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1. Introduction 
New applications such as machine learning, web searches, 
recommendation engines, and social networks generate 
enormous amounts of logs, email, and other technical 
structured/unstructured information streams. Such ap-
plications need fast processing of data which is involved  
in today’s business processes analysis. These applications 
might contain several thousand tables with over hundreds 
of terabytes of data which are used heavily for both re-
porting and decision-making which often don't need up-
date or deletion operations [1]. 
Map Reduce is a programming model for large-scale dis-
tributed data processing with simple and elegant concepts 
which are used to build blocks for other parallel pro-
gramming tools. In the same time, it is considered exten-
sible for different applications providing advantages of 
Concurrency/Parallelism, tolerating failures and hiding 
any complexity from the user. So, Map Reduce has become 
the important standard for large-scale data processing in 
many enterprises. Also, it is used for developing new so-
lutions on massive  datasets such as relational data ana-
lytics, web analytics, machine learning, real-time analytics 
and data mining [2, 3]. 
Hadoop is considered a framework based on Map Reduce 
programming model for large-scale distributed data pro-
cessing. According to Hadoop, the applications run on 
large clusters. These clusters are built from a variety of 
homogeneous hardware. They provide the applications 
both reliability and data mobility. Therefore, Hadoop im-
plements Map Reduce concepts Where the application is  

 
divided into small tasks, every task could run or 
re-executed on any cluster's node. Also, Hadoop uses a 
distributed file system that stores data on the compute 
nodes as a tree of distributed blocks, and provides data 
privacy and handles software node failures [4, 5]. 
Many approaches have been introduced to improve the 
performance of Hadoop. In particular, they have focused 
on supporting efficient index access in Hadoop. But, most 
of these indexing approaches have three main weaknesses: 
 A high upfront cost required for index creation.  
 Only one physical data sort order per dataset.  
 The users need to have a high knowledge of data 

    work-loads to choose the perfect index to create. 
Therefore, structured database start-schema (Star Join 
schema) is the simplest style of the data mart schema. This 
star schema has one or more fact tables referencing large 
number of dimension tables. The star schema is more effi-
cient for creating a simple query. Also, it represents one of 
the complicated scheme that requires almost Joining 
schema tables to gather information for decision makers 
[6,7]. 
On the other hands, TPC-H is one of the massively used 
Star Schema decision support benchmarks. It consists of a 
set of business-oriented tables and concurrent data modi-
fications. This benchmark simulates decision support sys-
tems that use massive data set, execute queries with a high 
degree of complexity, and provide answers to critical 
business questions. Also, TPC-H benchmark provides 
multiple aspects of the capability of the system to process 
queries. These aspects contain; the selected database size, 
the query processing complexity when queries are sub-
mitted by a single flow, and the query throughput when 
multiple concurrent users send queries [7].  
According to TPC-H benchmark, 19 prepared queries have 
been involved to measure DB performance. These queries 
will be used to evaluate the performance of our proposed 
JOUM methodology relative to the existed systems. TPC-H 
star schema tables are presented in Figure 1 [8]. 
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On the other hands, Join operation is considered one of the 
high-cost operations in database systems which are used to 
gather information from two or more tables. Also, Join 
operation represents a special case of Cartesian product 
that need to be optimized . These Joined tables are checked 
against specific conditions before concatenating them. 
These conditions have different forms like equi-Join, 
self-Join, Outer Join ,  Inner Join,  etc. [9]. All of these Join 
forms are used to extract data from Join tables with com-
plexity O(n^k) where n represents an average number of 
records in all tables, and k represents the number of tables 
in Join operation. This complexity is non-reasonable for 
computation of significantly sized star schema data models 
[10]. 
 
