecture changes as explained below in details.

3.1.1 Star Schema Joined Table Builder

Joined table schema builder converts star-schema
Fact/dimension tables into one table contains all schema
data in a Joined form. Figure 5 illustrates TPC-H schema
data.

In order to convert schema data into one Joined table Car-
tesian product of lineorder Table will be constructed from
all other dimension tables by substituting each dimension

key in the fact table by dimension record data. Figure 6
illustrates Joined TPC-H table. All dimension tables fields
are added to line order Joined table by naming pattern
contain dimension table name followed by field name. So,
line order table fields will increase the count of non-key
fields in all dimension tables (e.g.fields CustName, Part-
Name, SuppName, Date)are added into line order table by
considering the first record online order table as a sample
which will substitute each dimension field by its value
according to its dimension key from dimension table such
as table customer key customer#01 have custname Cust#01
and so on (see Figure6).
By generating Joined table redundant data will be intro-
duced in the star schema which produces storage overhead
to store this redundant data. In order to solve this problem,
the dimension fields of a record that appear for the first
time will be stored, then new repeated records will be
stored as a reference to that record. This reference can be
named a pointer/reference/index because it directly
points to the required record that contains the fully stored
information for this dimension key. By jumping into ref-
erenced record by index and substituting empty fields by
their original values called Fill-In operation. We can im-
plement this operation by simple User Defined Function
(UDF) and plug it into HIVE.

3.1.2 Query Execution (Parser/ Converter/ Executor)

After concatenating Star schema data into one table and
loaded into hive. old join query needs to be parsed to de-
fine each table/fields within the new query, and convert it
into a new equivalent query for new Joined table using the
following steps.
1. Convert every field name to tablename_fieldname.
2. Delete all Join tables and replace all of them by select

from Joined table name.
3. Use Fill-in UDF function to fill in empty values.

Using these steps, Join Query1 is converted into Query 2
which can run over JOUM schema.

 Figure 5: TPC-H Star schema Sample Data

Figure 4: Proposed system framework

Figure 6: Line Order Table Joined data

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3.1.3 Fill-in UDF:

The redundant data in the new joined table schema needs
to be removed, and keep its place as empty fields. Alt-
hough, these empty fields need to be re-filled during the
processing of this schema. So, empty fields can fill in by
iterating through previously referenced records from
joined table data process. During this iteration these rec-
ords may be referenced again by next records. So, these
referenced records have to cache in memory and be aware
of memory size limitations. So, some memory caching al-
gorithms should be used to solve memory overflow like
Most Recently Used records (MRU) or Least Recently Used
records (LRU) [20] (see Figure 7).

Using caching to fill in empty fields will be faster, easier
and saving memory starvation. Huge number of records as
in the case of Big Data, fill in process will be divided into
three steps as shown in Figure 8

3.2 Joined Table Structure

Joining star schema data into one table will avoid HIVE to
be translated into complex map-reduce task by reducing
the number of Map-Reduce tasks which are needed by
Hadoop into one Map Reduce task such a select statement
from one table. So, this will affect query execution
time/performance.

3.2.1 Redundant Joined Table Structure:
All fields from dimension tables will be gathered into one
table with all property fields in the Fact Table by iterating
through all records, and gathering all related dimensions
data into one record. Then, all data will be written by
comma separated file format(see Figure 9).

Redundant Joined Table data converted into comma sepa-
rated values (CSV) format is shown in Figure 10 which
acceptable format by hive to be loaded as hive table.

Loading Data into Hive
Creating a new table called "LineOrderJoined" using re-
dundant Joined table structure, the data will be loaded
using HIVE load statement and then rewrite join query to
execute on HIVE.
HIVE QL Query parsing and conversion
Parsed query will be re-written as selection from one table
without Joins as shown in Query 3.

Figure 8: Fill-in function

Figure 9: Line Order Table Redundant Joined data.

Figure 7: MRU-LRU caching[20].

