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Chapter 3 

Sound waves 
 

Lesson No 7: 

Objectives: 

      Student will be able to: 

 Define the speed of the sound waves 

 Understand the hearing mechanism. 

 Understand some applications on sound. 

 

 

Sound waves are the most common example of longitudinal waves. They travel 

through any material medium with a speed that depends on the properties of the 

medium. 

Sound waves are divided into three categories that cover different frequency 

ranges.  

(1) Audible waves lie within the range of sensitivity of the human ear. They can be 

generated in a variety of ways, such as by musical instruments, human voices, or 

loudspeakers.  

(2) Infrasonic waves have frequencies below the audible range. Elephants can use 

infrasonic waves to communicate with each other, even when separated by many 

kilometers.  

(3) Ultrasonic waves have frequencies above the audible range. The ultrasonic 

sound it emits is easily heard by dogs, although humans cannot detect it at all. 

Ultrasonic waves are also used in medical imaging. 
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3.1 Speed of Sound Waves 
 

The speed of sound waves in a medium depends on the 

compressibility and density of the medium. If the medium is a 

liquid or a gas and has a bulk modulus B and density , the 

speed of sound waves in that medium is 

 

                                       (3.1) 

It is interesting to compare this expression for the speed of 

transverse waves on a string,  . In both cases, the 

wave speed depends on an elastic property of the medium 

bulk modulus B or string tension T and on an inertial property 

of the medium  or . In fact, the speed of all mechanical 

waves follows an expression of the general form 

 

              
For longitudinal sound waves in a solid rod of material, for 

example, the speed of sound depends on Young’s modulus Y 

and the density . Table provides the speed of sound in 

several different materials. The speed of sound also depends 

on the temperature of the medium. For sound traveling 

through air, the relationship between wave speed and medium 

temperature is 

 

 

 

where 331 m/s is the speed of sound in air at 0°C, and TC is the air temperature in 

degrees Celsius. Using this equation, one finds that at 20°C the speed of sound in 

air is approximately 343 m/s. 

 

3.2 Periodic Sound Waves 

 

In this section will help you better comprehend the nature of sound waves. An 

important fact for understanding how our ears work is that pressure variations 

control what we hear.  

Values given are for propagation 

of longitudinal waves in bulk 

media. Speeds for longitudinal 

waves in thin rods are smaller, 

and speeds of transverse waves in 

bulk are smaller yet. 

 

Table 1 
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   One can produce a one-dimensional periodic sound wave in a long, narrow tube 

containing a gas by means of an oscillating piston at one end, as shown in Figure 

3.1. The darker parts of the colored areas in this figure represent regions where the 

gas is compressed and thus the density and pressure are above their equilibrium 

values. A compressed region is formed whenever the piston is pushed into the tube. 

This compressed region, called a compression, moves through the tube as a pulse, 

continuously compressing the region just in front of itself. When the piston is 

pulled back, the gas in front of it expands, and the pressure and density in this 

region fall below their equilibrium values (represented by the lighter parts of the 

colored areas in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These low pressure regions, called rarefactions, also propagate along the tube, 

following the compressions. Both regions move with a speed equal to the speed of 

Fig. 3.1 A longitudinal wave 

propagating through a gas filled 

tube. The source of the wave 

is an oscillating piston at the left. 

Fig. 3.2 (a) Displacement amplitude and (b) 

pressure amplitude versus position for a 

sinusoidal longitudinal wave. 
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sound in the medium. As the piston oscillates sinusoidally, regions of compression 

and rarefaction are continuously set up. The distance between two successive 

compressions (or two successive rarefactions) equals the wavelength λ. As these 

regions travel through the tube, any small element of the medium moves with 

simple harmonic motion parallel to the direction of the wave.  

If s(x, t) is the position of a small element relative to its equilibrium position, we 

can express this harmonic position function as 

                                               3.2 

 

where smax is the maximum position of the element relative to equilibrium. This is 

often called the displacement amplitude of the wave. The parameter k is the wave 

number and  is the angular frequency of the piston. Note that the displacement of 

the element is along x, in the direction of propagation of the sound wave, which 

means we are describing a longitudinal wave. 

