
The Cost of Migrating DBMS from a conventional environment to

Virtual Machines
MOHAMED HELMY KHAFAGY

Fayoum University

EGYPT

mhk00@Fayoum.edu.eg

AMR AHMAD SALEM

University of Nottingham

UNITED KINGDOM

Amr.Salem.09@gmail.com

Abstract:- Virtualization becomes a very common solution in enterprise and small systems. Therefore,

virtualization decreases financial costs and decreases system administration efforts. Also virtualization has been

proven to be one of the most efficient approaches to implementing highly available systems.

One of the most common software systems deployed in virtualized environments is Database Systems. The key

reasons behind these migrations are the great flexibility regarding database administration tasks and also the high

availability that virtualized systems offer, which is a very critical factor for some database systems, so it is

important to understand the cost of migration from a conventional environment to a virtualized one.

In this paper we present an experimental study of the overhead of DBMS migration from a conventional

environment to a virtualized one, we use TPC-H Benchmark to calculate this overhead. We show that the average

overhead can be around 7% for normal DBMS operations and 97% for fetching data directly from the external

disks and we also present details of the different causes of this overhead. Our study shows that for normal DBMS

operations the benefits of virtualization come at an acceptable cost

Key-Words: Database-Virtualization-Performance-Virtual Machine- Xen-Oracle

1. INTRODUCTION
Virtualization is simply hiding the physical resources

(e.g. CPU, storage and memory) of a machine by

implementing a special software layer on top of them

[1]. This layer translates the machine’s physical

resources into virtual ones. We can then use these

virtual resources to create multiple Virtual Machines

(VMs), isolated from each other. Virtualization

solutions are very appealing nowadays to implement

many systems including database systems. Using

virtualization, a single powerful enterprise server can

host multiple VMs to do the job of multiple physical

machines; this can be referred to as Server

Consolidation. Server Consolidation solutions,

obviously, decrease the initial costs and the running

costs of relatively big systems. Moreover, Server

Consolidation minimizes administration and

maintenance efforts of multiple systems by merging

them into one physical machine. Nowadays, most of

the major players in the IT industry are participating

in the virtualization scene [2]. Big name like VMware

[3] and Citrix Systems [4] mainly work in

virtualization related products. Also operating

systems vendors like Redhat [5] and Ubuntu [6] have

already integrated virtualization solutions in their

operating systems.

Virtualization can be efficiently used to implement

high-availability Database Management systems [7].

Also the nature of any VM allows for greater

flexibility in manageability issues (e.g. Duplication

or backup). Usually, any large enterprise or service

provider will use a number of large databases that are

always growing in size; therefore, having a DBMS

for such business installed within a VM is very

convenient due to the reasons discusses before. For

instance, Server Consolidation will significantly

decrease the number of machines used; and

consequently, decrease financial costs, power

consumption and maintenance efforts. Also

reallocating resources among multiple VMs sharing

the same physical server can be a very simple task,

which means that it can be a dynamic process

depending on each DBMS workload requirements.

Moreover, due to the software nature of a VM,

backup and recovery operations, which are essential

for any database, can be much easier than

conventional database backup and recovery, as any

VM can be viewed as a single image file. Also for the

same previous reason, a single VM, alongside with

its DBMS, can be copied and duplicated in any other

site in a very simple process.

Virtualization is becoming a very common trend in

industry especially in Database Management

Systems. Virtualization incurs an abstraction layer

on top of physical hardware, which makes it

necessary for the guest VMs to communicate with

this layer first in order to access the physical

hardware. This layer means an extra overhead and

performance degradation. We can even assume it can

be a serious issue if multiple VMs are trying to

access the same resource simultaneously.

Our Goal in this Paper is to know the exact cost of

such migration before implementation and what are

the main reasons causing this overhead.