Select custkey, Custname, partkey, partname, suppkey,
suppname, datekey, date, linenumber, orderkey

from LineOrderJoined

Query 3

Figure 10: Line Order Table Redundant Joined data
 CSV format.

1, 1, 1,Cust#01,2,rosy metallic,2,Supp#02,19920101,1-jan-92
2,3,2,Cust#02,1,lace sping,1,Supp#01,19920102,2-jan-92

select count (*), customer_custkey, customer_name,
part_partkey, part_name, supplier_suppkey, supplier.name,
date_datekey, date_date
From joined_table where date_datekey<1/1/2001
group by customer_custkey, customer_name, part_partkey,
part_name, supplier_suppkey, supplier.name, date_datekey,
date_date
order by customer_name

Query 2: Joined schema select query

select count (*), customer.custkey, customer.name,
part.partkey, part.name, supplier.suppkey, supplier.name,
date.datekey, date.date
from customer, part, supplier, date, lineorder where
lineorder.custkey=customer.custkey and lineor-
der.partkey=part.partkey and lineor-
der.suppkey=supplier.suppkey and lineor-
der.datekey=date.datekey and date.datekey<1/1/2001
group by customer.custkey, customer.name, part.partkey,
part.name, supplier.suppkey, supplier.name, date.datekey,
date.date
order by customer.name

Query 1: Join query from TPC-H tables

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Redundant Joined table structure Pros/Cons
 Pros:
 Joining data will be done inconstant time at the first

 time of data loading.
 Selecting from Join table will reduce the time

 relative to HIVE traditional Join map/reduce tasks.
 Cons:
 Data redundancy represents overhead for data size

because every dimension record Joined with fact rec-
ord will be repeated by the number of Joins such as
Cust#02 and Supp#01.

3.2.2 Indexed Joined Table
To overcome Redundant Joined Table structure repeated
fields overhead, we can remove this repetition by refer-
encing repeated dimension records by an index field. So,
repetitions for new records will be ignored, but still their
non-key fields represented as null fields which mandatory
to be structured in CSV format and can be loaded into
HIVE as table, also can run SQL Join query and refill null
fields on result dataset from HIVE Joined table using index.
To create indexed table structure, all fields from dimension
tables will be gathered into one table plus all property
fields in Fact Table by iterating through all records in Fact
table and gather related dimensions data into one record as
shown in Figure 11

by iterating through all star schema tables and gather every
related record from all schema tables into one record and
All repeated dimension records non-key fields will be null
to overcome data redundancy. Adding a new column
called index that hold referenced record index (pointer)
then all data will be written to CSV format as shown in
Figure 12.

Load Data into Hive
Creating a new table called "LineOrderJoinedIndexed",
load data into HIVE using load statement then re-write Join
query to run on HIVE.
HiveQL Query Parsing and conversion
Parsed query re-written as selection from one table without
Joins as shown in query 4:

Fill in Result Phase
There are null fields in select query result need to be
re-filled using Fill-in function (UDF Filling) for each record
in result read index field and iterate through referenced
records on the index field and fill null fields by their data
from corresponding referenced records. Figure 13 explains
how to fill second record from the result by iterating
through record 1, and 2 from Joined table and fill missing
fields (see Figure 13).

Indexed Joined table structure Pros/Cons
Pros:
 Joined Schema Creation Time represents up-front time
 overhead for the first time only.
 Selecting from Joined table will reduce the time
 relative to HIVE traditional Join map/reduce tasks.

Cons:
 Index column represents Data overhead.
 Selecting Result Requires Fill in Step which requires

loop through all Joined table records.
 Empty dimensions fields need separators character in

CSV file format which represents also data overhead.