The variation in the gas pressure P measured from the equilibrium value is also 

periodic. For the position function in Equation 3.1, P is given by 

 

                                                    3.3 

 

where the pressure amplitude Pmaxwhich is the maximum change in pressure from 

the equilibrium value is given by 

 

                                                                         3.4   

 

Thus, we see that a sound wave may be considered as either a displacement wave 

or a pressure wave .A comparison of Equations 3.2 and 3.3 shows that the pressure 

wave is 90° out of phase with the displacement wave. Graphs of these functions are 

shown in Figure 3.2. Note that the pressure variation is a maximum when the 

displacement from equilibrium is zero, and the displacement from equilibrium is a 

maximum when the pressure variation is zero. 
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Lesson 8:  

Objectives: 

- Define the intensity of the sound wave. 

- Define the Doppler effect. 

 

3.3 Intensity of Periodic Sound Waves 
 

 In the preceding chapter, we showed that a wave traveling on a taut string 

transports energy. The same concept applies to sound waves. Consider an element 

of air of mass ∆ m and width ∆ x in front of a piston oscillating with a frequency , 

as shown in Fig. 3.3. 

 

 
 

The piston transmits energy to this element of air in the tube, and the energy is 

propagated away from the piston by the sound wave.  

To evaluate the rate of energy transfer for the sound wave, we shall define the 

kinetic energy of this element of air, which is undergoing simple harmonic motion 

as, 

         

As in the case of the string wave, the total potential energy for one wavelength has 

the same value as the total kinetic energy; thus, the total mechanical energy for one 

wavelength is 

 

 
 

 

3.5 

 

 

 

As the sound wave moves through the air, this amount of energy passes by a given 

point during one period of oscillation. Hence, the rate of energy transfer is  

Figure 3.3 An oscillating piston transfers energy 

to the air in the tube, causing the element of air 

of width ∆ x and mass ∆ m to oscillate with an 

amplitude smax . 
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where   is the speed of sound in air.  

 

We define the intensity I of a wave, or the power per unit area, to be the rate at 

which the energy being transported by the wave transfers through a unit area A 

perpendicular to the direction of travel of the wave: 

 

I = P ⁄ A 

 

In the present case, therefore, the intensity is 

 

 

I = P ⁄ A =  

 

Thus, we see that the intensity of a periodic sound wave is proportional to the 

square of the displacement amplitude and to the square of the angular frequency 

(as in the case of a periodic string wave). This can also be written in terms of the 

pressure amplitude ∆Pmax; in this case, we use Equation 17.4 to obtain 

 

                                                               3.6 

Now consider a point source emitting sound waves 

equally in all directions. From everyday experience, we 

know that the intensity of sound decreases as we move 

farther from the source. We identify an imaginary sphere 

of radius r centered on the source. When a source emits 

sound equally in all directions, we describe the result as a 

spherical wave. The average power P av emitted by the 

source must be distributed uniformly over this spherical 

surface of area 4𝜋r
2
. Hence, the wave intensity at a 

distance r from the source is 

 

                                                                                                         3.7                                                                     

                                                                                 

 

This inverse law which state that the intensity decrease in proportion to the 

square of the distance from the source 

Table3.2 



 7 

 
Sound Level in Decibels 

Whereas the range of intensities the human ear can detect is so wide, it was 

convenient to use a logarithmic scale, where the sound level 𝜷 (Greek beta) is 

defined by the equation 

                                                                                       3.8 

The constant Io   is the reference intensity, taken to be at the threshold of hearing (Io 

= 1.00 x 10
-12 

W/m
2
), and I is the intensity in watts per square meter to which the 

sound level 𝜷 corresponds, where 𝜷 is measured in decibels (dB). On this scale,  

the threshold of pain (I = 100 W/m
2
) corresponds to a sound level of 𝜷  = 10 log [ ( 

1 W/ m
2
) / ( 10

-12
 W/ m

2 
)] = 120 dB, and the threshold of hearing corresponds to 𝜷 

= 10 log [ ( 10
-12

 W/ m
2 
) / ( 10

-12
 W/ m

2 
) ] =0 dB. 

