
978-1-5090-3266-2/16/$31.00 ©2016 IEEE

Flexible FPGA implementation of Min-Sum
Decoding Algorithm for regular LDPC codes

Ahmed M. Sadek
Faculty of Computers & Information

Fayoum University
Fayoum, Egypt

ams13@fayoum.edu.eg

Aziza I. Hussein
Computer & Systems Eng. Dept
Minia University, Minia, Egypt

Electrical & Computer Eng. Dept
Effat Univesity, Jeddah KSA
azibrahim@effatuniversity.edu.sa

Abstract— Because of their excellent error correction
performance, Low-Density Parity Check Codes (LDPC) have
become the most widely used technique for forward error
correction in almost all modern communications applications.
This paper introduces an FPGA implementation of a partial
parallel, flexible LDPC decoder based on the Min-Sum decoding
algorithm. The suggested architecture uses a combination of
unicast and multicast communications between its processing
elements in order to reduce the intercommunication overhead
and at the same time, keep the processing elements simple.

The use of the less complex Min-Sum algorithm on the
suggested architecture produces a very compact and resource
efficient design which allows the instantiation of many processing
elements to deliver high processing rate

To allow flexibility to support different codes, a non-blocking
interconnection network is used to pass messages between
processing elements. It is a modified version of the multi stage
network called Arbitrary Size Benes.

The decoder architecture was implemented on Virtex5 FPGA
using VHDL in Xilinx ISE environment. Results show efficient
resources utilization compared to other implementations. The
decoder achieves up to 3.49 Gbps per iteration for a code length
of 2640 with BER of 10-5 at 4.4dB.

Keywords— FEC; LDPC; iterative decoding; minimum sum
algorithm; partial parallel decoder; FPGA implementation;
permutation networks Introduction

I. INTRODUCTION
Low Density Parity check codes were introduced more than

50 years ago by Gallager [1]. Today they are considered the
most attractive forward error correction codes because of their
excellent performance approaching the channel capacity
defined by Shannon [2]. They are found today in many
applications and standards like IEEE 802.11n (Wi-Fi), IEEE
802.16e (WiMax), DVB-S2 and the wired communication
standard IEEE 802.3 (10 GBase-T) [3]-[5].

LDPC codes are block codes where a k-bits message is
replaced with n-bits codeword introducing n-k redundant bits.
The constraints equations that validate the codewords are
grouped in a matrix called parity check matrix. The parity
check matrix is represented graphically with a Tanner graph[4].

A Tanner graph is a bipartite graph consisting of two sets of
nodes named variable nodes (VN) and check nodes (CN).

LDPC codes are decoded iteratively with the passing of
messages between VNs and CNs according to the connections
of the Tanner graph.

In partial parallel decoders [7-12], some of the VNs and
CNs are implemented along with memory units and that
provides a good tradeoff between complexity and performance
compared to full parallel decoders that implement every VN
and CN with a fixed interconnection. Full parallel decoders
suffer the most complexity and resource usage [13-19].

Various message passing decoding algorithms are available
to decode LDPC. The sum product achieves the best bit error
rate BER performance at the expense of complex hardware
architectures [7],[11]. Other algorithms like the min-sum
algorithm reduce the hardware complexity by approximating
the complex operations of the sum-product algorithm at the
cost of acceptable BER performance degradation[12, 14, 20-
24].

The interconnection mechanism is the heart of flexibility of
the partial parallel LDPC decoder. It is necessary to use a non-
blocking interconnection mechanism between the multiple
processing elements PEs of the decoder that work in parallel.
Multiple processors compete for memory access and that
results in memory collisions on a blocking interconnection.
Some methods were suggested to reduce the collision effects
instead of queuing the PEs to memory accesses [11].

