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Abstract— Because of their excellent error correction 
performance, Low-Density Parity Check Codes (LDPC) have 
become the most widely used technique for forward error 
correction in almost all modern communications applications. 
This paper introduces an FPGA implementation of a partial 
parallel, flexible LDPC decoder based on the Min-Sum decoding 
algorithm. The suggested architecture uses a combination of 
unicast and multicast communications between its processing 
elements in order to reduce the intercommunication overhead 
and at the same time, keep the processing elements simple. 

The use of the less complex Min-Sum algorithm on the 
suggested architecture produces a very compact and resource 
efficient design which allows the instantiation of many processing 
elements to deliver  high processing rate 

To allow flexibility to support different codes, a non-blocking 
interconnection network is used to pass messages between 
processing elements. It is a modified version of the multi stage 
network called Arbitrary Size Benes. 

The decoder architecture was implemented on Virtex5 FPGA 
using VHDL in Xilinx ISE environment. Results show efficient 
resources utilization compared to other implementations. The 
decoder achieves up to 3.49 Gbps per iteration for a code length 
of 2640 with BER of 10-5 at 4.4dB.   

Keywords— FEC; LDPC; iterative decoding; minimum sum 
algorithm; partial parallel decoder; FPGA implementation; 
permutation networks Introduction 

I. INTRODUCTION 
Low Density Parity check codes were introduced more than 

50 years ago by Gallager [1]. Today they are considered the 
most attractive forward error correction codes because of their 
excellent performance approaching the channel capacity 
defined by Shannon [2]. They are found today in many 
applications and standards like IEEE 802.11n (Wi-Fi), IEEE 
802.16e (WiMax), DVB-S2 and the wired communication 
standard IEEE 802.3 (10 GBase-T) [3]-[5]. 

LDPC codes are block codes where a k-bits message is 
replaced with n-bits codeword introducing n-k redundant bits. 
The constraints equations that validate the codewords are 
grouped in a matrix called parity check matrix. The parity 
check matrix is represented graphically with a Tanner graph[4]. 

A Tanner graph is a bipartite graph consisting of two sets of 
nodes named variable nodes (VN) and check nodes (CN). 

LDPC codes are decoded iteratively with the passing of 
messages between VNs and CNs according to the connections 
of the Tanner graph. 

In partial parallel decoders [7-12], some of the VNs and 
CNs are implemented along with memory units and that 
provides a good tradeoff between complexity and performance 
compared to full parallel decoders that implement every VN 
and CN with a fixed interconnection. Full parallel decoders 
suffer the most complexity and resource usage [13-19]. 

Various message passing decoding algorithms are available 
to decode LDPC. The sum product achieves the best bit error 
rate BER performance at the expense of complex hardware 
architectures [7],[11]. Other algorithms like the min-sum 
algorithm reduce the hardware complexity by approximating 
the complex operations of the sum-product algorithm at the 
cost of acceptable BER performance degradation[12, 14, 20-
24]. 

The interconnection mechanism is the heart of flexibility of 
the partial parallel LDPC decoder. It is necessary to use a non-
blocking interconnection mechanism between the multiple 
processing elements PEs of the decoder that work in parallel. 
Multiple processors compete for memory access and that 
results in memory collisions on a blocking interconnection. 
Some methods were suggested to reduce the collision effects 
instead of queuing the PEs to memory accesses [11]. 

This paper suggests an FPGA implementation of a partial 
parallel LDPC decoder where the PEs are interconnected with 
a modified version of the Arbitrary Size Benes network [32] to 
solve the memory contention issue and preserve the flexibility 
of the decoder to support different LDPC codes. The 
architecture implements the reduced complexity min-sum 
algorithm in order to produce a compact design that allows the 
implementation of an increased number of PEs. 

