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Abstract. Hamama Zn-Pb-Cu VMS deposits are hosted along the contact of bimodal 

metavolcanic sequence and their volcaniclastics in association with quartz-carbonate matrix. 

Ore forming process include multi-stage steps. 3D interpolation of drill hole database shows 

that the ore body was affected by multidirectional faults and fracture zones, that later were 

occupied by carbonates. The origin of carbonates is approached using a C and O isotopic 

compositions in whole-rock samples. The isotopic data revealed signs of both hydrothermal-

sedimentary and hydrothermal-metasomatic processes. The primary gold and sulphide minerals 

were deposited from exhalations, forming massive sulphide ore then the tectonic processes due 

to the emergence of two successive phases of granitoids followed by the of post-tectonic dykes 

provided war to the introduction of carbonates that changed the configuration of the ore deposit 

and affected its grade. Later diagenetic and metasomatic processes resulted in enrichment of 

gold in the oxidation zone. 

1. Introduction 

Volcanic massive sulphide (VMS) deposits are an interesting type of deposits for both by the miners 

and the geologists. They are not only a source of precious metals like gold and silver, but also base 

metals like Cu, Zn, Pb, and represent an important source of Co, Sn, Cd, Te, Bi, Mn, Gr, Ga and Ba. 

Some of them also contain trace amounts of Hg, Sb, Se, In, and As [1, 2], which save companies from 

the price fluctuation of the gold and silver. The Hamama VMS deposit, central Eastern Desert, Egypt, 

is one of several mineralized metavolcanic provinces in the Eastern Desert (ED). The prominent 

feature of this deposit is its association with carbonates. The Western Zone of Hamama is estimated to 

contain an indicated source of 137000 ounces and thus is considered one of Egyptian's promising gold 

resources [3].  However, the ore grade is lower than normal VMS deposits. Few data are available 

about the genesis ED VMS and their relation to associated carbonates. The obtained results 

significantly expand the current understanding of the genesis of the Hamama deposit and explain the 

causes of its low grade, which can be used in a comparative analysis with similar genetic type. 

2. Materials and Methods 

The field relationship of the host-rock metavolcanics, ore and carbonate were documented during two 

field trips. More than 100 thin polished sections were prepared for petrographic and mineralogical 

studies using transmitted-reflected light microscope. The drilling database of the company "Aton 

resources" representing analyses of 8440 drill hole samples and 4475 trench sample were used for 3D 

modelling and ore type classification. Seven samples picked manually from quartz-carbonate veins, 

nests and lenses from the Hamama deposit. The isotope analyses were carried out in the Institute of 

Geology of Ore Deposits, Petrography, Mineralogy and Biochemistry (IGEM- RAS), on a Deltaplus 

mass spectrometer (Thermo-Finnigan). Calibration in international scales V-PDB and V-SMOW was 

carried out using external (NBS-18, NBS-19, MCA-8) and laboratory (ATC-1) standards.  
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3. Results 

3.1. Geology of the ore deposit  

The Hamama area is occupied mainly by basic and intermediate metavolcanic rocks (meta-basalt, 

basaltic meta-andesite and meta-andesite) with pillow lava occupy the lower section (Figure 1). To the 

south, the metavolcanics are in contact with different types of volcaniclastic rocks (massive, lapilli and 

banded tuffs and breccia) intercalated with alternative bands of iron. Quartz carbonate veins occupy 

the contact of the metavolcanics and tuffs with different degrees of sulphide mineralizations forming a 

long channel of gossan on the surface. These carbonates can be divided into two types, a) non-

mineralized, pure carbonate thin bands (1-15 cm thick); and b) mineralized thick layers of carbonates 

associated with sulphide mineralization (or oxides in the oxidation zone). The meta-basaltic sheet 

contains multiple felsic units, mainly meta-dacite and meta-rhyolite (Figure 1). The area was intruded 

by post-tectonic small quartz diorite dyke-like intrusion in the central part. A feldspar-quartz phyric 

rhyolite dyke extends in NE-SW direction, cutting the ore body, metavolcanics and volcaniclastics 

(Figure 1). Both acidic and basic metavolcanic rocks host extensive alteration zones around felsic 

metavolcanics and later granitoid bodies. The area was subjected to extensional tectonics resulted in 

the formation of a set of NW-SE strike-slip faults. Nubian sandstone (Cretaceous) covers the western 

and southern parts of the area with small outcrops. 