This paper suggests an FPGA implementation of a partial
parallel LDPC decoder where the PEs are interconnected with
a modified version of the Arbitrary Size Benes network [32] to
solve the memory contention issue and preserve the flexibility
of the decoder to support different LDPC codes. The
architecture implements the reduced complexity min-sum
algorithm in order to produce a compact design that allows the
implementation of an increased number of PEs.

Results show a very good resource utilization and a very
good BER performance with an excellent processing capacity

The rest of this paper is organized as follows: Section II
reviews the min-sum LDPC decoding algorithm. Section III
introduces the suggested decoder architecture. Section IV
discusses the implementation and simulation results.

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

II. LDPC DECODING ALGORITHM

A. Representation of LDPC codes
An LDPC parity check matrix is represented graphically by

a Tanner graph. A parity-check matrix is called
௖ݓ) , ௥ݓ if each code bit is contained in a fixed ݎ݈ܽݑ݃݁ݎ-(
number (ݓ௖ or column weight) of parity check equations and
each parity-check equation contains a fixed number (ݓ௥ or row
weight) of code bits [25].

Equation (1) shows a regular parity-check matrix with
௖ݓ = 2 and ݓ௥ = 3, and Fig. 1 shows its Tanner graph
representation.

101100
110001
010110
001011

H





















(1)

B. Min-sum decoding algorithm
Decoding of LDPC codes is performed iteratively using the

Tanner graph. Two half iterations are repeated until a
codeword is corrected or until a maximum number of iterations
is reached. VNs and CNs exchange probabilities representing a
level of belief about the value of each codeword bit and it is
often to represent those probabilities as log likelihood ratio
(LLR).

In the first half iteration, each check node j calculates an
extrinsic message to every variable node i connected by an
edge in the Tanner graph. That message is called Ei,j and it
represents the LLR of the probability that bit i causes parity
check equation j to be satisfied.

௝,௜ܧ = ෑ ௝,ఈ൯ܯ൫݊݃ݏ
ఈ∈௏[௝],ఈஷ௜

min
ఈ∈௏[௝],ఈஷ௜

หܯ௝,ఈห (2)

Where V[j] is the set of VNs connected to check node j,
and Mj,α are their LLR values.

Each VN has an initial LLR value (a priori probability) and
receives LLRs from every connected CN. The total LLR of
each codeword bit is the sum of these LLRs:

௜ܮ = ௜ݎ + ෍ ఈ,௜ܧ
ఈ∈஼[௝]

(3)

Where C[j] is the set of CNs connected to variable node i
and ݎ௜ is its initial LLR.

The messages sent from VNs to CNs are the full LLR
without the component Ej,I , which was just received from check
node j, and hence, the message sent from each VN to all
connected CNs is:

௝,௜ܯ = ෍ ఈ,௝ܧ + ௜ݎ
ఈ∈஼[௝],ఈஷ௝

(4)

Fig. 1 Tanner graph representation

The CN processing element calculates (2) which is an
approximation of the original sum-product algorithm that uses
a much more complex non-linear function.

Obviously, the hardware implementation of the CN and VN
nodes based on the min-sum algorithm is simple. That
simplicity allows the instantiation of many PEs working in
parallel to produce higher bitrates at the output of the decoder.

Those approximations do not come without cost. The sum-
product algorithm offers better BER performance compared to
the min-sum. Some variations were introduced to narrow the
gap between the performances of the two algorithms.
Normalized min-sum multiplies a normalizing factor (ߥ) where
0 < ߥ < 1 in the CN to VN half iteration achieving a better
error performance[24]. Adaptive offset min-sum adaptively
adjusts the normalization factor according to the state of check
nodes in each iteration[26]. Probabilistic min-sum calculates a
probabilistic minimum value when calculating the min term in
(2) to reduce the complexity of the CN processor [19].

III. LDPC DECODER IMPLEMENTATIONS
Implementation of partial parallel decoders uses memory

units along with the CN and VN processing elements.
Typically, each CN calculates (2) and generates multiple
messages that are sent as unicasts to multiple VNs, and every
VN calculates (4) and also generates multiple unicast messages
to be sent to all connected CNs. Using unicasts is the most
common implementation method as in [7-10], [13-19].