     Prolonged exposure to high sound levels may seriously damage the ear. Ear 

plugs are recommended whenever sound levels exceed 90 dB. Recent evidence 

suggests that “noise pollution” may be a contributing factor to high blood pressure, 

anxiety, and nervousness. Table 3.2 gives some typical sound-level values. 

 

 

3.4 The Doppler Effect 

 
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle 

moves past you. The frequency of the sound you hear as the vehicle approaches 

you is higher than the frequency you hear as it moves away from you. This is one 

example of the Doppler Effect.  

  To see what causes this apparent frequency change, imagine you are in a boat that 

is lying at anchor on a gentle sea where the waves have a period of T = 3.0 s. This 

means that every 3.0 s a crest hits your boat. Fig. 3.5a shows this situation, with the 

water waves moving toward the left. If you set your watch to t # 0 just as one crest 

hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third crest hits, 

and so on. 

From these observations you conclude that the wave frequency is f = 1 / T = 1 / 

(3.0 s) = 0.33 Hz. Now suppose you start your motor and head directly into the 

oncoming waves, as in Figure 3.5b. Again you set your watch to t = 0 as a crest 

hits the front of your boat. Now, however, because you are moving toward the next 

wave crest as it moves toward you, it hits you less than 3.0 s after the first hit. In 

other words, the period you observe is shorter than the 3.0 s period you observed 

when you were stationary. Because f = 1 / T, you observe a higher wave frequency 

than when you were at rest.  
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    If you turn around and move in the same direction as the waves (see Fig. 3.5c), 

you observe the opposite effect. You set your watch to t = 0 as a crest hits the back 

of the boat. Because you are now moving away from the next crest, more than 3.0 s 

has elapsed on your watch by the time that crests catches you. Thus, you observe a 

lower frequency than when you were at rest. 

     These effects occur because the 

relative speed between your boat and the 

waves depends on the direction of travel 

and on the speed of your boat. When you 

are moving toward the right in Figure 

3.5b, this relative speed is higher than that 

of the wave speed, which leads to the 

observation of an increased frequency. 

When you turn around and move to the 

left, the relative speed is lower, as is the 

observed frequency of the water waves. 

    Let us now examine an analogous 

situation with sound waves, in which the 

water waves become sound waves, the 

water becomes the air, and the person on 

the boat becomes an observer listening to 

the sound. In this case, an observer O is 

moving and a sound source S is 

stationary. For simplicity, we assume that 

the air is also stationary and that the 

observer moves directly toward the source 

(Fig. 3.6). The observer moves with a 

speed υO toward a stationary point source 

(υs = 0), where stationary means at rest 

with respect to the medium, air. 

 

 

 

 

 

 

 

 

 

Fig. 3.5 (a) Waves moving toward a stationary boat. The 

waves travel to the left, and their source is far to the 

right of the boat, out of the frame of the photograph. (b) 

The boat moving toward the wave source. (c) The boat 

moving away from the wave source. 
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 If a point source emits sound waves and the medium is uniform, the waves move 

at the same speed in all directions radially away from the source; this is a spherical 

wave. It is useful to represent these waves with a series of circular arcs concentric 

with the source, as in Figure 3.6. Each arc represents a surface over which the 

phase of the wave is constant. For example, the surface could pass through the 

crests of all waves. We call such a surface of constant phase a wave front. The 

distance between adjacent wave fronts equals the wavelength. In Figure 3.6, the 

circles are the intersections of these three dimensional wave fronts with the two 

dimensional paper.  