HIVE is a DB-like software running on top of Hadoop 
framework to facilitate executing query and managing 
large datasets which are stored in a distributed storage. 
HIVE uses a simple SQL-like query language, called HIVE 
QL that enables users who are familiar with SQL to query 
HIVE data. Also, HIVE QL allows Map-Reduce framework 
programmers to be able to write their custom mappers and 
reducers to process more complex and sophisticated jobs. 
HIVE QL programmers can write their custom scalar 
User-Defined Functions (UDF's) which are more like da-
tabase scripts or functions that can query database sche-
mas, write UDAF (User-Defined Aggregations Function) 
for custom aggregation operations, and write UDTF(User 
Defined Table Functions ) for online tables creation [11]. 
 
HIVE/Hadoop architecture is shown in Figure 2 explains 
how HIVE translating SQL query given by JDBC or ODBC 
connection to HIVE thrift server or given through CLI or 
Web Interface into Hadoop Map-Reduce job. Translation 
steps (i.e., compiler - Optimizer - Executor) translate SQL 
Query into Set of Map-Reduce tasks, optimize them, and 
then execute it over Hadoop cluster [12,13]. 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also, Join Operation is used to match the rows of two or 
more tables. By performing Join operation, it will produce 
all rows from all tables related to some specific fields or 
properties. In order to, understand what is happening in-
ternally by performing the Join operation using HIVE. it 
needs to imagine this operation like a Map Reduce task. So, 
mapper will read the data from Join Tables then return the 
Join key and Join value pair into an intermediate file. This 
intermediate file will be sorted and merged in the shuffle 
stage. Now, reducer takes this sorted result as input and 
completes the task of Join. But, the shuffle step is expensive 
since it needs to sort and merge all records. Therefore, the 
shuffle operation steps need to save which will improve 
the performance, reduce the total storage required to 
complete the task [14]. 
 
Since, HIVE Join operation translates Join query into Map 
Reduce task that visits physical files and selects all data 
required by query (e.g., TPC-H dataset Parts table and their 
customers, suppliers, Date of Pay, Line of production). 
Joining the date of these tables is considered a complicated 
task which needs high memory, and computation power 
resources. 
This paper is organized as;Section 2 discussesthe related 
workand their pros/cons. Section 3 discusses the proposed 
methodology (JOUM). The comparative study of HIVE and 
JOUM methodology is explained in section 4.Section 5 
discusses system setup, data set, cluster machines, Hadoop 
and HIVE configuration. Also, the performance evaluation 
is presented in section 5.Conclusions and future work are 
presented in Section 6. 
 
2.  RELATED WORK  
Several approaches have been introduced to improve Ha-
doop Map-Reduce tasks performance. Some of them de-
pend on good knowledge of data structures and their rela-
tions (data schema), while other introduce general solu-
tions for Hadoop tasks execution pipeline and data scan-
ning pipeline. 

 

 

Figure 1:PC-H Star Schema completely [8].  
Figure 2: Hive/Hadoop Architecture Framework 
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2.1. HadoopDB 

Two schools of thought are used for data analysis in Big 
Data environment. Consultants of parallel databases 
claimed that the performance and efficiency of parallel 
databases did more suitable to perform such analysis. 
Others said that Map Reduce based systems are more 
suited because of their scalability, fault tolerance, and 
flexibility to handle unstructured data. By considering both 
technologies, the performance could be improved. But, it is 
still suffered from full block scanning and indexing over-
head in most cases [15].  

2.2. Hadoop++ 

Hadoop++ is based on enhancing  task performance 
without changing the Hadoop structure by injecting Trojan 
Index at the right places through the user defined functions 
only, but it affects Hadoop from inside. Figure 3 presents 
presenting Hadoop ++ Trojan index. 

Hadoop++ has three important consequences:  

 Hadoop++ performs better than Hadoop.  
 Future changes of Hadoop will directly use Hadoop++  

without rewriting any new code.  
 No need to change the Hadoop interface. 

Hadoop++ is considered more suitable for tasks related to 
indexing and Join processing than that Hadoop and Ha-
doopDB. However, it still suffers from non-suitable 
workloads because there is only one Indexed Attribute, so 
queries which not related to that attribute will turn it back 
into Hadoop for execution [16].  

