
Queue Weighting Load-Balancing Technique for Database

Replication in Dynamic Content Web Sites

Prof. Dr. Ebada Sarhan* Prof. Dr. Atif Ghalwash* Mohamed Khafagy**

* Computer Science Department, Faculty of Computers & Information, Helwan University, Egypt

** Computer Science Department, Faculty of Information Systems & Computer Science, 6th October

University, Egypt

Abstract: - There is an ever increasing need for database replication in dynamic web sites to improve

availability. However, the main problem in replication is load balancing. This paper presents new load balance

technique to increase the performance of database replication in dynamic web depending on the type and
weight of database server queue. We attempt at evaluation various load distribution policies, taking in account

their ability to achieve good load balancing by using LBM (Load Balance Metric), and also their impact on

performance by measuring the throughput. The telecommunication benchmark is used to compare the different
policies of load balancing.

The telecommunication benchmark, a powerful benchmarking tool, is used to test up to fifty database

replicas that will play a great role in the evaluation process which could be performed through measurements
on a web site that follows the TPC-W specifications. The results show that the Queue weighting Load

Balancing has maximum LBM and best throughput.

Key-Words: - Replication, Availability, Fault Tolerance, Dynamic web site, Agent, Database

1 Introduction
Replication has become a central element in modern

information systems. It significantly contributes to
enhancing availability and performance. Yet, the

main problem in replication is load balancing.

Load balancing is a mechanism where the

server load is distributed to different nodes within

the server cluster, based on a load balancing policy.
Rather than executing an application on a single

server, the system executes transactions on a

dynamically selected server. When a client requests

a transaction, one (or more) of the cooperating
servers is chosen to execute the request. Load

balancers act as single points of entry into the cluster

and as traffic directors to individual web or
application servers [1].

The load balancer receives each request and
rewrites headers to point to other machines in the

cluster. If any machine in the cluster is removed, the

changes take effect immediately.

There are many different algorithms used to

define the load distribution policy, ranging from a

simple round robin algorithm to more sophisticated

algorithms used to perform the load balancing.
Some of the commonly used algorithms are:

Round-robin

Random
LARD

Weight-based

Load-balancing algorithms affect statistical

variance, speed, and simplicity. For example, the

weight-based algorithm has a longer computational
time than other algorithms.

Queue weighting Load Balancing load

balance technique enhances the performance of
database replication in dynamic web, depending on

the type and weight of database server queue. We

use the DWT-B Telecommunication benchmark [2]
in evaluation with the same specifications of TPC-W

[3]. This benchmark specifies three workloads

(Read, Write and Mix) with different percentages of

writes in the workload. The evaluation uses
simulation to confirm the performance effects of

larger clusters.

The simulations show that the Queue weighting

Load Balancing has maximum LBM and best

throughput compared with different load balancing

techniques.

The outline of this paper is presented as in

the following: section 2 provides the Database

Replication of Dynamic Content Web Sites, section
3 introduces other load balance technique introduced

for comparison with the Queue weighting Load

Balancing, section 4 describes our load balance
technique and section 5 presents the

Telecommunication Benchmark and its metrics. The

results are outlined in section 6, and finally section 7
highlights the conclusion of the present paper.

2 Database Replication of Dynamic

Content Web Sites
Today, dynamic content servers used by large
Internet sites, such as Amazon and pc2call, employ

a three-tier architecture that consists of a front-end

web server tier, an application server tier that

implements the business logic of the site and a back-
end database tier that stores the content of the site.

The first two tiers, the web and the application

server, typically use nonpersistent data and are
generally hosted on inexpensive clusters of

machines. However, the database tier storing

persistent data is centralized and hosted on a high-
end multiprocessor [4].

Recently, several research prototypes have

proposed using replicated databases built from
commodity clusters as a more economical solution.

These replicated databases, which have been used

for running a single application, such as, an e-
commerce benchmark , have shown good

performance scaling with increasing replication. but

the main problem in replication is load balancing[5].