 

Figure 1. Geological map of the Hamama ore deposit. Legend: 1. Basic metavolcanics with pillow 

lava; 2. Acidic and intermediate metavolcanics; 3. Tuffs with banded iron formation; 4. Nubian 

sandstone; 5. Quartz diorite; 6. Rhyolite dykes; 7. Quartz-carbonate veins; 8. Quartz veins; 9. 

Alteration Zones; 10. Faults. 

The metavolcanics, volcaniclastics and quartz-carbonate veins were exposed to long periods of 

tectonic deformation expressed by their large dipping angles. The drilling programs performed on the 

ore zones showed that the mineralized horizon is steeply dipping [4]. The stratigraphic sequence is 

overturned with dip ranges from sub-vertical to moderately overturned to the northwest, so the 

stratigraphic top is to the southeast [5].  

3.2. Mineralogical characteristics and paragenesis 

The ore samples are characterized by low to moderate sulphide mineralization (5-30%). Some drill 

cores revealed massive ore continuing up to 70 %. Mineralogically, it is composed in an average of 

about 30 % modal quartz with amorphous silica, 25% dolomite, 15% calcite, 10% pyrite, 10% other 

sulphides, 5% feldspar and clay minerals, and 5% chlorite with other constitutes. The overall 

identified ore minerals of the fresh ore are pyrite, sphalerite, chalcopyrite, galena, and covellite, with 

varying amounts of cinnabar, arsenopyrite, stibnite, enargite, iodargyrite, greenockite, acanthite, and 
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tetrahedrite. The oxide equivalents include hematite, goethite, limonite, zincite, and litharge. Sampled 

fresh ore from drill cores can be distinguished into two groups: a. Pyrite-rich (Figure 2a-f), and b. 

Polymetallic sulphides (Figure 2g, h). The pyrite-rich ore is the most common type. In terms of 

massiveness, the ore can be divided into two types: a) vein and disseminated ores, containing low-

thickness veins of ores, as well as interlayers of poorly mineralized disseminations of pyrites, with 

other sulphides in small quantities. b) Massive ore with more than 30 % of ore minerals (Figure 2g, h). 

Sphalerite is the main ore mineral in this type, followed by pyrite, chalcopyrite, and galena. 

 

Figure 2. a) chalcopyrite filler between Py-1 grains, which contains  inclusions of sphalerite; b) Fine 

pyrite framboids (Py-2), c) Reserved nests of framboid bacteria built on (Py-1) pyrite cubes; d) fine 

grained pyrite (Py-3) and sphalerite deposited along carbonate boundaries; e) coarse, fractured grains 

of py-1 and fine-grained py-3 in the highly altered parts; f) vein of pyrite (Py-1) and fine scattered (Py-

3);  g) inclusions of galena and pyrite in sphalerite; h) inclusion of pyrite, and chalcopyrite (replaced 

partially to covellite) in tetrahedrite and sphalerite; i) alteration products of sulphide mineralizations 

preserving cube form of pyrite. 

Table 1. Paragenetic sequence of hydrothermal and supergene stages of the Hamama deposit. 

Mineral Hydrothermal stage Supergene stage  
Pre-ore step Ore step  Post-ore step 

Carbonates     

Quartz     

Pyrite     

Feldspar     

Chlorite     

Sericite     

Sphalerite     

Goethite     

Talc     

Chalcopyrite     

Galena     

Covellite     

Barite     

Tetrahedrite      

Mineral abundance:                          Major,                          Minor,                             Rare 
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The process of ore formation was rather complex, expressing signs of both hydrothermal-

sedimentary and hydrothermal-metasomatic processes. The hydrothermal and supergene stages of the 

ore formation are represented in (table 1) discussed below:  

3.2.1. The pre-ore step is represented by dissemination of the ore minerals with the hosting rock-

forming minerals and their alteration products. The mineral assemblage of this stage is represented by 

plagioclase, amorphous silica, quartz, calcite, barite, chlorite, sericite, kaolin, pyrite (Py-0), few 

galena, sphalerite and chalcopyrite. The mineral assemblage of this stage is preserved mainly in the 

stringer zone in the hanging wall tuffs and carbonate lenses. 