4. HIVE VS JOUM

HIVE execution of Query 1 will partition each two Join
tables over all cluster nodes, then map each table partition
data using projection and local predicates the result data
will be shuffled into cluster nodes. Each shuffled partition
will be sorted by tables keys and reduced by Join keys re-
sult now contains partitions each of them contains Joined
data by their keys and other selection fields based on se-
lection criteria. In the case of Joining more than two tables,
previous operation will be repeated for each table by
Joining first table with the second table then Join the result
with the third table and vice versa. For aggregation and
ordering by clauses, it needs to re-map result into cluster
nodes and combine each map according to aggregation
fields, shuffle combined data by aggregate fields, sort each
partition then reduce each partition aggregate/ordered
data.

Figure 13: Null Record Filling process using Filling UDF.

Figure 11: Line Order Indexed Joined Table data.

Query4

Select custkey, Custname, partkey, partname, suppkey,
suppname, datekey, date, linenumber,
orderkey,index from LineOrderJoined where
date=19920101

1,1,1,Cust#01,2,rosy metallic,2,Supp#02,19920101,1-jan-92,0
2,3,1, ,1,lace sping , 1,Supp#01,19920102,2-jan-92,1
3,2,1,Cust#02,2, ,1, ,19920101, ,1 2

Figure 12: Line Order Table Indexed Joined data in CSV
Format.

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 14 represents the complex and repetitive operations
of Join execution pipeline in Hive.

Figure 14 indicates how many needed steps for Join oper-
ation, how much slow Join query execution, how much
temporary storage will be allocated for intermediate steps
like sort and combine, and how much network bandwidth
is needed for map and shuffle steps in HIVE execution
pipeline. By executing previous query more times by dif-
ferent criteria, different aggregate clauses or different or-
der by dimensions.

Every time of running this Join query needs to execute
previous steps, allocating temporary storage, consuming
networks bandwidth. For the node failure case, it needs to
re-execute the whole tasks again and again. So, using this
execution pipeline will be unreasonable for executing high
dimensioned/complex Join query over Big Data sets.

The proposed JOUM system will do pre-Join of all schema
data tables into one table using Join Table Builder then load
this Joined table into HIVE framework. This two steps will
only be executed at the first time of data loading. Through
the execution of Join query JOUM first two Steps of parti-
tioning and shuffling of data blocks will be discarded be-
cause JOUM system selects from one table as query 4.
Figure 15 explains JOUM Join execution pipeline.

By comparing Figure 15 and Figure 14 steps, the steps us-
ing JOUM will be reduced into three steps only (data pro-
jection –Map Reduce - fill in empty selected fields using
UDF). this steps equivalently to normal select statement
without Join plus extra steps which named Fill in Using
UDF.

5. Experiment Setup

The proposed system is empirically evaluated effectiveness
in speeding up analytical queries having selection predi-
cates. The evaluation parameters which are used to evalu-
ate the proposed JOUM system are:

1. The time savings in query response times.
2. The computation costs of building an index on

 load time.
3. The storage overhead of the indexes.

Overall, the experiments show that Indexed Joined tables
yields significant speedups in query response times com-
pared to HIVE star schema, while avoiding unreasonable
overheads.
In the experiments, an index built over Joined table which
in order to speeding up query response time by large fac-
tors, minimizing temporary storage required to execute
Join query by large factor.

5.1 Cluster Setup
The proposed system is developed under Linux Ubuntu
LTS 12.4 x64 server Installed on Hadoop cluster of 5 virtual
machines over two PowerEdge T320 tower server Intel®
Xeon® processor E5-2400 and E5-2400 v2 2.5MB cache per
core with core options 4 with 2G RAM, 1G Ethernet net-
work 200 GB Hard Disk over host OS Windows Server 2008
R2 using Java SE7 with JDBC connection over HIVE
11.0.0/Hadoop 2.2.0 thrift server. Hadoop master pro-
cesses (Map Reduce Job Tracker, HDFS Name Node, and
HIVE thrift server). The following configuration parame-
ters are overridden in order to boost performance, JVM’s

Figure 15: JOUM execution pipeline

Figure 14: HIVE Join execution pipeline

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

were re-used, speculative execution was turned off, and a
maximum of 1GB JVM heap space was used per task. Re-
peating each experiment three times and reported the av-
erage of the results.