To know what exactly the cost and its reason we

compare the performance of a DBMS with a certain

workload in a conventional environment to the

performance of the same DBMS with the same

workload running within a VM; to find out how much

do we lose by running a DBMS on a VM using TPC-

H [8] benchmark as our database workload on Oracle

DBMS [9] under the operating system Red Hat

Enterprise Linux Appling on Xen virtualization

hypervisor [10]. We show that the average overhead

can be around 7% for normal DBMS operations and

97% for fetching data directly from the external disks

and we report details on the nature and causes of this

overhead. We view this as an encouraging result,

since it means that for normal DBMS operations the

benefits of virtualization come at an acceptable cost

The rest of this paper is organized as follows. In

Section 2 we present an overview of related work.

Section 3 describes our Test Environment, Section 4

reports our experimental results and Section 5

concludes.

2. RELATED WORK
Diwaker Gupta et al. [11] introduce a Xen hypervisor

as an x86 open source virtualization solution. It was

primarily designed to host up to one hundred virtual

machines simultaneously. He used six different

benchmarks to prove that the performance of a Xen

virtual system is very close to the performance of a

conventional system. They also compared Xen to

other virtualization solutions such as User Mode

Linux and VMWare Workstation, and proved that

Xen’s virtualization overhead is much less than

others’.

 After Xen was introduced in 2003, it started to

become a very common choice among researchers to

carry out their virtualization experiments. In [1], it is

proven that virtualization increases availability to a

great extent. by carry out live migration experiments

for some Xen based systems, such as web servers and

online game servers, and show that the downtimes for

the virtualized systems are very low.

Also in the area of resources management, Padala et

al. [12] developed an automatic resources allocation

tool. This tool is based on the classical control

theory; it monitors the performance of some Xen

virtual machines, hosted on one physical system, and

then allocates the resources accordingly.

Some researchers were only interested in virtual

machines monitoring, such as in[13] by introduce

XenMon, a performance monitoring tool designed for

Xen-based systems. XenMon mainly focuses on

applications with intensive I/O.

Also Padala et al. [14] evaluate Xen-based systems

and OpenVZ-based systems [15]. The experiments

show that when quadrupling the workload of a

virtualized system, the response time of a Xen-based

system can increase by 400% while the response time

of an OpenVZ can increase by only 100%. We could

only find very few papers handling the problem of

database management systems performance in virtual

machines, In the work of [16], the authors define the

problem of virtualization design. They define

virtualization design as the problem of statically

allocation of resources to multiple virtual machines

running on the same physical system, while each

virtual machine runs a database workload. They

consider the problem of virtualization design as an

extension to the conventional database physical

design problem. In order to solve this problem, they

suggested a cost modeling approach to

mathematically represent the problem.

3. TEST ENVIRONMENT
We use Two Dell Optiplex 760 machines both have

Intel Core 2 Duo E8500 processor with two cores, 6

megabytes cache memory, 3.16 gigahertz clock speed

and 64 bit instruction set and 8 gigabytes of physical

memory. We refer to one of these machines as SysA

and to the other as SysB. It is operated by Red Hat

Enterprise Linux 5.4 (RHEL), and it has Oracle 10g

Release 2 installed. SysB has two domains, Dom0

and DomU; Dom0 is the privileged VM which is used

to control and configure the Xen hypervisor, and

DomU is used to run the Oracle DBMS and the

database workload. Both VMs are operated by

RHEL 5.4.

TPC-H benchmark version 2.10 is used to generate

the workload, with scale factor 1 (i.e., 1GB). We use

the 22 queries of the benchmark. This benchmark

implementation is optimized for Oracle 10g Oracle

was identically configured for the Base and Xen

systems. The Oracle client and server are both run on

the same machine [17], the client adds a negligible

overhead to the machine, consuming well below 1%

of the CPU and very little memory.

Our experiments can be categorized into two main

categories, Warm Experiments and Cold

Experiments. In Warm Experiments we run each

query at least once before conducting our actual test,

to make sure that the data we fetch from our database

is already cached in the system memory. On the

contrary, in Cold Experiments, we clear the system

memory from any cached data before conducting any

tests, to make sure that Oracle fetches required data

directly from disk.