2.3. HAIL (Hadoop Aggressive Indexing Library)  

HAIL changes data uploading pipeline of HDFS to create 
different clustered indexes for every data block replica, 
which improves run times of several classes of queries by 
choosing the most suitable index/replica to run 
Map-Reduce jobs [17]. HAIL creates a win-win situation by 
improving both uploading data to HDFS and the runtime 
of the actual Hadoop Map-Reduce job. HAIL increases data 
uploading over HDFS up to 60% with the default replica-
tion factor of three. HAIL demonstrates that runs up to 68x 
faster than Hadoop and even out-performs Hadoop++ as a 
result. So, the users can speed up their Map Reduce jobs by 
almost two orders of magnitude. However, this improve-
ment only happens if the users create the most suitable 
indexes when uploading their datasets to HDFS. This 

means that HAIL requires users to decide before uploading 
which indexes suitable to create. So, HAIL is not suitable  

for unpredictable/dynamic workloads, as well as, tradi-
tional indexing techniques for users who often do not 
know which indexes to be created beforehand [18]. 

2.4. LIAH (Lazy Indexing and Adaptively in  
    Hadoop) 

Based on LIAH, building adaptive indexes at minimum 
costs for Map Reduce systems, automatically and incre-
mentally adapt users’ workloads by creating clustered 
indexes on HDFS data blocks. Besides, distributing index-
ing costs over multiple nodes. All these operations are 
done without any extra data copies in the main memory 
and with minimal synchronization. Also, LIAH Postpones 
index creation on map tasks that read related data from 
disk to main memory anyways. So, LIAH doesn’t consume 
any extra read I/O-costs and also has a very small indexing 
overhead, usually for the first job. LIAH can speedily 
converge to a complete index where all HDFS data blocks 
are indexed with low overhead of 11% than HAIL for the 
first Map/Reduce job only. However, LIAH is considered 
better than Hadoop and HAIL by factor of 52 and 24 re-
spectively. The main drawbacks of LIAH are; the users 
must have good knowledge about their data and choose 
index fields carefully. It has. Index overhead because of 
cluster nodes synchronization for online/dynamic index 
building which consumes I/O and network bandwidth. For 
every execution time, the same job/query is needed to 
rebuild the index at run time which needs high memory 
and consumes more computation power [19].  

3. The proposed Join Once Use Many (JOUM)  
  Methodology 

By executing Join, all related operations suffer from 
re-joining all data tables. Then, extra computing resources 
will be consumed (e.g. CPU, I/O, and Network Band-
width).This is considered one of the main issues because an 
index is needed to be built for each pipeline execution 
which will consume the computing resources and time. 
Therefore, the main principle of our proposed solution is to 
build joined data table for all-star schema tables to be one 
table at the data uploading phase. The joined data table 
contains all schema Fact/Dimension tables which will be 
uploaded into HDFS. Every Join query will be executed 
like a normal selection statement using the Joined-Indexed 
table. Unfortunately, the structure of The Joined table will 
affect the performance of Join query execution, and the 
needed storage of this table will be a problem.SQL query 
parser is needed to parse SQL statement and convert it into 
an equivalent one that will run over Joined data table and 
produce the same result. In fact, the Joined data table needs 
to be re-structured and loaded into HIVE, and then it will 
be processed using a new parser on HIVE. At this moment, 
there is no need to modify HIVE or Hadoop. A new parser 

Figure 3: Hadoop ++ Trojan Index injection 
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will convert SQL Join query into a suitable form for the 
modified Joined table structure then pass it to the HIVE 
which will process it as one task of Map Reduce over Ha-
doop. So, the proposed system won't change HIVE archi-
tecture, but some up-front parser is added for HIVE and 
some index technique will be built inside Joined table by 
some user defined function. 

3.1 The Proposed System Framework  

The proposed system framework components are pre-
sented in Figure 4. Showing that The proposed system 
Framework is independent of HIVE because Added com-
ponents are on top or at back end of HIVE engine. these 
components interact with hive without need of hive ar-
chitecture changes as explained below in details. 