Results show a very good resource utilization and a very 
good BER performance with an excellent processing capacity 

The rest of this paper is organized as follows:  Section II 
reviews the min-sum LDPC decoding algorithm. Section III 
introduces the suggested decoder architecture. Section IV 
discusses the implementation and simulation results. 
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II. LDPC DECODING ALGORITHM 

A. Representation of LDPC codes 
An LDPC parity check matrix is represented graphically by 

a Tanner graph. A parity-check matrix is called 
௖ݓ)  , ௥ݓ  if each code bit is contained in a fixed ݎ݈ܽݑ݃݁ݎ-( 
number (ݓ௖  or column weight) of parity check equations and 
each parity-check equation contains a fixed number (ݓ௥ or row 
weight) of code bits [25]. 

Equation (1) shows a regular parity-check matrix with 
௖ݓ = 2 and ݓ௥ = 3, and Fig. 1 shows its Tanner graph 
representation. 
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B. Min-sum decoding algorithm 
Decoding of LDPC codes is performed iteratively using the 

Tanner graph. Two half iterations are repeated until a 
codeword is corrected or until a maximum number of iterations 
is reached. VNs and CNs exchange probabilities representing a 
level of belief about the value of each codeword bit and it is 
often to represent those probabilities as log likelihood ratio 
(LLR). 

In the first half iteration, each check node j calculates an 
extrinsic message to every variable node i connected by an 
edge in the Tanner graph. That message is called  Ei,j  and it 
represents the LLR of the probability that bit i causes parity 
check equation j to be satisfied. 

௝,௜ܧ = ෑ  ௝,ఈ൯ܯ൫݊݃ݏ
ఈ∈௏[௝],ఈஷ௜

min
ఈ∈௏[௝],ఈஷ௜

หܯ௝,ఈห (2) 

Where V[j] is the set of VNs connected to check node j, 
and Mj,α are their LLR values. 

Each VN has an initial LLR value (a priori probability) and 
receives LLRs from every connected CN. The total LLR of 
each codeword bit is the sum of these LLRs: 

௜ܮ = ௜ݎ + ෍ ఈ,௜ܧ
ఈ∈஼[௝]

(3) 

Where C[j] is the set of CNs connected to variable node i 
and  ݎ௜ is its initial LLR. 

The messages sent from VNs to CNs are the full LLR 
without the component Ej,I , which was just received from check 
node j, and hence, the message sent from each VN to all 
connected CNs is: 

௝,௜ܯ = ෍ ఈ,௝ܧ + ௜ݎ
ఈ∈஼[௝],ఈஷ௝

(4) 

 

 
Fig. 1 Tanner graph representation 

The CN processing element calculates (2) which is an 
approximation of the original sum-product algorithm that uses  
a much more complex non-linear function. 

Obviously, the hardware implementation of the CN and VN 
nodes based on the min-sum algorithm is simple. That 
simplicity allows the instantiation of many PEs working in 
parallel to produce higher bitrates at the output of the decoder. 

Those approximations do not come without cost. The sum-
product algorithm offers better BER performance compared to 
the min-sum. Some variations were introduced to narrow the 
gap between the performances of the two algorithms. 
Normalized min-sum multiplies a normalizing factor (ߥ) where 
0 < ߥ < 1  in the CN to VN half iteration achieving a better 
error performance[24]. Adaptive offset min-sum adaptively 
adjusts the normalization factor according to the state of check 
nodes in each iteration[26]. Probabilistic min-sum calculates a 
probabilistic minimum value when calculating the min term in 
(2) to reduce the complexity of the CN processor [19]. 

III. LDPC DECODER IMPLEMENTATIONS 
Implementation of partial parallel decoders uses memory 

units along with the CN and VN processing elements. 
Typically, each CN calculates (2) and generates multiple 
messages that are sent as unicasts to multiple VNs, and every 
VN calculates (4) and also generates multiple unicast messages 
to be sent to all connected CNs. Using unicasts is the most 
common implementation method as in [7-10], [13-19]. 