Another implementation was introduced in [11] and
suggested the following: a modified variable node processor
named (MVNP) that delivers one output message calculated as
defined by (3), and in the same way, a modified check node
processor named (MCNP) that generates a single output
message calculated according to a modified version of (2). That
algorithm was named Low Traffic Belief Propagation (LTBP)
with the goal of reducing the number of messages to be
exchanged between VN and CN processors. That architecture
needs to regenerate the older messages (from the previous
iteration), Ej,i and Mj,i locally at each node processor so that it
can correctly calculate for the next iteration.

The implementation introduced in [27] suggested the
combination of unicast and multicast: VN processors which
calculate (4) use multicasts as the operation to be performed is
a simple addition. Using multicast will not pose any increase in
complexity but will reduce the number of messages greatly.

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

On the other hand, CN processors which calculate (2) will
work as usual with unicasts as their operation is already
complex.

Fig. 2 Architecture of LDPC decoder

A. Proposed LDPC decoder
The decoder proposed here is an extension to the one we

presented in [27] with a solution to a neglected memory
contention problem. Fig. 2 shows an overall block diagram of
the suggested architecture which supports multicasting at the
VN processor and unicasting at the CN processor.

Each VN processor is connected to a set of RAM units.
One unit holds the initial LLRs to be processed by this
processor (RAM1). Other units hold the values of messages
communicated over the connected edges to this processor; two
(RAM2) units for two connected edges. The capacity of these
RAM units determines the maximum code length that can be
supported by the decoder.

 On the other hand, each CN processor also has a set of
RAM units. One unit holds the previous iteration values of the
edges connected to this processor (RAM3). Another unit works
as a buffer that holds the difference between the multicast
message calculated by the VN processors and the previous
iteration value. The capacity of these RAM units is related to
the row weight of the code or in other words, the number of
edges connected to the CN processor.

B. Message permutation and Memory contention problem
In the CN half iteration, all CN processors need to load

and store values of their connected edges from and to the
RAM units through the permutation network. Many types of
permutation networks are available and discussed in [28].
Most implementations use Benes network for message
permutation as it offers a good compromise between
scalability and flexibility. The Benes network is a non-
blocking network that consists of (2݃݋ܮଶܰ − 1) number of
stages, where N is the number of inputs or outputs as it is a
symmetric network[29].

The architecture we presented in [27] used the permutation
network shown in Fig. 3. Each VN processor has three RAM
units for 3 Tanner edges so that it can support regular codes
with a column weight of 3. Multiplexers were used on the VN
side to select one of the connected RAM units. With that
arrangement, only one of the RAM units connected to a
multiplexer can be accessed at any given time. When two CN

processors try to simultaneously access contents through the
same multiplexer, one of them has to stall to the next cycle
and that means wasted time and reduced performance.

Fig. 3 12x4 permutation network[27]

C. Arbitrary Size Benes
Ordinary Benes network is a symmetric multi-stage

network [29]. The r-dimensional Benes network with 2௥
inputs/outputs has 2ݎ − 1 levels of switches, with 2௥ିଵ
switches in each level. The Benes network topology must have
the number of inputs or outputs to be a power of 2. That
restriction is not suitable for many situations including the
suggested architecture.

The arbitrary size (AS) Benes network provides a solution
to the restricted number of inputs/outputs by suggesting a
3 × 3 permutation network as shown in fig.4. A simple wire is
considered a simple network that realizes a 1 × 1 permutation
[30].

Fig. 4 3×3permutation network

 1x1 network

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

An AS-Benes of size n is constructed recursively from an
AS-Benes of size ቔ௡

ଶ
ቕ and an AS-Benes of size ቒ௡

ଶ
ቓ.