 

 

 
 

 

 

 

 

   We take the frequency of the source in Figure 3.6 to be f, the wavelength to be λ, 

and the speed of sound to be υ. If the observer were also stationary, he or she 

would detect wave fronts at a rate f. (That is, when υo = 0 and υS = 0, the observed 

frequency equals the source frequency). When the observer moves toward the 

source, the speed of the waves relative to the observer is υ
`
 = υo + υ, as in the case 

of the boat, but the wavelength λ is unchanged. Hence, υ = λf, we can say that the 

frequency f
 
` heard by the observer is increased and is given by 

                                      f
 ‘ 

=                                            3.9 

 

Because λ = υ / f, we can express f 
’
 as  

 

                        f
’‘ 

 f            (observer moving toward source)     3.10 

 

If the observer is moving away from the source, the speed of the wave relative to 

the observer is υ
’
 = υ - υo. The frequency heard by the observer in this case is 

decreased and is given by 

Figure 3.6 An observer O (the cyclist) moves 

with a speed υo toward a stationary point source 

S, the horn of a parked truck. The observer hears 

a frequency f. that is greater than the source 

frequency. 
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      f
’‘ 

 f              (observer moving away from source)          3.11 

 

In general, whenever an observer moves with a speed υo relative to a stationary 

source, the frequency heard by the observer is given by Equation 3.9, with a sign 

convention: a positive value is substituted for υo when the observer moves toward 

the source and a negative value is substituted when the observer moves away from 

the source. 

    

 

 Now consider the situation in which the source is in motion and the observer is at 

rest. If the source moves directly toward observer A in Figure 3.9a, the wave fronts 

heard by the observer are closer together than they would be if the source were not 

moving. As a result, the wavelength λ
` 
measured by observer A is shorter than the 

wavelength λ of the source. During each vibration, which lasts for a time interval T 

(the period), the source moves a distance υsT = υs/ f and the wavelength is 

shortened by this amount. Therefore, the observed wavelength λ
`
 is 

 
λ

` = λ  - ∆λ = λ - υs/ f 

 
 

 

 

 

 

 

 

 

 

 

 

 

Because λ = υs / f, the frequency f 
` 
heard by observer A is  

f   

                                        

(b) 

 Figure 3.7 (a) A source S moving with a speed υs toward a stationary observer A and away from a stationary 

observer B. Observer A hears an increased frequency, and observer B hears a decreased frequency. (b) The 

Doppler Effect in water, observed in a ripple tank. A point source is moving to the right with speed υs . 
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                        f
’‘ 

 f              (source moving toward observer)    3.11 

That is, the observed frequency is increased whenever the source is moving toward 

the observer. When the source moves away from a stationary observer, as is the 

case for observer B in Figure 3.7a, the observer measures a wavelength λ
`
 that is 

greater than λ and hears a decreased frequency: 

f
’‘ 

 f 

 

We can express the general relationship for the observed frequency when a source 

is moving and an observer is at rest as Equation 3.11, with the same sign 

convention applied to υs as was applied to υo: a positive value is substituted for υs 

when the source moves toward the observer and a negative value is substituted 

when the source moves away from the observer. Finally, we find the following 

general relationship for the observed frequency: 

 

f
’‘ 

 f 

 

In this expression, the signs for the values substituted for υo and υs depend on the 

direction of the velocity. A positive value is used for motion of the observer or the 

source toward the other, and a negative sign for motion of one away from the 

other.  

    A convenient rule concerning signs for you to remember when working with all 

Doppler-effect problems are as follows: 

The word toward is associated with an increase in observed frequency. The words 

away from are associated with a decrease in observed frequency. 

    Although the Doppler Effect is most typically experienced with sound waves, it 

is a phenomenon that is common to all waves. For example, the relative motion of 

source and observer produces a frequency shift in light waves. The Doppler Effect 

is used in police radar systems to measure the speeds of motor vehicles. Likewise, 

astronomers use the effect to determine the speeds of stars, galaxies, and other 

celestial objects relative to the Earth. 

 

Shock Waves 

 

Now consider what happens when the speed υs of a source exceeds the wave speed 

υ. This situation is depicted graphically in Figure 3.8a. The circles represent 

spherical wave fronts emitted by the source at various times during its motion. At t 

= 0, the source is at So, and at a later time t, the source is at Sn. At the time t, the 

wave front centered at So reaches a radius of υt. 
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In this same time interval, the source travels a distance υst to Sn. At the instant the 

source is at Sn, waves are just beginning to be generated at this location, and hence 

the wave front has zero radius at this point. The tangent line drawn from Sn to the 

wave front centered on So is tangent to all other wave fronts generated at 

intermediate times. Thus, we see that the envelope of these wave fronts is a cone 

whose apex half-angle 0 (the “Mach angle”) is given by 

 
 

The ratio υs / υ is referred to as the Mach 

number, and the conical wave front 

produced when     υs > υ (supersonic 

speeds) is known as a shock wave. An 

interesting analogy to shock waves is the 

V-shaped wave fronts produced by a boat 

(the bow wave) when the boat’s speed 

exceeds the speed of the surface-water 

waves (Fig. 3.9). 