4. EXPERIMENTS RESULTS

4.1 Warm Experiments
In this section we discuss the results for all of our

Warm Experiments. As mentioned before, we make

sure that our queries are already cached in memory

before conducting the actual experiments to eliminate

the I/O waiting factor. This approach gives us the

chance to investigate the CPU and memory

performance without having the high I/O overhead.

We compare the average runtime for each of the

TPC-H 22 queries in both systems, SysA and DomU.

Error! Reference source not found. presents the

measured average runtimes. Each runtime is the

average runtime of five consecutive runs. It also

shows the Overhead in seconds and in percentage.

The following equations are used to measure

overhead:

Figure 1 Virtualization Overhead

Figure 1 show that the average Overhead about 7%

this can be an answer for our first research question.

In the following sections, we will have more

experiments to find out what are the main reasons

behind this overhead

4.1.1 User and System Times

User time is the time at which any process spends in

the user mood within the CPU, and system time

(sometimes called kernel time) is the time at which

any process spends in the system mode executing

system privileged tasks within the CPU.

Our first approach to understand the reasons behind

performance degradation in Virtual Machines is

measuring the time spent by CPU either in user mode

or kernel mode while serving each query. We assume

the following for Warm Experiments:

The previous assumption is true for most of the

cases. However, since we eliminated I/O waiting

time, CPU rarely spends time serving interrupts (IRQ

time). We discarded runs with IRQ times and

recorded our measurements according to the previous

assumption. We use mpstat [18] tool to collect CPU

measurements [19]. We run the tool for a certain

interval, and make sure our query is run within this

interval.

Figure 2 shows the Overhead in user and system time

for the 8 selected queries. We can see that both the

user time and the system time of almost all queries

cost overhead in DomU compared to SysA.

However, the slowdown in user time is small

compared to the slowdown in system time. This is

expected since virtualization adds overhead to system

level operations and does not affect user level

operations. So we focus next on where does the

slowdown in system time come from? For these

queries, system time is attributable to either system

calls or page fault handling. We look into these two

components next. In the interest of space, we only

present results for the 8 queries whose overhead more

than 10%.

Figure 2. Overhead: User vs. system time

4.1.2 System Calls

In a Xen virtualized system, some system calls will

go directly from the OS to the CPU to be executed

and some will have to go through the Xen hypervisor

layer first. However, this is only true for para-

virtualization; in full virtualization, all the system

calls must go through the hypervisor layer first. This

is one of the advantages of para-virtualization and

also one of the reasons for para-virtualization better.

In this section we have a deep insight for Oracle

server process system calls for the 8 selected queries

in both systems. We also use Strace [18] tool to

collect detailed information about the server process

and its system calls. Strace gives the required

information only after the process under investigation

terminates.

Table presents summarized information for system

calls. We use the following equation to define the

System Calls Time Overhead:

In Table 2 we show that system calls time is always a

small fraction of the total system time as expected,

we can notice quite relative large overheads for all of

the queries. However, queries with less system calls

count suffer from larger relative overhead, which

means there is a dominant factor affecting system

calls time in DomU

4.1.3 Page Fault Handling

There are two kinds of page faults; Major Page

Faults and Minor Page Faults. A Major Page Fault is

the exception generated by the hardware when an

application tries to access a memory page that is not

loaded into physical memory. And a Minor Page

Fault is what generated when the application tries to

access a memory page that resides in the physical

memory, but not assigned to the application [20]

Since our Warm Experiments previously discussed

procedures ensure that all of our queries’ data resides

in the physical memory, we only consider Minor Page

Faults in this section. Page Fault Handling can be a

very expensive factor for applications performances.

We carry out this experiment to investigate how the

Oracle DBMS handles page faults with a TPC-H

workload.

Error! Reference source not found.3 presents the

count of minor page faults generated per second by

Oracle’s server process when running each of the

TPC-H queries. We include the overhead presented in

Error! Reference source not found.1 trying to

relate virtualization overhead to minor page faults

rate.