Fig. 5 12×4 Modified AS-Benes

When n is even, the construction is similar to that of the
Benes network where the n inputs are connected to n switches
and each switch is connected to two AS-Benes networks of
size n. Similarly, the n outputs are connected to n switches
and each switch is connected to the two n AS-Benes networks
[32].

To construct an AS-Benes of an odd size, the first ݊ − 1
inputs are connected to ቔ௡

ଶ
ቕ switches and each switch is

connected to the AS-Benes of size ቔ௡
ଶ

ቕ and the AS-Benes of

size ቒ௡
ଶ

ቓ. The same procedure applies for the first ݊ − 1
outputs. The last input and the last output are connected
directly to the ቒ௡

ଶ
ቓ AS-Benes.

In the suggested decoder architecture, the number of VN

and CN processors is not the same. Therefore, the AS-Benes is
modified to suit the architecture requirements using the
following steps:

 1) building a network with ݊ = .ݏܸܰ ݂݋ ݎܾ݁݉ݑܰ
2) align the CN processors on the center of the available

switches’ terminals
3) eliminate the unconnected switches in each stage
Figure 5 shows an example of a modified AS-Benes

connecting 12 VNs to 4 CNs
To configure the Modified AS-Benes network, a C++

program was developed to model the network and generate the
state of each switch. It accepts a parity check matrix file in the
same format used for the matrices available on MacKay’s
website [31].

The configuration of the permutation network is stored in
memory units. The decoder’s control unit is responsible for
invoking the permutation memory to setup the permutation
network to connect the CN processors to the appropriate RAM
unit. The contents of the permutation memory depend on the
parity check matrix of the code. Hence, the decoder can
support more than one code by loading the proper permutation
configuration to the memory of the network.

D. Message quantization
An important aspect that has a direct influence on both the

performance and the complexity of the decoder is the message
quantization scheme. The methods introduced in [16] and [32]
are similar in suggesting the use of two different quantization
schemes for the a priori LLR of each variable node and the
extrinsic LLRs between variable and check nodes. Either it is
called hybrid or dual quantization, it uses the representation
(݊ଵ, ݉ଵ) − (݊ଶ, ݉ଶ) to indicate that the initial LLR composed
of ݊ଵbits where ݉ଵof them are fraction bits, and the messages
to and from the check nodes are composed of ݊ଶ bits where
݉ଶof them are fraction bits.

Different hybrid quantization schemes were simulated on
Matlab to evaluate the BER performance of each scheme and
to help in selecting the one that will be used in the suggested
decoder.

The simulation results are shown in fig.6 for an LDPC
code with n=2640 bits with BPSK modulation in AWGN
channel. In order to get a BER of 10-5, the hybrid (3,1)-(2,1)
needs additional 0.8 dB of SNR compared to the hybrid (4,1)-
(2,1).

Fig. 6 BER performance of various quantization schemes

We select the hybrid (3,1)-(2,1) because a single bit reduction
on the VN side of the decoder will reduce the design

 VN1
VN2

VN3
VN4
VN5
VN6

VN7
VN8

VN9
VN10

VN11
VN12

CN4
CN3
CN2
CN1

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

complexity and the resources requirements, especially when
designing a decoder with a large number of processing
elements.
For the selected quantization scheme, the initial LLRs range
from (binary 101 to 011) or (decimal -1.5 to +1.5), while the
messages to and from the CN processors range from (binary
11 to 01) or (decimal -0.5 to +0.5). The 3-bit representation of
(-2) and the 2-bit representation of (-1) are omitted to make
the range symmetrical and unbiased toward negative values.
Using two bits for the messages to and from the check nodes
will greatly lower the implementation complexity and the
resources requirements for the permutation network and the
check node processors.

E. Check Node Processor
The core of the check node processor is supposed to

calculate (2) which is quite simple. The sign multiplication of
the inputs is computed with an XOR gate on the most
significant bit (MSB) of the inputs. If the number of inputs
with MSB = ‘1’ is odd, the output of the XOR would be ‘1’
indicating a negative result. Similarly, if the number of inputs
with MSB = ’0’ is even, the XOR will output ‘0’ indicating a
positive result.