  
 

 

3.1.1 Star Schema Joined Table Builder 

Joined table schema builder converts star-schema 
Fact/dimension tables into one table contains all schema 
data in a Joined form. Figure 5 illustrates TPC-H schema 
data. 

 

 

 

 

 

 

 

In order to convert schema data into one Joined table Car-
tesian product of lineorder Table will be constructed from 
all other dimension tables by substituting each dimension  

 

 

 

 

key in the fact table by dimension record data. Figure 6 
illustrates Joined TPC-H table. All dimension tables fields 
are added to line order Joined table by naming pattern 
contain dimension table name followed by field name. So, 
line order table fields will increase the count of non-key 
fields in all dimension tables (e.g.fields CustName, Part-
Name, SuppName, Date)are added into line order table by 
considering the first record online order table as a sample 
which will substitute each dimension field by its value 
according to its dimension key from dimension table such 
as table customer key customer#01 have custname Cust#01 
and so on (see Figure6). 
By generating Joined table redundant data will be intro-
duced in the star schema which produces storage overhead 
to store this redundant data. In order to solve this problem, 
the dimension fields of a record that appear for the first 
time will be stored, then new repeated records will be 
stored as a reference to that record. This reference can be 
named a pointer/reference/index because it directly 
points to the required record that contains the fully stored 
information for this dimension key. By jumping into ref-
erenced record by index and substituting empty fields by 
their original values called Fill-In operation. We can im-
plement this operation by simple User Defined Function 
(UDF) and plug it into HIVE. 

3.1.2 Query Execution (Parser/ Converter/ Executor) 

After concatenating Star schema data into one table and 
loaded into hive. old join query needs to be parsed to de-
fine each table/fields within the new query, and convert it 
into a new equivalent query for new Joined table using the 
following steps. 
1. Convert every field name to tablename_fieldname. 
2. Delete all Join tables and replace all of them by select 

from Joined table name. 
3. Use Fill-in UDF function to fill in empty values. 

Using these steps, Join Query1 is converted into Query 2 
which can run over JOUM schema. 
 
 
 
 
 
 
 Figure 5: TPC-H Star schema Sample Data 

Figure 4: Proposed system framework 

Figure 6: Line Order Table Joined data 
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3.1.3 Fill-in UDF: 

The redundant data in the new joined table schema needs 
to be removed, and keep its place as empty fields. Alt-
hough, these empty fields need to be re-filled during the 
processing of this schema. So, empty fields can fill in by 
iterating through previously referenced records from 
joined table data process. During this iteration these rec-
ords may be referenced again by next records. So, these 
referenced records have to cache in memory and be aware 
of memory size limitations. So, some memory caching al-
gorithms should be used to solve memory overflow like 
Most Recently Used records (MRU) or Least Recently Used 
records (LRU) [20] (see Figure 7). 

 

 

 

 

 

 

Using caching to fill in empty fields will be faster, easier 
and saving memory starvation. Huge number of records as 
in the case of Big Data, fill in process will be divided into 
three steps as shown in Figure 8 

 

 

 

 

 

 

3.2 Joined Table Structure 

Joining star schema data into one table will avoid HIVE to 
be translated into complex map-reduce task by reducing 
the number of Map-Reduce tasks which are needed by 
Hadoop into one Map Reduce task such a select statement 
from one table. So, this will affect query execution 
time/performance. 

3.2.1 Redundant Joined Table Structure: 
All fields from dimension tables will be gathered into one 
table with all property fields in the Fact Table by iterating 
through all records, and gathering all related dimensions 
data into one record. Then, all data will be written by 
comma separated file format(see Figure 9). 

 
 
 
 
 
 
 
 
 

Redundant Joined Table data converted into comma sepa-
rated values (CSV) format is shown in Figure 10 which 
acceptable format  by hive to be loaded as hive table.  