3.2.2. The ore step includes the intensive deposition of ore minerals include, in descending order, 

pyrite (Py-1), sphalerite, galena and chalcopyrite (Cpy-1), secondary - pyrrhotite, less common - 

arsenopyrite, enargite, greenockite, cinnabar, acanthite; nonmetallic minerals - quartz, calcite, 

dolomite, barite, chlorite, sericite, kaolinite. The mineral assemblage of this stage can be observed 

mainly in the massive ore from deep drill cores of the Hamama western zone.   

3.2.3. The post-ore step expresses the formation of most carbonate mass and reworking of ore minerals 

producing some secondary sulphide minerals in the fresh ore chiefly of copper as covellite, bornite, 

chalcopyrite (Cpy-2), and tetrahedrite. It also includes the formation of new generations of pyrite as 

framboids (Py-2) and fine skeletal grains (Py-3) related to alteration of host rock.   

3.2.4. The supergene stage includes the formation of secondary minerals of oxides and carbonates as 

hematite, goethite, limonite, acanthite, zincite, litharge, malachite, siderite, smithonite, otavit, 

anglesite, and rare native gold etc. 

Four generations of pyrite are distinguished. Pyrite-0 represents the primary well-crystallized pyrite 

as inclusions in early sphalerite and galena (Figure 2h) and encountered in the massive ore. Pyrite-I 

composes the main mass of pyrite. Grains of pyrite-1 contain inclusions of non-metallic minerals, 

cracked, often coarse (up to 1.5 mm), anhedral crystals, crushed to fine-grained aggregates (Figure 2a, 

c, d, e). Chalcopyrite, galena, sphalerite, are partially replaced grains of pyrite-1. Framboidal pyrite 

represents the pyrite-2 that formed by bacterial action in reducing environment. There are also clusters 

of individual, framboids, cemented by non-metallic minerals (Figure 2b, c). They subjected to many 

reworking processes producing new forms include atoll-like pyrite. Pyrite-3 occurs as idiomorphic 

crystals without inclusions of other minerals and cracks. Pyrite-III grains are very fine; from 

thousandths to hundredths parts of a mm; form chains, or uniform disseminations in ores (Figure 2d, e, 

f). Sphalerite is, generally, found in a subordinate amount, except in massive ore may exceed 70 vol. 

%. It is found in the form of complex intergrowths or as “independent” xenomorphic grains 

(aggregates). Independent grains contain almost no inclusions of sulphides and non-metallic minerals 

and has curly boundaries corroded by carbonates. Sphalerite formed during the first stage of ore 

formation. A characteristic feature of the earlier sphalerite is emulsion-like inclusions of chalcopyrite 

rarely exceed 0.1 mm in size. Chalcopyrite occurs in the form of xenomorphic grains in accretion with 

ore-forming sulphides and in the form of emulsifying impregnation in sphalerite (Cpy-1), and forms 

late veins in the sphalerite-pyrite association. Chalcopyrite-1 (Figure 3h) most often occurs with 

sphalerite in the composition of xenomorphic-grained clusters, and confined to the intergranular 

spaces of pyrite and fills cracks in them. Chalcopyrite-2 (Figure 3a) is emulsion-like inclusions in 

sphalerite but probably later xenomorphic clusters and intergranular fillings, indicating that after the 

deposition of the main mass of sphalerite, the flow of copper-bearing ore-forming solutions did not 

stop. Galena occurs in the form of inclusions and deformed veins within large sphalerite masses. The 

spatial relationships of galena with pyrite, sphalerite indicates that the deposition of galena began later, 

but without a temporary interruption in ore formation. 

3.3. Ore classification 

Different diagrams for classification of VMS were used to define the type of the ore deposit using the 

database of "Aton resources" of the fresh ore sample. In terms of gold, silver and base metal contents 

(Cu+Zn+Pb), the majority of the ore samples (>70 %) fall in the field of base metal deposits (Figure 

3a), rather than the gold deposits [6-8]. However, some ore samples fall in the field of auriferous 
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deposits due to its relatively high silver contents rather than gold contents. The average point falls in 

the field of base metal deposits.  