 The minimum of the absolute values of the inputs is
easily computed with an AND gate on the least significant bit
(LSB) of the inputs. The AND gate produces the minimum
among inputs composing of a single bit.

 Figure7 shows a block diagram of the CN processor core.

Fig. 7 Block diagram of CN Core

The overall CN processor is shown in Fig. 8 and it is based

on the one represented in [27]. The CN processor works on the
correct edges’ values stored in its buffer and calculates (2).
The result is latched so that it can be written to the local RAM
unit, and to the edges RAM units through the permutation
network.

IV. RESULTS
To verify the throughput performance of the suggested

architecture, it was implemented using Xilinx ISE 14.2 with a
combination of VHDL and schematics tools on Xilinx Virtex5
(XC5VLX50T) development board. The performance analysis
of the architecture implemented in [27] indicated that the
number of clock cycles is dominated by the CN half iteration.

This is because the CN half iteration is performed using
unicast messages, not like the VN.

To boost the performance of the decoder, an asymmetric
implementation was considered where the number of the CN
processors is twice the VN processors.

As the CN and VN processing elements for the min-sum
algorithm are very simple to implement. It encouraged the
instantiation of many processing elements. Therefore, we
implemented the decoder with 64 VN processors and 128 CN
processors.

The interconnection mechanism is required to connect 192
RAM units of 64 VN processors to 128 CN processors. The
modified AS-Benes satisfies that requirement with 15 stages
of elementary switches in the same way described in section
III.C

Table (1) shows the device utilization report for the
implementation

Table 1 Device utilization of 64VN/ 128CN PEs

Logic Utilization Used Available

Number of slice registers 720 28800
Number of slice LUTs 913 28800
Number of fully used LUT-FF
pairs 336 1297

Max clock frequency 319 MHz

To demonstrate the efficiency of the suggested design, the
device utilization of the decoder presented in [17] is shown in
table (2).

Table 2 Device utilization of decoder presented in [11].

Logic Utilization Used

Number of slice registers 23352
Number of slice LUTs 95188

It was predicted that the resource usage of the full parallel
decoder implemented with 1296 VNs in [17] to be greater than
the suggested decoder. But considering the ratio between the
number of VNs in the two decoders (1296/64), the suggested
one is very efficient.

To measure the processing rate of the suggested decoder,
two special counters were implemented inside the control unit.
The first one counts the clock cycles of the VN half iteration,
and the second one counts the clock cycles of the CN half
iteration.

The suggested decoder achieves 3.4 Gbps at 319 MHz per
iteration for the LDPC code of length (2640-1320)
The full parallel architecture in [17] processes 1.77 Gbps after
20 iterations with 1296 VNs. That throughput is about 10
times the throughput of the suggested decoder despite that the
number of VNs in [11] is about 20 times the number of VNs
in the suggested decoder

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

Fig. 8 Block diagram of a CN processor

V. CONCLUSION
As modern communications technologies advance, the need

for high bandwidth communication increases. Forward error
correction is one of the primary processes of any
communication system and its performance has great impact
over the whole communication system. LDPC codes are
becoming more and more attractive for modern
communication technologies as it can deliver the demands of
high bitrates. Decoding of LDPC code was investigated in
many directions including various algorithm implementations
and variety of processing architectures.