 
 
 
 
 
 

Loading Data into Hive 
Creating a new table called "LineOrderJoined" using re-
dundant Joined table structure, the data will be loaded 
using HIVE load statement and then rewrite join query to 
execute on HIVE. 
HIVE QL Query parsing and conversion 
Parsed query will be re-written as selection from one table 
without Joins as shown in Query 3. 

 
 
 
 
 
 
 

Figure 8: Fill-in function 

Figure 9: Line Order Table Redundant Joined data. 

Figure 7: MRU-LRU caching[20]. 

Select custkey, Custname, partkey, partname, suppkey, 
suppname, datekey, date, linenumber, orderkey 

from LineOrderJoined 

Query 3 

Figure 10: Line Order Table Redundant Joined data  
                     CSV format. 
 

1, 1, 1,Cust#01,2,rosy metallic,2,Supp#02,19920101,1-jan-92 
2,3,2,Cust#02,1,lace sping,1,Supp#01,19920102,2-jan-92 

select count (*), customer_custkey, customer_name, 
part_partkey, part_name, supplier_suppkey, supplier.name, 
date_datekey, date_date 
From joined_table where date_datekey<1/1/2001  
group by customer_custkey, customer_name, part_partkey, 
part_name, supplier_suppkey, supplier.name, date_datekey, 
date_date  
order by customer_name 

Query 2: Joined schema select query 

select count (*), customer.custkey, customer.name, 
part.partkey, part.name, supplier.suppkey, supplier.name, 
date.datekey, date.date 
from customer, part, supplier, date, lineorder  where  
lineorder.custkey=customer.custkey and lineor-
der.partkey=part.partkey and lineor-
der.suppkey=supplier.suppkey and lineor-
der.datekey=date.datekey and date.datekey<1/1/2001  
group by customer.custkey, customer.name, part.partkey, 
part.name, supplier.suppkey, supplier.name, date.datekey, 
date.date 
order by customer.name 

Query 1: Join query from TPC-H tables 
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Redundant Joined table structure Pros/Cons 
 Pros:   
 Joining data will be done inconstant time at the first  

     time of data loading. 
 Selecting from Join table will reduce the time 

     relative to HIVE traditional Join map/reduce tasks. 
 Cons:  
 Data redundancy represents overhead for data size 

because every dimension record Joined with fact rec-
ord will be repeated by the number of Joins such as 
Cust#02 and Supp#01. 

 
3.2.2 Indexed Joined Table  
To overcome Redundant Joined Table structure repeated 
fields overhead, we can remove this repetition by refer-
encing repeated dimension records by an index field. So, 
repetitions for new records will be ignored, but still their 
non-key fields represented as null fields which mandatory 
to be structured in CSV format and can be loaded into 
HIVE as table, also can run SQL Join query and refill null 
fields on result dataset from HIVE Joined table using index. 
To create indexed table structure, all fields from dimension 
tables will be gathered into one table plus all property 
fields in Fact Table by iterating through all records in Fact 
table and gather related dimensions data into one record as 
shown in Figure 11 

 
 
 
 
 
 
 
 
 

by iterating through all star schema tables and gather every 
related record from all schema tables into one record and 
All repeated dimension records non-key fields will be null 
to overcome data redundancy. Adding a new column 
called index that hold referenced record index (pointer) 
then all data will be written to CSV format as shown in 
Figure 12. 

 
 
 
 
 
 

Load Data into Hive 
Creating a new table called "LineOrderJoinedIndexed", 
load data into HIVE using load statement then re-write Join 
query to run on HIVE. 
HiveQL Query Parsing and conversion 
Parsed query re-written as selection from one table without 
Joins as shown in query 4: 
 
 
 

 
 
 
 
 
 

Fill in Result Phase 
There are null fields in select query result need to be 
re-filled using Fill-in function (UDF Filling) for each record 
in result read index field and iterate through referenced 
records on the index field and fill null fields by their data 
from corresponding referenced records. Figure 13 explains 
how to fill second record from the result by iterating 
through record 1, and 2 from Joined table and fill missing 
fields (see Figure 13). 