3. Load balancing techniques
3.1 Round-Robin (ROUND-ROBIN):
In this technique the application server assigns the

requests to the servers in a circular order [6].

3.2 RANDOM
Random Distribution (RANDOM):

The application server assigns the request to

database server randomly[7].

3.3 Locality – Aware Request Distribution

Scheme (LARD)
Locality-Aware Request Distribution (LARD) was

improved and appeared to be successful for load
balancing static content requests in a cluster [8]. The

aim of LARD is to combine good load balance and

high locality for increased hit rates in the data

caches of each back-end. In LARD. When a new
query arrives, accessing a certain set of tables, the

scheduler computes the type of request and assigns

it to a certain server [9].

Fig. 1 illustrates the principle of LARD in a

cluster with two back-ends and a working set of
three targets (A, B, and C) in the incoming request

stream. The front-end directs all requests for A to

back-end 1, and all requests for B and C to back-end

2. By doing so, there is an increased likelihood that
the request finds the requested target in the cache at

the back-end.

Fig. 1: LARD Load Balancing

3.4 Weighted Round Robin
Weighted round- robin is a common load balancing

scheme in static- content cluster servers. The

incoming requests are distributed in round- robin
fashion. Weighted by an estimate of the load on the

different back- ends[10].

3.4.1 Shortest Queue First (SQF)

The Shortest Queue First (SQF) uses the numbers of

outstanding queries to a particular back- end as an

estimate of the load on that back- end by determine
the length of every database server queue [11].

We illustrate this technique using the
example in Fig. 2. Assume that the SQF scheduler

has placed queries Q1, Q2, Q3 and Q4 on the two

database machines.

With respect to SQF, the two machines have

optimal load balance (i.e., the same queue length).

However, in this situation the total database engine
load is not clearly balanced, as a result of the large

differences query complexities. Even worse, all

subsequent operations (i.e., Q5 and Q6) have to wait

for the machine with the longest query times to
finish.

Fig. 2: SQF Load balancing

3.4.2 Shortest Execution Length first (SELF)

With Shortest Execution Length first (SELF) the

execution time for calculating each query on an
unloaded {idle} machine is measured off-line. The

load on a particular back- end is estimated

afterwards as the sum of the {measured} execution
times for all queries outstanding to that back-end.

The execution time for each query on an
unloaded (idle) machine [12] is measured off-line

with shortest Execution Length First (SELF). At

run-time, the load on a particular back-end is

estimated as the sum of the (a priority measured)
execution times for all queries outstanding at that

back-end by the scheduler. As opposed to SQF, that

treats each query as equal, SELF tries to take into
account the widely varying execution times for

different query types.

SELF makes a better load balancing

strategy for e-commerce workloads through the

wide range of query execution times.

4 Queue weighting Load Balancing
Assigning transactions to preferred servers is an

optimization problem. It consists of distributing the
transactions over the replicas S1, S2, ..., Sn. When

assigning transactions to database servers.

The load balancing in each replica is
measured by using Queue weighting. The weight for

read transaction is 1, write transaction is 2 and

update Transaction is 3[13]. The summation of all
weights is calculated in every queue at database tier,

and the queue length updates the weights every

timeout. The Sequencer Agent chooses the

minimum weight from the set of replicas that finish
prior conflicting transactions [4].

1. Consider replicas S1, S2, ..., Sn. Transaction Ti

belongs to Stk at time t, Ti € Stk, if at time t Ti is

assigned to execute on server Sk.

2. Assign read-only transaction Ti to the replica Sk

with the lowest Queue weight Qw(Sk, t) at time

t, where Qw(Sk, t) =∑Tj € Stk wj where w =1 if
T is read transaction, w=2 if T is write

transaction and W=3 if T is update transaction.

A simple example

Consider a workload with 10 transactions,

T1, T2, ..., T10, running in a system with 4 replicas
S1, S2, S3, S4 and (T1,T4,T7,T10) are read

transactions, (T2,T5,T8) are write transactions and

(T3,T6,T9) are update transactions.

