
 1

A Distributed Hashing Algorithm

Based on Virtual Neighborhood Search and Retrieval

Prof. Dr. Ebada Sarhan* Dr. Mohamed Belal* Mohamed Khafagy**

* Computer Science Department, Faculty of Computers & Information,

Helwan University

** Computer Science Department, Faculty of Information Systems &

Computer Science, 6
th

 October University

Abstract

Dealing with a huge amount of data nowadays increase the need to

distribute this data among cooperated servers in order to increase its

availability and the performance of accessing and retrieving data.

Rapidly growing networks implies that future files and database system

are likely to be constructed as networked clusters of Distributed nodes and

algorithms should be devised to work in this environment

In this paper we describe the design and implementation of an innovated

distributed algorithm using arbitrary architecture. This algorithm spreads data

across multiple nodes in network with an arbitrary and varying architecture.

Using novel autonomous location discovery and searching algorithm that

cooperates with the other nodes to uniformly distribute the data among the

neighborhood instead of using a centralized algorithm.

Performance results show that the innovated algorithm is superior to the

extendable hashing Algorithm EH*[5] in the distributed environment based on

several performance measurements.

1. Introduction

Hashing, a technique that mathematically converts the key into a storage

address, that corresponding record in the data file offers one of the best

methods of finding and retrieving information [6]. Hashing algorithm can be

classified as either static or dynamic. A static hashing algorithm uses a constant

sized hash table, on the other hand dynamic hashing techniques allows the

storage to expand with the number of data insertions and deletions. A dynamic

hashing algorithm differs from static hashing algorithm because the table can

grow and shrink from its initial size according to insertion and deletion

operations [1].

A few distributed hashing algorithms have been introduced. Litwin [3]

Introduced LH*, an efficient, extensible, distributed version of Linear Hashing

(LH) which generalize Linear Hashing to parallel or distributed RAM and disk

 2

files LH* like LH is a directory less algorithm. It allocates buckets through one

or two algorithms based on the current split-level and the bucket number.

Davine [2] introduced DDH (Dynamic Distributed Hashing), an extension of

the dynamic Hashing method, which was a scalable distributed Data Structure.

Kroll [4] introduced a distributed Search Tree (DRT) with good storage space

utilization and high query efficiency, Hilford [5] proposed a distributed

Extendible Hashing EH*, buckets are spread across multiple servers, and

autonomous clients can access these buckets in parallel. The EH* algorithm is

scalable in the sense that it grows gracefully, one bucket at a time to a large

numbers of servers.

In this paper an outline of a new approach for distributed hashing

technique is introduced, this technique is based on constructing a virtual

distributed network of servers with virtual links to build a virtual topology of

that servers that will be called VH* (Virtual Neighborhood Distributed

Hashing Algorithm). Each bucket has its own number in the server and the

record will be assigned to this bucket and if an overflow occurs, it is distributed

among its neighborhood and if there exist no place for it, it assigns a passive

server to insert the record. The same is followed for searching when we try to

retrieve a bucket. This technique minimizes the splitting time to zero and

bound the search time to a maximum of two searches with a slightly increase in

communication complexity. The proposed algorithm will be compared with the

EH* algorithm.

2. VH* Algorithm Description

The following is the general description of the mechanism; the details of

algorithm will be in the next subsection. The environment consists of clients

and servers. Clients issue insert keys by INSERT REQUEST and retrieve keys

by SEARCH REQUEST. A client‟s request is sent to server, based on dividing

keys and assigns the number of server and bucket.

A server receives the client request and checks if there is available, it

sends INSERT ACK, if not sent to connected server to store in the same bucket

number, or if it is not available, then check the extension to store and send

INSERT ACK. If the neighborhood is full and the server does not have a

passive server, then the server will assign a new passive server and store the

data in the same bucket number, and move all data from extension to passive

server, then send INSERT ACK. If the server already has passive, it will store,

the data in the passive servers of the servers that connected with it and connect

this passives to the server in the case of no available bucket in these passives

then the server assigns new passive server as shown in figurer (2).

 When client sends RETRIEVE REQUEST, the server search for the

same bucket in it and in all servers (active or passive) in neighborhood and in

its extension, finally it sends RETRIEVE ACK, as shown in figurer (1).