 The paper introduces a partially parallel decoder
architecture implementing the min-sum algorithm. The
architecture is described using VHDL to implement the
suggested algorithm along with a new permutation network.
The implementation results showed that the decoder was able
to deliver high bitrates with linear scalability to support even
higher bitrates with more processing elements. The min-sum
decoder shows a low degradation in BER performance
compared to the sum-product decoder but it offers much more
processing rate that makes it suitable for situations with better
communications conditions such as low to medium range
communication

REFERENCES
[1] R. Gallager, “Low-density parity-check codes,”

Information Theory, IRE Transactions on, vol. 8, no. 1,
pp. 21 –28, 1962

[2] S.-Y. Chung, J. Forney, G.D., T. Richardson, and R.
Urbanke, “On the design of low-density parity-check
codes within 0.0045 db of the Shannon limit,"
Communications Letters, IEEE, vol. 5, no. 2, pp. 58-60,
Feb 2001.

[3] J. Lorincz and D. Begusic, “Physical layer analysis of
emerging IEEE 802.11n WLAN standard,” in Advanced
Communication Technology 2006. ICACT 2006. The 8th
International Conference, vol. 1, pp. 6 pp. –194.

[4] M. Khan and S. Ghauri, “The WiMAX 802.16e physical
layer model,”in Wireless, Mobile and Multimedia

Networks, 2008. IET International Conference on, 2008,
pp. 117 –120.

[5] A. Morello and V. Mignone, “DVB-S2: The second
generation standard for satellite broad-band services,”
Proceedings of the IEEE, vol. 94, no. 1, pp. 210 –227,
2006

[6] D.J.C. MacKay and R.M. Neal, "Near Shannon limit
performance of low density parity check codes,"
Electronics Letters, vol. 33, no. 6, pp. 457-458, 13 March
1997

[7] Hayes, "FPGA implementation of a Flexible LDPC
decoder",PSc thesis, University of Newcastle, Australia
2008

[8] T. Zhang; K. K. Parhi, An FPGA implementation of (3,6)-
regular low-density parity-check code decoder ,Eurasip
Journal on Applied Signal Processing.?2003(6):530-542.

[9] Jong-Yeol and H.-J. Ryu, A 1-gb/s flexible LDPC
decoder supporting multiple code rates and block
lengths," Consumer Electronics, IEEE Transactions on,
vol. 54, pp. 417{424, May 2008.

[10] S.M. Aziz and M.D. Pham, "Implementation of Low
Density Parity Check Decoders using a New High Level
Design Methodology," Journal of Computers, Academy
Publisher, vol. 5, no. 1, pp. 81-90, January 2010.

[11] Guido Masera, Federico Quaglio, and Fabrizio Vacca,
“Implementation of a Flexible LDPC Decoder” , IEEE
transactions on circuits and systems—ii: express briefs,
vol. 54, no. 6, June 2007

[12] Condo and G. Masera, A Flexible LDPC code decoder
with a Network on Chip as underlying interconnect
architecture. In Proceedings of CoRR. 2011

[13] A. J. Blanksby and C. J. Howland,“A 690-mW 1-Gb/s
1024-b, rate ½ low-density parity-check code decoder ”
IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 404–412,
Mar. 2002

[14] V. A. Chandrasetty, S. M. Aziz, "FPGA Implementation
of a LDPC Decoder using a Reduced Complexity
Message Passing Algorithm" Journal of Networks, Vol 6,
No 1 (2011), 36-45, Jan 2011

[15] V. A. Chandrasetty, S. M.Aziz, "An area efficient LDPC
decoder using a reduced complexity min-sum algorithm

978-1-5090-3266-2/16/$31.00 ©2016 IEEE

",Integration, the VLSI Journal, Volume 45 Issue 2, pp.
141-148, March 2012.