Table 2: Summarized System Calls Information

 SysA DomU Overhead

 SysCalls Count SysCalls Time System Time SysCalls Count SysCalls Time System Time

Q4 4151 47.341 258 11893 195.35 340 312.64

Q6 2602 37.915 187 7559 190.71 210 403.01

Q9 6735 49.37 379 17355 217.90 430 341.37

Q15 6981 55.776 358 18192 200.85 380 260.11

Q17 2938 44.425 194 8329 199.63 200 349.36

Q18 3669 45.016 236 9133 214.269 290 375.98

Q20 5337 45.691 275 13396 213.627 320 367.55

Q22 94 10.997 9 154 72.004 0 554.76

Table 0: Minor Page Faults Rate

SysA DomU Overhead

Q4 53 52 10.26

Q6 0 0 15.15

Q9 1267.53 1244.34 15

Q15 45.93 61.76 10.68

Q17 10.8 10.53 12.5

Q18 1304.6 1303.86 13.26

Q20 974.33 975.07 10.17

Q22 11.47 12 22.22

4.2 Cold Experiments

In the previous section, Warm Experiments, we

studied the CPU and memory performances. In this

section, Cold Experiments, we focus on the disk

performance. We study the TPC-H 22 queries

runtimes under cold conditions, we study the disk I/O

waiting time for each query and we finally study data

reading rate in both systems.

4.2.1 Virtualization Overhead

In this section, we follow exactly the same

procedures as in Warm Experiments Virtualization

Overhead section. Figure 3 represents the results for

our experiment and shows that the average Overhead

about 97%. We can notice the large overhead for

almost all of the queries, which indicates the high

cost of virtualization in a cold system. Also In the

interest of space, we only present results for the 9

queries whose Overhead more than 115%.

4.2.2 I/O Wait Time

As previously discussed in Warm Experiments, here

we also use mpstat [18] tool to collect CPU usage

information while running each of selected 9 queries.

For SysA, we assume the following:

Where I/O wait time is time spent by the CPU

waiting for the required data to be fetched from the

physical disk. The previous assumption is proven to

be quite accurate for SysA runs. However, in DomU,

a new factor appears; which is steal time. Steal time

is the time spent by the CPU of a VM waiting while

the hypervisor is serving another CPU of another VM

[18]. Accordingly, for DomU, our assumption

becomes as follows:

Figure 3: Cold Experiments Overhead

In this section we are concerned with studying the

effect of the I/O waiting time on the overall

performance. Table 0 shows the significant change in

the CPU usage pattern between SysA and DomU. I/O

time is dominant for all selected queries in SysA This

means that I/O wait time is the major factor causing

the poor performance of Oracle in a virtualized cold

system.

Error! Reference source not found. represents

detailed information about I/O wait times for the

selected queries. All of the queries suffer from

extremely high I/O time overhead.

Table 0: User, System and I/O Times Relative to Total

SysA DomU DomU

User System IO User System IO Steal

(%) (%) (%) (%) (%) (%) (%)

Q 1 56 9.7 34.3 20.3 2.41 75.9 1.34

Q 3 12.5 9.88 77.6 1 0.41 98.1 0.48

Q 6 8.17 8.38 83.4 0.56 0.43 98.6 0.39

Q 8 11.6 9.96 78.3 0.94 0.36 98.3 0.36

Q 10 12.7 9.74 77.5 1.23 0.52 97.8 0.43

Q 12 11.5 10.74 77.6 0.95 0.63 97.9 0.47

Q 13 49.6 7.99 42.3 21.0 3.8 73.8 1.26

Q 14 9.71 11.64 78.6 0.55 0.42 98.7 0.29

Q 17 11.2 10.89 77.8 0.74 0.35 98.5 0.39

Table 6: I/O Wait Times

SysA DomU

Overhea

d Overhead

(secs) (secs) (secs) (%)