 
 
 
 
 
 
 
 

Indexed Joined table structure Pros/Cons 
Pros: 
 Joined Schema Creation Time represents up-front time   
  overhead for the first time only. 
 Selecting from Joined table will reduce the time  
  relative to HIVE traditional Join map/reduce tasks. 

Cons: 
 Index column represents Data overhead. 
 Selecting Result Requires Fill in Step which requires 

loop through all Joined table records. 
 Empty dimensions fields need separators character in 

CSV file format which represents also data overhead. 
 

4. HIVE VS JOUM 
 
HIVE execution of Query 1 will partition each two Join 
tables over all cluster nodes, then map each table partition 
data using projection and local predicates the result data 
will be shuffled into cluster nodes. Each shuffled partition 
will be sorted by tables keys and reduced by Join keys re-
sult now contains partitions each of them contains Joined 
data by their keys and other selection fields based on se-
lection criteria. In the case of Joining more than two tables, 
previous operation will be repeated for each table by 
Joining first table with the second table then Join the result 
with the third table and vice versa. For aggregation and 
ordering  by clauses, it needs to re-map result into cluster 
nodes and combine each map according to aggregation 
fields, shuffle combined data by aggregate fields, sort each 
partition then reduce each partition aggregate/ordered 
data.  
 
 
 
 

Figure 13: Null Record Filling process using Filling UDF. 

Figure 11: Line Order Indexed Joined Table data. 
 

Query4 

Select custkey, Custname, partkey, partname, suppkey, 
suppname, datekey, date, linenumber,  
orderkey,index from LineOrderJoined where 
date=19920101     

1,1,1,Cust#01,2,rosy metallic,2,Supp#02,19920101,1-jan-92,0 
2,3,1,        ,1,lace sping , 1,Supp#01,19920102,2-jan-92,1 
3,2,1,Cust#02,2,          ,1,        ,19920101,       ,1 2 

Figure 12: Line Order Table Indexed Joined data in CSV 
Format. 
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Figure 14 represents the complex and repetitive operations 
of Join execution pipeline in Hive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 14 indicates how many needed steps for Join oper-
ation, how much slow Join query execution, how much 
temporary storage will be allocated for intermediate steps 
like sort and combine, and how much network bandwidth 
is needed for map and shuffle steps in HIVE execution 
pipeline. By executing previous query more times by dif-
ferent criteria, different aggregate clauses or different or-
der by dimensions.  
 
Every time of running this Join query needs to execute 
previous steps, allocating temporary storage, consuming 
networks bandwidth. For the node failure case, it needs to 
re-execute the whole tasks again and again. So, using this 
execution pipeline will be unreasonable for executing high 
dimensioned/complex Join query over Big Data sets.  
 
The proposed JOUM system will do pre-Join of all schema 
data tables into one table using Join Table Builder then load 
this Joined table into HIVE framework. This two steps will 
only be executed at the first time of data loading. Through 
the execution of Join query JOUM first two Steps of parti-
tioning and shuffling of data blocks will be discarded be-
cause JOUM system selects from one table as query 4. 
Figure 15 explains JOUM Join execution pipeline. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
By comparing Figure 15 and Figure 14 steps, the steps us-
ing JOUM will be reduced into three steps only (data pro-
jection –Map Reduce - fill in empty selected fields using 
UDF). this steps equivalently to normal select statement 
without Join plus extra steps which named Fill in Using 
UDF. 

 
5. Experiment Setup 

 
The proposed system is empirically evaluated effectiveness 
in speeding up analytical queries having selection predi-
cates. The evaluation parameters which are used to evalu-
ate the proposed JOUM system are: 

1. The time savings in query response times. 
2. The computation costs of building an index on 

   load time. 
3. The storage overhead of the indexes. 

Overall, the experiments show that Indexed Joined tables 
yields significant speedups in query response times com-
pared to HIVE star schema, while avoiding unreasonable 
overheads. 
In the experiments, an index built over Joined table which 
in order to speeding up query response time by large fac-
tors, minimizing temporary storage required to execute 
Join query by large factor. 
 