5.2 Dataset
Generated datasets from TPC-H star schema benchmark
used the entity having the most records, namely, the Or-
ders document from Line Items table from TPC-H. Gener-
ated datasets of 6 Million Record each Line Items consists
of 16 distinct fields with no nesting—i.e., a flat struc-
ture—and a rigid schema.

5.3 The Performance Evaluation
According to Figures 16, and 17, it is found that temporary
storage consumes up to 16% for Joined Indexed and up to
33% for Redundant Joined from HIVE required size.
Permanent storage consumes up to 128 % for Joined In-
dexed and 186% for Redundant Joined form HIVE required
size. In comparison between storage needed for permanent
and temporary storage we notice that high storage is
needed for permanent storage than HIVE because of index
overhead but Low storage is needed for temporary storage
than hive will be fair enough.

Figure 18, showing time required for building Joined Data
table which upfront cost paid only at first time of loading
data into HIVE. According to Figure 19, it is found that the
execution time is reduced up to 50.5% for our Joined In-
dexed method and up to 68.1% for our Redundant Joined
method. By increasing data size, our proposed methods
computation time is fixed, while HIVE computation time
will be increased. So, the performance of our proposed
methods outperforms HIVE performance.

Figure 20 indicates that on average of running different
queries from TPC-H using the proposed methods doing
well comparing to the HIVE by factors of 58.5% for Join
Indexed and 66.1% for Redundant Joined Table. Figure 21
showing that large cluster size enhancing HIVE perfor-
mance compared by the proposed methods because HIVE
load balancing, and task distribution technique use cluster
resources very well [21,22].

In small size cluster, the proposed solution is more pow-
erful than HIVE. Also, for a large cluster, the proposed
solution is still performing better enough than hive.

Figure 16:Temporary storage required for running
PC-H Query #1.

Figure 17:Permanent storage required for running
TPC-H Query #1.

Figure 19: TPC-H Query #1 execution time
by number of records.

Figure 18: TPC-H Joined Table Building by Time

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 1, JANUARY-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

6. Conclusions and Future Work
In this paper we introduced JOUM methodology which
pre-Join the star schema data and build an index for Joined
data are proposed. Based on JOUM methodology, SQL
queries execution time in HIVE has been improved.
Without changing HIVE framework. TPC-H benchmark
has been used to evaluate the performance of JOUM
methodology. The experimental results prove that JOUM
methodology outperforms traditional Join execution time.
Also, JOUM performance is improved by increasing data
size. Generally, JOUM is one of the suitable methodologies
for Big Data analysis..However, minimum overhead in
permanent storage is produced because index is small
compared to large size saved by temporary storage. In the
future work, we need to minimize the storage and we want
to implement JOUM in different Benchmarks [23].

References
[1] T. White, Hadoop: The Definitive Guide, O’Reilly, 2011.
[2] Dean, J., "Ghemawat Map-reduce: Simplified data pro-

cessing on large clusters," OSDI: Proceedings of the 6th
symposium on operating systems design, San Francisco,
USA, PP. 137– 150, 2004.

[3] Dewitt, D. Stonebraker, M.,"Map-Reduce: A Major Step
Backwards blog post,
http://databasecolumnvertica.com/database-innovation/
mapreduce-a-majorstep-backwards/Jan2007.

[4] Al Feel, H.T.; MohamedHelmyKhafagy,”.OCSS: Ontology
CloudStorage System”, IEEE Network Cloud Computing
andApplications (NCCA), 2011 First InternationalSympo-
sium on Pages 9-13.

[5] Haytham Al Feel, Mohamed Khafagy, Search content
viaCloud Storage System. International Journal of Com-
puterScience Issues (IJCSI) volume 8 Issue 6, 2011.

[6] Blumberg, Atre: The Problem with Unstructured Data.
http://www.dmreview.com/issues/20030201/6287-1.html.