Another implementation was introduced in [11] and 
suggested the following: a modified variable node processor 
named (MVNP) that delivers one output message calculated as 
defined by (3), and in the same way, a modified check node 
processor named (MCNP) that generates a single output 
message calculated according to a modified version of (2). That 
algorithm was named Low Traffic Belief Propagation (LTBP) 
with the goal of reducing the number of messages to be 
exchanged between VN and CN processors. That architecture 
needs to regenerate the older messages (from the  previous 
iteration), Ej,i and Mj,i locally at each node processor so that it 
can correctly calculate for the next iteration. 

The implementation introduced in [27] suggested the 
combination of unicast and multicast: VN processors which 
calculate (4) use multicasts as the operation to be performed is 
a simple addition. Using multicast will not pose any increase in 
complexity but will reduce the number of messages greatly. 
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On the other hand, CN processors which calculate (2) will 
work as usual with unicasts as their operation is already 
complex. 

 

 

 
Fig. 2 Architecture of LDPC decoder 

A. Proposed LDPC decoder 
The decoder proposed here is an extension to the one we 

presented in [27] with a solution to a neglected memory 
contention problem. Fig. 2 shows an overall block diagram of 
the suggested architecture which supports multicasting at the 
VN processor and unicasting at the CN processor. 

Each VN processor is connected to a set of RAM units. 
One unit holds the initial LLRs to be processed by this 
processor (RAM1). Other units hold the values of messages 
communicated over the connected edges to this processor; two 
(RAM2) units for two connected edges. The capacity of these 
RAM units determines the maximum code length that can be 
supported by the decoder. 

 On the other hand, each CN processor also has a set of 
RAM units. One unit holds the previous iteration values of the 
edges connected to this processor (RAM3). Another unit works 
as a buffer that holds the difference between the multicast 
message calculated by the VN processors and the previous 
iteration value. The capacity of these RAM units is related to 
the row weight of the code or in other words, the number of 
edges connected to the CN processor. 

B. Message permutation and Memory contention problem 
In the CN half iteration, all CN processors need to load 

and store values of their connected edges from and to the 
RAM units through the permutation network. Many types of 
permutation networks are available and discussed in [28]. 
Most implementations use Benes network for message 
permutation as it offers a good compromise between 
scalability and flexibility. The Benes network is a non-
blocking network that consists of (2݃݋ܮଶܰ − 1) number of 
stages, where N is the number of inputs or outputs as it is a 
symmetric network[29]. 

The architecture we presented in [27] used the permutation 
network shown in Fig. 3. Each VN processor has three RAM 
units for 3 Tanner edges so that it can support regular codes 
with a column weight of 3. Multiplexers were used on the VN 
side to select one of the connected RAM units. With that 
arrangement, only one of the RAM units connected to a 
multiplexer can be accessed at any given time. When two CN 

processors try to simultaneously access contents through the 
same multiplexer, one of them has to stall to the next cycle 
and that means wasted time and reduced performance. 

 
Fig. 3 12x4 permutation network[27] 

C. Arbitrary Size Benes 
Ordinary Benes network is a symmetric multi-stage 

network [29]. The r-dimensional Benes network with 2௥ 
inputs/outputs has 2ݎ − 1 levels of switches, with 2௥ିଵ 
switches in each level. The Benes network topology must have 
the number of inputs or outputs to be a power of 2. That 
restriction is not suitable for many situations including the 
suggested architecture.  

The arbitrary size (AS) Benes network provides a solution 
to the restricted number of inputs/outputs by suggesting a 
3 × 3 permutation network as shown in fig.4. A simple wire is 
considered a simple network that realizes a 1 × 1 permutation 
[30]. 

 

 
Fig. 4 3×3permutation network 

 1x1 network
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An AS-Benes of size n is constructed recursively from an 
AS-Benes of size ቔ௡

ଶ
ቕ and an AS-Benes of size ቒ௡

ଶ
ቓ.  

 

 
 

 

 
Fig. 5 12×4 Modified AS-Benes 

When n is even, the construction is similar to that of the 
Benes network where the n inputs are connected to n switches 
and each switch is connected to two AS-Benes networks of 
size n.  Similarly, the n outputs are connected to n switches 
and each switch is connected to the two n AS-Benes networks 
[32]. 