 3

 Insert Request

 1

A client sends an Insert Request

Figure 1

 Retrieve request

A client sends a Retrieve Request

Figure 2

2.1 Client Algorithm:

We use the same notation used in the Extendible Hashing algorithm. Thus,

given a record Ri with a key Ki, the pseudo key K is generated as the

following:

1- The key is changed to its binary number representation.

2- The key is divided into three parts K1, K2, and K3.

3- The first part from the right K1 is XORed with the third part from left K3

and the result represents the server that the record will be stored or

retrieved.

4- The second part in the middle is XORed with the third part (from left)

mod B (B number of bucket in the server) the result represents the

Bucket number K2 that the record will be stored or retrieved.

Passive
server

Active
server

Active

server

Passive
server

Active

server Client

Positive

server

Client

Active

serve

r

Active

serve

r

Active

serve

r

 4

The following algorithm generates the server and bucket addresses:

Function generate_add (K)

 K1← right (K)

 K2 ← middle (K)

 K3 ← left (K)

 Server ← (P1  P3) mod S

 Bucket  P2  P3 mod B

End

Function search (k)

 Generate- addr (k)

 Send- message (server, message (‘search’, k))

End

Function insert (k, *rec)

 Generate- addr (k)

 Send- message (server, client (ID), message (‘insert, R, *rec);

End

Function ACK- Insert (k), status)

 Send- To- user (k, status)

End

Function ACK – Search (k, status, *rec)

 Send- To- user (k, status, *rec)

End

The same function for all the client‟s requests is invoked. These

requests generate k1, and then the request is send to K2 bucket for K1 server

then the client waits for an acknowledgement. If there is no response the client

will resend the request and if the client receives a stored ACK then the client

proceeds with its next request. Several clients can operate on this distributed

file at the same time and all requests are performed concurrently.

2.2 server Algorithm:

The server starts with empty passive server list, and it waits for requests

Each request can come from client or another server .The server can receive

requests to insert a key (INSERT REQUEST), or retrieve a key (RETRIEVE

REQUEST). The server can initialize a passive server (new passive server

INIT) and it receives an acknowledgement for forward insertion, retrieve

message (INSERT ACK), (RETRIEVE ACK) available posits (AVA ACK),

or found key (FOUND ACK). When a client wants to retrieve a record it

generates k1, K2, then, it sends a message to K1 server with K2 bucket. If it is

found, it would retrieve and send record to client and send RETRIEVE ACK,

But if it is not found. The server would send Retrieve Request to the connected

active and passive servers, then it send FOUND ACK to server, which in turn,

retrieve the record to client and send FOUND ACK. If the server has not

response, the server will search in the neighborhood of the connected server

 5

and its extension, and if it is found, it would retrieve the record and send

FOUND ACK to the client.

2.2.1 In case of insert:

When a server receives a message from client, it checks the bucket that the

client determined whether it is available or not:

- If it is available, it will lock for the client and store the record, then,

unlock the bucket and will send INSERT ACK to client.

- If it is not available, the server will send message to the servers

connected with it. Every server will has a message to check the

availability of Bucket, then, lock the Bucket and send AVA ACK to the

initial server.

The server chooses the first server that Replies an AVA ACK, then,

stores the record in it, and sends to client to INSERT ACK and unlock all

bucket. If there is no response, The server will check the Extension, if the

Extension is empty the server will lock the Extension and store the record, and

unlock the Extension, then, send INSERT ACK to the client.

Function Insert (k, *rec)

 If AVL- bucket (B)

 Lock (B)

 Store (*rec)

 Unlock (B)

 Send- ACK ()

 Else

 Send- req (server- list)

 ACK← false

 Wait for ack ()

 If ack

 Send- rec (*rec, ACK- Server)

 Send- ACK (Client ID, k)

 Else

 Send- message („ overflow „)

 Send- ACK (Client ID, k)

End

End

Function Search (k)

 Calc- addr ()

 If avail (B)

 Rec← get- rec (B)

 Send- rec (*rec, client)

 Else

 Send- Retrieve (Server-list)

 6

 ACK← false

 Wait for ACK (Timer)

 If ACK

 Found ←true

 Send- ACK (client)

 Else

 Send- ACK (client ID)

 End if

End

- If the Extension is locked or there is no space and the server has no

passive server, the server will assign A passive server, then, locks it and

stores the data and sends INSERT ACK to client and checks the

extension bucket, if it is suitable to passive, it will move data to the

passive and unlock the passive Extension.