Q 1 3.65 18.38 14.73 403.56

Q 3 11.26 30.75 19.49 173.09

Q 6 8.9 23.22 14.32 160.9

Q 8 11.63 31.73 20.1 172.83

Q 10 11.48 31.52 20.04 174.56

Q 12 10.45 29.5 19.05 182.3

Q 13 1.41 5.3 3.89 275.89

Q 14 8.93 24.17 15.24 170.66

Q 17 8.87 24.94 16.07 181.17

5. CONCLUSIONS
Determining virtualization overhead for an Oracle

DBMS can be straight forward. However,

determining the reasons behind this overhead may not

be that easy. The point of this paper is not to suggest

using virtualization to implement Database. But also

it means that virtualization does not cost much even

for the cold case. By Using a TPC-H workload

running on Oracle in a Xen virtual machine

environment we show that the cost average is about

7% in cold case for system calls, page fault handling

(normal DBMS operations). Whenever in the warm

case the average cost about 97% for I/O operations,

these numbers are for a simple system that is not

highly optimized. Optimizations such as using Index

and using raw disk in Dom0 for the DomU virtual

disk can improve performance, so this overhead can

be viewed as a worst case overhead that can likely be

further improved.

Our hope is that these findings will encourage further

research in the area of virtualization and self-

managing database systems.

6. REFERENCES
[1] Christopher Clark,.. Live Migration of Virtual

Machines .The 2nd Conference on Symposium

on Networked Systems Design and

Implementation., Vol. 2, 2005,pp. 273-286.

[2] Chen, Gary. Worldwide. Virtual Machine

Software. Vendor Shares 2009..

[3] VMware. [Online] http://www.vmware.com/.

[4] Citrix Systems. [Online] http://www.citrix.com.

[5] Redhat Virtualization. [Online]

http://www.redhat.com/virtualization.

[6] Ubuntu Virtualization. [Online]

http://www.ubuntu.com/server/virtualisation.

[7] Olofson, Carl W. World Wide Relational

Database Management Systems .Vendor Shares.

International Data Corporation (IDC). 2007.

Transaction Processing Performance Council.

http://www.tpc.org/.2010.

[8] Chip Dawes, Bob Bryla, Joseph C. Johnson,

Matthew Weishan. OCA: Oracle 10g

Administration I. sol.: Sybex. 2004.

[9] Xen. [Online] http://www.xen.org/.

[10] Diwaker Gupta, Ludmila Cherkasova, Rob

Gardner, Amin Vahdat. Enforcing Performance

Isolation Across Virtual Machines in Xen.. The

ACM/IFIP/USENIX International Conference on

Middleware. 2006. pp. 342-362.

[11] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu,

Mustafa Uysal, Zhikui Wang, Sharad Singhal,

Arif Merchant, Kenneth Salem. Adaptive Control

of Virtualized Resources in Utility Computing

Environments.. The 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems.

2007.

[12] Diwaker Gupta, Rob Gardner, Ludmila

Cherkasova. XenMon: QoS Monitoring and

Performance Profiling Tool. HP Laboratories

Palo Alto. 2005.

[13] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang,

Sharad Singhal, Kang G. Shin. Performance

Evaluation of Virtualization Technologies for

Server Consolidation. HP Laboratories Palo

Alto. 2007.

[14] OpenVZ Wiki. [Online] http://wiki.openvz.org/.

[15] Ahmed A. Soror, Ashraf Aboulnaga, Kenneth

Salem. Database Virtualization: A New Frontier

for Database Tuning and Physical Design.. The

IEEE 23rd International Conference on Data

Engineering Workshop. 2007. pp. 388-394.

[16] Lorentz, Diana. Oracle Database SQL Language

Reference. s.l.: Oracle. 2008.

[17] Linux Man Pages. [Online]

http://linuxmanpages.com/.

[18] Daniel P. Bovet, Marco Cesati. Understanding

the Linux Kernel. s.l.: O'REILLY. 2003.

[19] Abraham Silberschatz, Peter Baer Galvin, Greg

Gagne. Operating System Concepts. 8th edition.

2010.