[7] Rolf Sint, Sebastian Scha ert,StephanieStroka and Roland
Ferstl Combining Unstructured, Fully Structured and
Semi-Structured Information in Semantic Wikis 2010.

[8] http://examples.citusdata.com/tpch_queries.html.
[9] Mina Samir Shenouda, Mohamed Helmy Khafagy, Samah

Ahmed Senbel,” JOMR: Multi-Join Optimizer Technique to
Enhance Map-Reduce Job , the 9th International Conference
on Informatics and Systems (INFOS2014),2014 pp 80-86.

[10] J. Lin et al. Full-Text Indexing for Optimizing Selection
Operations in Large-Scale Data Analytics. In Map Reduce
Workshop, pages 59–66, 2011.

[11] https://hive.apache.org.
[12] Fawzya Ramadan Sayed and Mohamed Helmy Khafagy

,”SQL TO Flink Translator”, IJCSI International Journal of
Computer Science Issues, Volume 12, Issue 1, No 1, January
2015,pp 169:174

[13] Fatma A Omara, Marwah N Abdullah, Mohamed H
Khafagy” HOME: HiveQL Optimization in Multi-Session
Environment”, 5th European Conference of Computer Sci-
ence (ECCS '14),PP 80:89

[14] Join Processing in Relational Databases PRITI MISHRA and
MARGARET H. EICH. ACM computing surveys
Vol24. No. 1, March 1992.

[15] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin. HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical
Workloads. PVLDB, 2(1), 2009.

[16] J. Dittrich, J.-A. Quian´e-Ruiz, A. Jindal, Y. Kargin, VSetty,
and J. Schad. Hadoop++: Making a YellowElephant Run
Like a Cheetah (Without It Even Noticing). PVLDB, 3(1-
2):515–529, 2010.

[17] E Sarhan, A Ghalwash, M Khafagy ,”Agent-based replication
for scaling back-end databases of dynamic content web
sites”, Proceedings of the 12th WSEAS international con-
ference on Computers, 2008 pp 857-862.

[18] JensDittrich, JorgeArnulfo, Quian´eRuiz, Stefan Richter,
Stefan Schuh, Alekh Jindal And J¨orgSchad
Hail: Only Aggressive Elephants are Fast Elephants.
arXiv:1208.0287v1 [cs.DB] Aug 2012.

[19] Stefan Richter, Jorge-ArnulfoQuian e-Ruiz, Stefan Schuh,
JensDittrich: Towards Zero-Overhead Adaptive Indexing in
Ha-
doop.http://infosys.cs.uni-saarland.de,arXiv:1212.3480v1
[cs.DB] 14 Dec 2012.

[20] Adaptive insertion policies for high performance caching
Moinuddin K Qureshi, AamerJaleel, Yale N Patt ISCA07,
June 9-13, 2007 ACM 978-1-59593-706- 3/07/0006.

[21] EbadaSarhan, AtifGhalwash, Mohamed Khafagy, Queue-
WeightingLoad-Balancing Technique for Database
Replication In Dynamic Content Web Sites ", APPLIED
COMPUTER SCIENCE (ACS'09) University of Genova,
Genova, Italy, 2009, Pages 50-55.

[22] Ahmed M WahdanHesham, A. Hefny, Mohamed Helmy
Khafagy,” Comparative Study Load Balance Algorithms
for Map Reduce Environment” International Journal of Ap-
plied Information Systems,2014, Issues 7(11),pp 41-50.

[23] EbadaSarhan, AtifGhalwash, Mohamed Khafagy, Specifica-
tion and implementation of dynamic web site benchmark in
telecommunication area, Proceedings of the 12th WSEAS
international conference on Computers 2008 Pages 863-867.

Figure 20: TPC-H Query #1 to #3 execution time by
number of records for 1 million records.

Figure 21: TPC-H Query #1 execution time for 4M
record by cluster size.