To construct an AS-Benes of an odd size, the first ݊ − 1 
inputs are connected to ቔ௡

ଶ
ቕ switches and each switch is 

connected to the AS-Benes of size ቔ௡
ଶ

ቕ and the AS-Benes of 

size ቒ௡
ଶ

ቓ. The same procedure applies for the first ݊ − 1 
outputs. The last input and the last output are connected 
directly to the ቒ௡

ଶ
ቓ AS-Benes. 

 
In the suggested decoder architecture, the number of VN 

and CN processors is not the same. Therefore, the AS-Benes is 
modified to suit the architecture requirements using the 
following steps:  

 1) building a network with ݊ =   .ݏܸܰ ݂݋ ݎܾ݁݉ݑܰ
2) align the CN processors on the center of the available 

switches’ terminals 
3) eliminate the unconnected switches in each stage 
Figure 5 shows an example of a modified AS-Benes 

connecting 12 VNs to 4 CNs 
To configure the Modified AS-Benes network, a C++ 

program was developed to model the network and generate the 
state of each switch. It accepts a parity check matrix file in the 
same format used for the matrices available on MacKay’s 
website [31]. 

The configuration of the permutation network is stored in 
memory units. The decoder’s control unit is responsible for 
invoking the permutation memory to setup the permutation 
network to connect the CN processors to the appropriate RAM 
unit. The contents of the permutation memory depend on the 
parity check matrix of the code. Hence, the decoder can 
support more than one code by loading the proper permutation 
configuration to the memory of the network.  

D. Message quantization 
An important aspect that has a direct influence on both the 

performance and the complexity of the decoder is the message 
quantization scheme. The methods introduced in [16] and [32] 
are similar in suggesting the use of two different quantization 
schemes for the a priori LLR of each variable node and the 
extrinsic LLRs between variable and check nodes. Either it is 
called hybrid or dual quantization, it uses the representation 
(݊ଵ, ݉ଵ) − (݊ଶ, ݉ଶ) to indicate that the initial LLR composed 
of ݊ଵbits where ݉ଵof them are fraction bits, and the messages 
to and from the check nodes are composed of ݊ଶ bits where 
݉ଶof them are fraction bits.  

Different hybrid quantization schemes were simulated on 
Matlab to evaluate the BER performance of each scheme and 
to help in selecting the one that will be used in the suggested 
decoder. 

The simulation results are shown in fig.6 for an LDPC 
code with n=2640 bits with BPSK modulation in AWGN 
channel. In order to get a BER of 10-5, the hybrid (3,1)-(2,1) 
needs additional 0.8 dB of SNR compared to the hybrid (4,1)-
(2,1). 

 
Fig. 6 BER performance of various quantization schemes 

We select the hybrid (3,1)-(2,1) because a single bit reduction 
on the VN side of the decoder will reduce the design 
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complexity and the resources requirements, especially when 
designing a decoder with a large number of processing 
elements. 
For the selected quantization scheme, the initial LLRs range 
from (binary 101 to 011) or ( decimal -1.5 to +1.5), while the 
messages to and from the CN processors range from (binary 
11 to 01) or (decimal -0.5 to +0.5). The 3-bit representation of 
(-2) and the 2-bit representation of (-1) are omitted to make 
the range symmetrical and unbiased toward negative values.  
Using two bits for the messages to and from the check nodes 
will greatly lower the implementation complexity and the 
resources requirements for the permutation network and the 
check node processors. 

E. Check Node Processor 
The core of the check node processor is supposed to 

calculate (2) which is quite simple. The sign multiplication of 
the inputs is computed with an XOR gate on the most 
significant bit (MSB) of the inputs. If the number of inputs 
with MSB = ‘1’ is odd, the output of the XOR would be ‘1’ 
indicating a negative result. Similarly, if the number of inputs 
with MSB = ’0’ is even, the XOR will output ‘0’ indicating a 
positive result. 