5.1 Cluster Setup 
The proposed system is developed under Linux Ubuntu 
LTS 12.4 x64 server Installed on Hadoop cluster of 5 virtual 
machines over two PowerEdge T320 tower server Intel® 
Xeon® processor E5-2400 and E5-2400 v2 2.5MB cache per 
core with core options 4 with 2G RAM, 1G Ethernet net-
work 200 GB Hard Disk over host OS Windows Server 2008 
R2 using Java SE7 with JDBC connection over HIVE 
11.0.0/Hadoop 2.2.0 thrift server. Hadoop master pro-
cesses (Map Reduce Job Tracker, HDFS Name Node, and 
HIVE thrift server). The following configuration parame-
ters are overridden in order to boost performance, JVM’s 

Figure 15: JOUM execution pipeline 

Figure 14: HIVE Join execution pipeline 
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were re-used, speculative execution was turned off, and a 
maximum of 1GB JVM heap space was used per task. Re-
peating each experiment three times and reported the av-
erage of the results. 
 
5.2 Dataset 
Generated datasets from TPC-H star schema benchmark 
used the entity having the most records, namely, the Or-
ders document from Line Items table from TPC-H. Gener-
ated datasets of 6 Million Record each Line Items consists 
of 16 distinct fields with no nesting—i.e., a flat struc-
ture—and a rigid schema. 
 
5.3 The Performance Evaluation 
According to Figures 16, and 17, it is found that temporary 
storage consumes up to 16% for Joined Indexed and up to 
33% for Redundant Joined from HIVE required size. 
Permanent storage consumes up to 128 % for Joined In-
dexed and 186% for Redundant Joined form HIVE required 
size. In comparison between storage needed for permanent 
and temporary storage we notice that high storage is 
needed for permanent storage than HIVE because of index 
overhead but Low storage is needed for temporary storage 
than hive will be fair enough. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 18, showing time required for building Joined Data 
table which upfront cost paid only at first time of loading 
data into HIVE. According to Figure 19, it is found that the 
execution time is reduced up to 50.5% for our Joined In-
dexed method and up to 68.1% for our Redundant Joined 
method. By increasing data size, our proposed methods 
computation time is fixed, while HIVE computation time 
will be increased. So, the performance of our proposed 
methods outperforms HIVE performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20 indicates that on average of running different 
queries from TPC-H using the proposed methods doing 
well comparing to the HIVE by factors of 58.5% for Join 
Indexed and 66.1% for Redundant Joined Table. Figure 21 
showing that large cluster size enhancing HIVE perfor-
mance compared by the proposed methods because HIVE 
load balancing, and task distribution technique use cluster 
resources very well [21,22]. 
 
In small size cluster, the proposed solution is more pow-
erful than HIVE. Also, for a large cluster, the proposed 
solution is still performing better enough than hive. 

 
 
 
 
 
 

Figure 16:Temporary storage required for running  
PC-H Query #1. 

Figure 17:Permanent storage required for running  
TPC-H Query #1. 

 

Figure 19: TPC-H Query #1 execution time  
by number of records. 

Figure 18: TPC-H Joined Table Building by Time 
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6. Conclusions and Future Work  
In this paper we introduced JOUM methodology which 
pre-Join the star schema data and build an index for Joined 
data are proposed. Based on JOUM methodology, SQL 
queries execution time in HIVE has been improved. 
Without changing HIVE framework. TPC-H benchmark 
has been used to evaluate the performance of JOUM 
methodology. The experimental results prove that JOUM 
methodology outperforms traditional Join execution time. 
Also, JOUM performance is improved by increasing data 
size. Generally, JOUM is one of the suitable methodologies 
for Big Data analysis..However, minimum overhead in 
permanent storage is produced because index is small 
compared to large size saved by temporary storage. In the 
future work, we need to minimize the storage and we want 
to implement JOUM in different Benchmarks [23]. 
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