 

Figure 3. a) Ternary representation of the relative abundances of Au (ppm), Ag (ppm), and base 

metal (%) in the Hamama deposit [7] ; b) Ternary representation of the relative abundances  of Cu, Zn 

and Pb in the Hamama deposit [9]; the average values in both plots are represented by a star.  

 

Figure 4. N-MORB normalized diagrams for average Pb, Ag, Au, Zn and Cu contents for the 

Hamama deposits (solid line) compared pattern with type of host rock (a) and common VMS types 

(b); values for N-MORB normalization and VMS host-rock types from [10, 11] ; for Sibai of South 

Ural from [12]; for Kuroko-type, Uchnotai, Kosaka mine, Japan from [13] ; for Kid Creek, Timmins 

District, Canada from [14] ; for Rio Tinto, Iberian Pyrite Belt, Spain from [15] . 

The Hamama deposit belongs to Zn-Pb-Cu type (> 70 % of samples) as revealed from the ternary 

plot of [9] , where about 20 % fill in the field of Zn-Cu type, the remaining part fills the field Pb type 

with few samples fall in the Cu type (Fig. 3b). Correlation of N-MORB normalized metal contents of 

Hamama deposits based on host rock shows a strong correlation with bimodal felsic and bimodal 

mafic host rock VMS (Fig. 5a). In fact, the Hamama deposit is hosted in bimodal mafic sequence, but 

silicification of the deposit resulted in its higher correlation with bimodal felsic host for VMS. 

Correlation of N-MORB-normalized metal content of Hamama with common VMS types (Fig. 4b) 

shows that Hamama deposit correlates strongly with Kuroko-type and South Ural pyrite deposits 

(Sibai) and share some similarities with Kid Creek, Mattabi and Iberian Pyrite Belt (Fig. 5b). Hamama 

agrees with Kuroko-type in that both of them are Zn-Pb-Cu type. However, metal contents of all 

metals of Hamama are lower. Also, Hamama is more comparable to Sibai Cu-Zn pyrite [16] deposit of 

South Ural in metal contents except for copper where Sibai has higher copper concentrations.  

3.4. C and O isotopic compositions of carbonates  

Carbonation is a very common feature associated with green-schist facies metamorphosed 

metavolcanics of the Eastern Desert. Stern and Geinn [17], stated that large amounts of carbonate 

having been added to the basement during deformation and metamorphism. The origin, age of 

formation and the relation of these carbonates to mineralization is not clear. Seven samples picked 
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manually from quartz-carbonate rock, manifest a diverse mineralogy. Mineralogical investigation 

indicates that these samples consist of calcite (H-33, AHA-050a, AHA-066b, AHA-071b), dolomite + 

calcite (AHA-004b, AHA-044), and calcite + smithsonite + dolomite (AHA-001). The C, and O 

isotopes of the carbonate samples cluster between -7.68‰ and -3.55‰ for δ13C (delta-C-18) (average= 

- 6.26), and +11.45‰ and +22.37‰ (average= 16.94) for δ18O (delta-O-18) (Table 2). The δ13C 

isotopic signature of the carbonates from Hamama area are consistent with the value of the mantle 

derived rocks, (δ13C ~ -5 to -6 ‰; [18-20] . Such a low value is usually could be taken to signify an 

absence of life, since photosynthesis usually acts to raise the value. Biological materials on the one 

hand are strongly depleted in δ13C (- 20 to - 30 ‰; the mean value of the terrestrial biomass is  - 26 ± 7 

‰ according to [21]. 

Table 2. The carbon and oxygen isotope contents of the separated carbonates, Hamama deposits. V-

PDB: Vienna Pee Dee Belemnite standard and V-SMOW: Vienna Standard Mean Ocean Water.  

Sample 

Carbonate 

content in the 

sample, wt. % 

δ 13C (V-

PDB) 

13 C (Stand. 

Dev.) 

δ18O (V-

SMOW) 

18O (Stand. 

Dev.) 