 The minimum of the absolute values of the  inputs is 
easily computed with an AND gate on the least significant bit 
(LSB) of the inputs. The AND gate produces the minimum 
among inputs composing of a single bit. 

 
 Figure7 shows a block diagram of the CN processor core. 
 

 
Fig. 7 Block diagram of CN Core 

 
The overall CN processor is shown in Fig. 8 and it is based 

on the one represented in [27]. The CN processor works on the 
correct edges’ values stored in its buffer and calculates (2). 
The result is latched so that it can be written to the local RAM 
unit, and to the edges RAM units through the permutation 
network. 

 

IV. RESULTS 
To verify the throughput performance of the suggested 

architecture, it was implemented using Xilinx ISE 14.2 with a 
combination of VHDL and schematics tools on Xilinx Virtex5 
(XC5VLX50T) development board. The performance analysis 
of the architecture implemented in [27] indicated that the 
number of clock cycles is dominated by the CN half iteration. 

This is because the CN half iteration is performed using 
unicast messages, not like the VN. 

To boost the performance of the decoder, an asymmetric 
implementation was considered where the number of the CN 
processors is twice the VN processors. 

As the CN and VN processing elements for the min-sum 
algorithm are very simple to implement. It encouraged the 
instantiation of many processing elements. Therefore, we 
implemented the decoder with 64 VN processors and 128 CN 
processors.  

The interconnection mechanism is required to connect 192 
RAM units of 64 VN processors to 128 CN processors. The 
modified AS-Benes satisfies that requirement with 15 stages 
of elementary switches in the same way described in section 
III.C 

Table (1) shows the device utilization report for the 
implementation 

 
Table 1 Device utilization of 64VN/ 128CN PEs 

Logic Utilization Used Available 

Number of slice registers 720 28800 
Number of slice LUTs 913 28800 
Number of fully used LUT-FF 
pairs 336 1297 

Max clock frequency 319 MHz 

To demonstrate the efficiency of  the suggested design, the 
device utilization of the decoder presented in [17] is shown in  
table (2). 

Table 2 Device utilization of decoder presented in [11]. 

Logic Utilization Used 

Number of slice registers 23352 
Number of slice LUTs 95188 

It was predicted that the resource usage of the full parallel 
decoder implemented with 1296 VNs in [17] to be greater than 
the suggested decoder. But considering the ratio between the 
number of VNs in the two decoders (1296/64), the suggested 
one is very efficient. 

To measure the processing rate of the suggested decoder, 
two special counters were implemented inside the control unit. 
The first one counts the clock cycles of the VN half iteration, 
and the second one counts the clock cycles of the CN half 
iteration. 

The suggested decoder achieves 3.4 Gbps at 319 MHz per 
iteration for the LDPC code of length (2640-1320) 
The full parallel architecture in [17] processes 1.77 Gbps after 
20 iterations with 1296 VNs. That throughput is about 10 
times the throughput of the suggested decoder despite that the   
number of VNs in [11] is about 20 times the number of  VNs 
in the suggested decoder 
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Fig. 8 Block diagram of a CN processor 

V. CONCLUSION 
As modern communications technologies advance, the need 

for high bandwidth communication increases. Forward error 
correction is one of the primary processes of any 
communication system and its performance has great impact 
over the whole communication system. LDPC codes are 
becoming more and more attractive for modern 
communication technologies as it can deliver the demands of 
high bitrates. Decoding of LDPC code was investigated in 
many directions including various algorithm implementations 
and variety of processing architectures.  

 The paper introduces a partially parallel decoder 
architecture implementing the min-sum algorithm. The 
architecture is described using VHDL to implement the 
suggested algorithm along with a new permutation network. 
The implementation results showed that the decoder was able 
to deliver high bitrates with linear scalability to support even 
higher bitrates with more processing elements. The min-sum 
decoder shows a low degradation in BER performance 
compared to the sum-product decoder but it offers much more 
processing rate that makes it suitable for situations with better 
communications conditions such as low to medium range 
communication 
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