- If the server has passive, it will check all passive servers that is

connected to another server that connected with it and sends message. if

it has response, it will send a message to other servers to check their

passive servers whether have available space or not, then lock that

passive and send AVA ACK. the server will choose the first server

Reply AVA ACK, then, stores the record in it and unlocks all and sends

insert ACK to client and adds passive to list, if no response. Then, the

server assign new passive server.

2.2.2 In case of retrieve:

 When a client wants to retrieve a record it generates k1, K2, then, it

sends a message to k1 server K2 bucket, if it is found, it will be retrieved and it

will send (RETRIEVE ACK) to client. If it is not found, the server would send

(RETRIEVE REQUST) to the connected servers (active or passive) but if it is

found, it would send (FOUND ACK) to the server, then, the server will send it

to the client. If there is no response, the server will search in his extension, and

if it is found, it will send (FOUND ACK) to the client. The operations that take

place are executed in parallel. Multiple clients can insert and retrieve key in

parallel with each other. Server executes all requests from clients or other

server in a sequence. Servers define the consistency points as they send and

receive message.

2.3 Passive Server Algorithm:

The passive server waits for request. Each request must come from active

server The passive server can receive request by insert a key (INSERT

REQUEST), or by retrieve key (RETRIEVE REQUEST) and receive an

acknowledgement for insert or retrieve message (INSERT ACK) and

(RETRIEVE ACK) and (AVA ACK) and (FOUND ACK). The passive server

can be locked by Active server that connected with him

 7

An Activity Diagram for Process: Insert Element is shown in figure (3)

Figure (3) : Activity Diagram for Insert

Send

requests

Search for

available

Send message for

connected server

Search for
available

Check if it has

passive server

Check available

Extension

Search for Available in

servers that connected with

any server in neighborhood

list

Store

Send

ACK

Generate

passive

and store
server

Move

suitable

extension

Store and add to
neighbors list

Foun

d

Not

found

Foun

d
Not

found

Not

found

Foun

d

No Yes

Foun

d

Not

found

Lock

 Un

Lock

 8

An Activity Diagram for Process: retrieve element is shown in figure (4)

 Found

 Not found

 Found

 Not found

Figure (4) Activity Diagram for Search

Send

request

Search for

element

Send message to the

connected server.

Search for element in

Extension

Send ACK

 9

3. Simulation and Results

 In this simulation, we suppose that we have eight servers and they

constitute a virtual topological network as shown in figure (5).

 It should be note that this topology is not fixed and it can be generated

randomly at the initial time. Knowing the basic server at first, servers can

randomly determine its neighbors .

Figure 5

Model topology

In this simulation we assume the following

 No. of clients requesting insertion and retrieval is two

 No. of keys to be inserted is 7000.

 The clients can request at the same time.

 Each server has 1000 addressable buckets.

 Each server has 100 extension buckets

 A passive server could be assigned to any server whenever needs.

 The keys were generated randomly .

It should be note that in VH* each server doesn‟t need cache table.

. The performance of the proposed algorithm is compared with EH* the

comparison was based on the following factors:

1. Insertion cost;

2. Retrieve cost

3. Average insertion message

4. Average retrieve message

5. Assign server cost

6. Communication cost

7. Storage utilization;

8. Splitting Cost

S1

S0
S2

S3

S4

S5

S6

S7

 10

Insertion Cost

0

100

200

300

400

500

600

700

800

No of Key

N
o

 o
f

A
c
c
e
s
s

VH*

EH*

VH* 1.02 1.54 1.68 1.97 2.236 1.573 2.818

EH* 52.5 102.5 252.5 502.5 627.5 701.7 720.37

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 6

Retrieve Cost

0

100

200

300

400

500

600

No of Key

N
o

 o
f

A
c
c
e
s
s

VH*

EH*

VH* 1.02 1.54 1.682 2.02 3.086 64.97 183.06

EH* 52.5 102.5 252.5 502.5 502.5 502.5 502.5

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 7

 11

Average Insertion Message Cost

0

1

2

3

4

5

6

7

8

No of Key

N
o

 o
f

M
e
s
s
a
g

e

VH*

EH*

VH* 2.08 3.16 3.504 4.248 4.82 6.002 7.469

EH* 2 2 2 2 2.25 2.4 2.5

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 8

Average Retrieve Message Cost

0

0.5

1

1.5

2

2.5

3

3.5

4

No of Key

N
o

 o
f

M
e
s
s
a
g

e

VH*

EH*

VH* 2.06 3.12 3.412 3.438 3.56 3.747 3.806

EH* 2 2 2 2 2 2 2

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 9

 12

Average Assign Server

0

2

4

6

8

10

12

14

16

18

No of Key

N
o

 o
f

S
e
rv

e
r

VH*

EH*

VH* 0 0 0 0 0 4 14

EH* 0 0 0 0 1 8 16

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 10

Average Communication Cost

0

0.5

1

1.5

2

2.5

3

3.5

4

No of Key

N
o

 o
f

M
e
s
s
a
g

e

VH*

EH*

VH* 0.7 1.14 1.458 1.835 2.19 2.87 3.6

EH* 0 0 0 0 0.125 0.21 0.25

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 11

 13

Storage Utilization

0

20

40

60

80

100

120

No of Key

P
e
rc

e
n

t

VH*

EH*

VH* 1.25 2.5 6.225 12.375 24.275 56.112 80.023

EH* 10 20 50 100 100 62.5 100

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 12

Split Cost

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

No of Key

N
o

 o
f

A
c
c
e
s
s

VH*

EH*

VH* 0 0 0 0 0 0 0

EH* 0 0 0 0 1500 8000 16000

100n 200n 500n 1000n 2000n 5000n 8000n

Figure 13

Figure 6 compares the insertion cost of both two algorithms, it was

found that the cost of insertion for the proposed algorithm is less than that of

 14

EH algorithm and increased gradually while the number of record increased to

the value of 1.9.

On the other hand, the insertion cost for EH* algorithm increases to a

value 502 at number of keys equals 1000. Comparing the retrieval cost of the

two algorithms, as shown in figure 7, before insertion of 2000 records the cost

was less than 3 for the proposed algorithm while the cost reaches a value of

500 for EH* algorithm. The cost of the proposed algorithm was less than that

of EH* algorithm.. The cost of the proposed algorithm is almost constant

because of insertion, and retrieval the average message cost for the proposed

was greater than that of EH* as shown in figure 8,9. Both EH* and the

proposed algorithm need to assign a server this need is comparative to each

other as shown in figure 10, the average communication cost of the proposed

algorithm is larger than that of EH* algorithm as shown in figure 11.

The storage utilization of the proposed system is increased linearly with

the insertion of records but it changes for EH* as shown in figure 12.

It is noticed that the splitting cost equals zero for the proposed

algorithm, on the other hand, the EH* is affected by the splitting cost as shown

in figure 13.

4. Conclusion

 In this paper, an outline of a new distributed hashing algorithm is

introduced. This algorithm is based on building a virtual topology for the

servers in order to create a local neighborhood for each server to search and to

insert data.. This locality minimizes the insertion and retrieval cost and

eliminates the need to split data. Comparison results show that the cost of

insertion and retrieval of the proposed algorithm is less than that of the EH*

algorithm , with a small increase in communication complexity .

 VH* is an efficient, scalable, and distributed algorithm. It provides a

new method to be used in applications such as next generation database

 15

References

[1] Thomas R.Harbon, ”File Systems Structures and Algorithms”,1988.

[2] R.Devine, Design and Implementation of DDH, A Distributed Dynamic

Hashing Algorithm, In conf. on foundations of Data Organization and

Algorithms,1993, pp.101-114

[3] W.Litwin , M-A Neihnat, and D.Schneider, LH*; Linear Hashing for

distributed files , In ACM-SIGMOSD InTL.conf.on management of data,

pp327-336. 1993.

[4] Brigitte Kroll, Peter Widmoayar, “ Distributing a search tree among a

growing number of process” In ACM- Sigmod Intl. Conf. on management

of data pp 265-276,1994..

[5] Victoria Hilford , Farokh B.Bastani and Bosan Cukis, “EH*-

Extendible Hashing in Distributed Environment “ IEEE 1997.

[6] Ramez El Masri and Shamkant B. Navathe “ Fundamentals of Data Base

Systems “, 2000 p 217-222.