1. In the beginning of transactions all

QW(Si)=0 then we assign T1 to S1 after
this transaction the QW(s1,s2,s3,s4)

=(1,0,0,0)

2. We assign T2 to S2 after this transaction the
QW(s1,s2,s3,s4) =(1,2,0,0)

3. We assign T3 to S3 after this transaction the
QW(s1,s2,s3,s4) =(1,2,3,0)

4. We assign T4 to S4 after this transaction the

QW(s1,s2,s3,s4) =(1,2,3,1)

5. We assign T5 to S1 after this transaction the

QW(s1,s2,s3,s4) =(3,2,3,1)

6. We assign T6 to S4 after this transaction the

QW(s1,s2,s3,s4) =(3,2,3,4)

7. We assign T7 to S2 after this transaction the

QW(s1,s2,s3,s4) =(3,3,3,4)

8. We assign T8 to S1 after this transaction the

QW(s1,s2,s3,s4) =(5,3,3,4)

9. We assign T9 to S2 after this transaction the

QW(s1,s2,s3,s4) =(5,6,3,4)

10. We assign T10 to S3 after this transaction

the QW(s1,s2,s3,s4) =(5,6,4,4)

5 Benchmarks Platform
5.1 Telecommunication Benchmark
Telecommunication benchmark presents a
benchmark used to evaluate database performance

for telecommunication sites with dynamic content.

The model covers most important features of
dynamic website and telecommunication

requirements. The services are modeled using

simple transactions that represent the services.

The benchmark also uses a workload model

from telecommunication website. In addition, the

measurement of response time is added. The client
emulator invokes oracle performance view that

collects CPU, memory, I/O (input and output) and

Response Time from the oracle Performance View.

5.2 Software Environment
The Benchmark use C# to make the site and use
thread technique to implement clients’ connection.

We use Oracle 10g as a database server [14].

5.3 Hardware Platform
The Web server and the database server run on an

Intel 2.2 GHz Dual core CPU with 2GB RAM, and a
Maxtor 160 GB 5,400 rpm disk drive. A number of

2 GHz Intel machines run the client emulation

software. There must be sufficient client emulation
machines to guarantee that clients do not impede

any of the experiments. All machines have to be

connected through a switched 10/100 Mbps Ethernet

LAN and the server connected with 10/1000
Ethernet LAN.

5.4 Workloads and Application Sizing
The Benchmark presents three different workloads,

the browsing contains read-only scripts, the calling

contains write scripts while the charging mix
contains both read and update scripts. The database

contains 10,000 accounts where every client can mix

transaction from more than 10,000 mixed
transactions randomly. For the telecommunication

site, three workload mixes are used: a browsing call

History mix made up of only read-only transactions,

a site with a large user base in which 99.5% of
accesses are reads [2] and a Calling mix that

includes write interactions and charging made up of

read-write transactions. There are always about
10,000 accounts, and a history of 500,000 calls in

the History table is kept. It is assumed that users

give feedback for call transactions. The (Delay
Time) think time is used and the session time is

specified by TPC-W.

5.5 Metrics
We study the load balancing effects of the proposed

heuristics in both experiment settings. The Load

Balance Metric (LBM) [15] is used as a

performance metric for comparing results. To obtain
the LBM value, the peak-to-mean ratio of server

load is measured at different sampling points in the

simulation.

The server load is defined as the utilization

value of the server node. The LBM (1) value is

obtained by calculating the weighted average of the
peak-to-mean ratios measured, using the total server

load as the weight for the sampling period in

question. A smaller value indicates a better load
balancing performance.

Load i,j – load of server i (of n servers) at the j th
sampling point .

Peak_loadj – highest load on any server at the j th

sampling point.

LBM= (1)

6 Results
Fig. 3 shows the throughput of the various

algorithms for Load balance. The x-axis
demonstrates the number of database machines, and

the y-axis demonstrates the number of transactions

per second. It is shown that the Queue weighting has
a large throughput, and thus it may be concluded

that the Queue weighting has best load balance.

Moreover, it is also concluded that the Round robin

algorithm has the lowest throughput.