H-33 73 -5.54 0.04 12.59 0.06 

AHA-001 99 -3.55 0.04 22.37 0.06 

AHA-004b 101 -7.61 0.04 21.42 0.06 

AHA-044  48 -6.38 0.04 14.54 0.06 

AHA-050a 121 -7.68 0.04 19.18 0.06 

AHA-066b 105 -5.91 0.04 17.03 0.06 

AHA-071b 65 -6.94 0.04 11.45 0.06 

 

Figure 5. O and C isotopic composition of the Hamama carbonates on the Kuleshov diagram [22]. 

Our δ18O values (from 11.45‰ to +22.37) are in agreement with the previous work of Stern and 

Gwinn [17]  (δ18O from +9.5 to + 27.4‰), carried on samples from the Central Eastern Desert of 

Egypt. They explained the origin of the "intrusive" carbonates of the Central Eastern Desert as mixing 

between remobilized sedimentary carbonates and mantle fluids of low temperatures (< 300 ° C). This 

inference is also consistent with the lack of any evidence for chilled margins on any of the carbonate 

veins. In the diagram of Kuleshov [22]   (Fig. 5), three samples fill in the field of sedimentary fresh 

water carbonates which have δ18O (V-SMOW) > 19. It is noticed that these three samples are 

reworked. Thus, their higher values of 18O are due to further addition from meteoric water upon 

alteration.  These results suggest occurring of some isotopic re-equilibration with a lower temperature 

fluid, and probably the involvement of metasomatic fluids. 
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3.5. 3D interpolation of drill holes database  

The results of 3D interpolation of the database (Fig. 6) of Hamama deposits shows that the ore body is 

about 3 km length, up to 110 m thick, more than 250 m deep, and steeply-dipping with an average 

angle of 55 ° to the south. 

 

Figure 6. 3D model for distribution of Au, Ag, Pb, Cu, and Zn respectively in Western Hamama.  

The high-grade ore of the Hamama West is separated into small pieces and not grouped into a 

continuous ore body. It is controlled by multidirectional faults and fracture zones. These faults formed 

after the complete formation of the ore body and strongly changed its configuration. The Hamama 

East appears on the surface as isolated masses dissected by many strike-slip faults due to its closest 

from centre of tectonic activity. In the central Hamama, the ore body is crossed by a large rhyolitic 

dyke, and then this dyke is dissected into small masses by a set of strike-slip faults (Figure 1). In many 

places, these strike-slip faults are filled with quartz-carbonate rock. The carbonates have apophasis in 

the surrounding metavolcanics, which increases the indication of their hydrothermal origin.   

4. Discussion 

Geochemically, the Hamama ore are classified as Zn-Pb-Cu (polymetallic) VMS type. However, its 

metal content is lower than normal VMS provinces. The field observations indicate that the Hamama 

VMS were exposed to long-period of tectonics. The 3D interpolation of drilling database supports this 

observation, where the cut-off grade is bothered and separated into small masses. The ore 

mineralization is hosted in carbonate matrix.  The crosscutting relationship suggests that 

carbonatization post-dated silicification. The C and O isotope compositions support the hydrothermal 

origin of these carbonates. The restriction of carbonate in areas of tectonic disturbance refers to their 

late formation. The introduction of the carbonate that lowered the ore grade was probably 

contemporary to the emergence of granitoids. 

Conclusions  

The Hamama deposits are steeply dipping ore body classified as bimodal Zn-Pb-Cu VMS deposit. 

Paragenetic sequence of ore and gangue minerals is given. Mineralogical investigations indicate that 
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carbonate formed in later stages after ore formation. Isotopic compositions of carbonate gangue 

indicate hydrothermal origin and signs of reworking by later low temperature fluids. 3D model of 

metal contents shows that the ore body is dissected into small parts. The introduction of two phases of 

granitoids in the eastern and northern parts of the Hamama area, in addition to the emergence of post-

tectonic dikes, played an important role in changing the configuration of the ore deposit. The 

formation of the Hamama deposit included three steps: a. Formation of Kuroko type VMS ores similar 

to modern black smokers; b. The ore body was dissected by a series of faults, and fractures. Ore 

became brecciated and cemented by silicates and c. The ore body then was subjected to a new tectonic 

stage with the introduction of a high-alkaline hydrothermal solution, filling cavities and newly formed 

cracks by carbonates.  
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