[16] Abu-Surra, S.; Pisek, E.; Henige, T.; Rajagopal, S., "Low-
power dual quantization-domain decoding for LDPC
codes," in Global Communications Conference
(GLOBECOM), 2014 IEEE , vol., no., pp.3151-3156, 8-
12 Dec. 2014

[17] Nguyen-Ly, T.; Khoa Le; Ghaffari, F.; Amaricai, A.;
Boncalo, O.; Savin, V.; Declercq, D., "FPGA design of
high throughput LDPC decoder based on imprecise Offset
Min-Sum decoding," in New Circuits and Systems
Conference (NEWCAS), 2015 IEEE 13th International ,
vol., no., pp.1-4, 7-10 June 2015

[18] Kumawat, S.; Shrestha, R.; Daga, N.; Paily, R., "High-
Throughput LDPC-Decoder Architecture Using Efficient
Comparison Techniques & Dynamic Multi-Frame
Processing Schedule," in Circuits and Systems I: Regular
Papers, IEEE Transactions on , vol.62, no.5, pp.1421-
1430, May 2015

[19] Chung-Chao Cheng; Jeng-Da Yang; Huang-Chang Lee;
Chia-Hsiang Yang; Yeong-Luh Ueng, "A Fully Parallel
LDPC Decoder Architecture Using Probabilistic Min-
Sum Algorithm for High-Throughput Applications," in
Circuits and Systems I: Regular Papers, IEEE
Transactions on , vol.61, no.9, pp.2738-2746, Sept. 2014

[20] J.H. Han and M.H. Sunwoo, "Simplified sum-product
algorithm using piecewise linear function approximation
for low complexity LDPC decoding," Proceedings of the
3rd International Conference on Ubiquitous Information
Management and Communication, Suwon, Korea, pp.
302-308, 2009.

[21] S. Papaharalabos, et al., "Modified sum-product
algorithms for decoding low-density parity-check codes,"
IET Communications, vol. 1, no. 3, pp. 294-300, June
2007.

[22] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier,
and X. Hu, “Reduced-complexity decoding of LDPC
codes,” IEEE Trans. Comms., vol. 53, no. 8, pp. 1288-
1299, Aug. 2005.

[23] J. Zhao, F. Zarkeshvari, and A.H. Banihashemi, “On
implementation of min-sum algorithm and its
modifications for decoding low-density Parity-check
(LDPC) codes,” IEEE Trans. Comms., vol. 53, no. 4, pp.
549-554, 2005.

[24] Mohammad Rakibul Islam, Dewan Siam Shafiullah,
Muhammad Mostafa Amir Faisal, Imran Rahman,
"Optimized Min-Sum Decoding Algorithm for Low
Density Parity Check Codes",(IJACSA) International
Journal of Advanced Computer Science and Applications,
Vol. 2, No. 12, 2011

[25] S.J. Johnson, "Introducing Low-density Parity-check
codes", Published Internal Technical Report , Department
of Electrical and Computer Engineering, University of
Newcastle, Australia

[26] Xiaofu Wu; Yue Song; Ming Jiang; Chunming Zhao,
"Adaptive-Normalized/Offset Min-Sum Algorithm," in

Communications Letters, IEEE , vol.14, no.7, pp.667-669,
July 2010

[27] Sadek, A.M., Hussein, A.I., "C1. Flexible LDPC decoder
architecture for (3–6) regular codes," in Radio Science
Conference (NRSC), 2015 32nd National , vol., no.,
pp.100-107, 24-26 March 2015

[28] Mark Woh, "ARCHITECTURE AND ANALYSIS FOR
NEXT GENERATION MOBILE SIGNAL
PROCESSING", Ph.D. thesis, dep. of Electrical
Engineering, The University of Michigan, 2011

[29] V. E. Benes, \Permutation groups, complexes and
rearrangeable connecting network, “Bell System
Technical Journal, vol. 43, no. 4, pp. 1619{1640, 1964.

[30] Chihming Chang and Rami Melhem, “Arbitrary Size
Benes Networks”, Parallel Processing Letters. 07, 279
(1997)

[31] Encyclopedia of Sparse Graph Codes:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.h
tml

[32] Balatsoukas-Stimming, A.; Dollas, A., "FPGA-based
design and implementation of a multi-GBPS LDPC
decoder," in Field Programmable Logic and Applications
(FPL), 2012 22nd International Conference on , vol., no.,
pp.262-269, 29-31 Aug. 2012