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

No of R eplic a

T
h

r
o

u
g

h
p

u
t

WQ

S E LF

S QF

Random

RR

LARD

Fig. 3: Throughput

The LBM is used to compare the load

balancing techniques. This comparison is illustrated
in fig. 4. It is hence inferred that the Queue

weighting technique has the best load balance with

the increase of the number of transactions and that

Queue weighting is the best technique in load
balance compared with other techniques in the area

of replication in dynamic content web sites.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

1 10 50 100 500

No of T ra nsa c tion in Queue

L
B

M

RR

Random

S QF

S E LF

WQ

LARD

Fig. 4: LBM

7 Conclusion
We described the Queue weighting Load

Balancing technique for database load balance
serving as a backend database to a dynamic site.

Queue weighting Load Balancing depends on the

type and weight of database server queue. We
evaluated Queue weighting Load Balancing by

measuring simulation. Software platforms were

employed commonly using: C# and Oracle 10g

database. Various workload mixes of the TPC-W
benchmark were used to evaluate and compare

between all algorithms. Our simulations show that

the Queue weighting Load Balancing has maximum
LBM and best throughput compared with different

load balancing techniques.

References
 [1] Qi Zhang, Alma Riska, “Workload-Aware Load

Balancing for Clustered Web Servers”, IEEE

TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 16, NO. 3,

MARCH 2005.

[2] E. Sarhan, A. Ghalwash, M. Khafagy,

“Specification and Implementation of Dynamic
Web Site Benchmark In Telecommunication

Area ”, 12th WSEAS international Conference

on COMPUTERS, Heraklion, Greece, 2008

[3] Transaction Processing Council

www.tpc.org,2009

[4] E. Sarhan, A. Ghalwash, M. Khafagy, “Agent-

Based Replication for Scaling Back-end

Databases of Dynamic Content Web Sites”, 12th
WSEAS international Conference on

COMPUTERS, Heraklion, Greece, 2008.

[5] Michael DePhillips, Jerome Lauret,” Replication
and load balancing strategy of STAR's

Relational Database Management System

(RDBM)”, International Conference on
Computing in High Energy and Nuclear Physics,

2008.

[6] Alissa Kaplunova, Atila Kaya, Ralf M¨oller,”

First Experiences with Load Balancing and

Caching for Semantic Web Applications”,

institute for software, technology and systems,
2006.

[7] Brighten Godfrey, Karthik Lakshminarayanan,
“Load Balancing in Dynamic Structured P2P

Systems”, IEEE INFOCOM 2004

[8] Vivek S. Pai, Mohit Aron, Gaurav Banga,
Michael Svendsen, Peter Druschel, Willy

Zwaenepoel, and Erich Nahum." Locality-aware

request distribution in cluster-based network
servers". In Proceedings of the Eighth

International Conference on Architectural

Support for Programming Languages and
Operating Systems, pages 205–216, October

1998.

[9] Sameh Elnikety,” Tashkent+: Memory-Aware
Load Balancing and Update Filtering in

Replicated Databases”, ACM EuroSys'07,

Lisbon, Portugal. 2007.

[10] DER-CHIANG , FENGMING M. CHANG,

“An In–Out Combined Dynamic Weighted
Round-Robin Method for Network Load

Balancing”, Oxford University Press on behalf

of The British Computer Society, 2007.

[11]. C. Amza, A. Cox, and W. Zwaenepoel.

Scaling and availability for dynamic content web

http://www.tpc.org/

sites. Technical Report TR02-395, Rice

University, 2002.

[12] F. Pedone, R. Guerraoui, and A. Schiper.

Exploiting atomic broadcast in replicated

databases. In Proceedings of EuroPar
September 1998

[13] Oracle Database 10g: SQL Tuning 2006

[14] Oracle http://www.oracle.com,2009

[15] Richard B. Bunt, Derek L. Eager, “Achieving

Load Balance and Effective Caching in

Clustered Web Servers”, Proceedings of the

Fourth International Web Caching Workshop,
San Diego, California, pages 159-169, 1999.

http://www.oracle.com/