   Jet airplanes traveling at supersonic 

speeds produce shock waves, which are 

responsible for the loud “sonic boom” one 

hears. The shock wave carries a great deal 

Figure 3.8 (a) A representation of a shock wave produced when a source moves from S0 to Sn with a speed 

υs , which is greater than the wave speed υ in the medium. The envelope of the wave fronts forms a cone 

whose apex half-angle is given by = υs/ υs. (b) A stroboscopic photograph of a bullet moving at 

supersonic speed through the hot air above a candle. Note the shock wave in the vicinity of the bullet. 

(b) (a) 

Figure 3.9 The V-shaped bow wave of a boat is 

formed because the boat speed is greater than the 

speed of the water waves it generates. A bow wave is 

analogous to a shock wave formed by an airplane 

traveling faster than sound. 
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of energy concentrated on the surface of the cone, with correspondingly great 

pressure variations. Such shock waves are unpleasant to hear and can cause 

damage to buildings when aircraft fly supersonically at low altitudes. In fact, an 

airplane flying at supersonic speeds produces a double boom because two shock 

waves are formed, one from the nose of the plane and one from the tail. People 

near the path of the space shuttle as it glides toward its landing point often report 

hearing what sounds like two very closely spaced cracks of thunder. 
 

Digital Recording 

 
In digital recording, information is converted to binary code (ones and zeroes), 

similar to the dots and dashes of Morse code. First, the waveform of the sound is 

sampled, typically at the rate of 44 100 times per second. Figure 3.10 illustrates 

this process. The sampling frequency is much higher than the upper range of 

hearing, about 20 000 Hz, so all frequencies of sound are sampled at this rate. 

During each sampling, the pressure of the wave is measured and converted to a 

voltage. Thus, there are 44 100 numbers associated with each second of the sound 

being sampled, these measurements are then converted to binary numbers. In 

playback, these binary numbers are read and used to build the original waveform. 
 
 
 

 

Motion Picture Sound 

 
Another interesting application of digital sound is the soundtrack in a motion 

picture. Early twentieth-century movies recorded sound on phonograph records, 

which were synchronized with the action on the screen. Beginning with early 

newsreel films, the variable area optical soundtrack process was introduced, in 

which sound was recorded on an optical track on the film. The width of the 

transparent portion of the track varied according to the sound wave that was 

recorded. A photocell detecting light passing through the track converted the 

varying light intensity to a sound wave. As with phonograph recording, there are a 

number of difficulties with this recording system. For example, dirt or fingerprints 

on the film cause fluctuations in intensity and loss of fidelity. 
 

 

Figure 3.10Sound is digitized by electronically 
sampling the sound waveform at periodic intervals. 
During each time interval between the blue lines, a 
number is recorded for the average voltage during 
the interval. The sampling rate shown here is much 
slower than the actual sampling rate of 44 100 
samples per second. 
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Summary 

1- sound waves are longitudinal and travel through a compressible medium with a speed 

that depends on the elastic and inertial properties of that medium. the speed of sound in a 

liquid or gas having a bulk modulus b and density p is     

 

2- For sinusoidal sound waves, the variation in the position of an element of the medium is 

given by  

 max cos(kx- ) 

 

and the variation in pressure from the equilibrium value is  

max sin(kx- ) 

Where    is the pressure amplitude . the pressure wave is 90o  out of phase with the 

displacement wave. the relationship between    and     is given  by  

 

3- The intensity of a sound wave, which is the power per unit area, is  

 

4- The sound level of a sound wave , in decibels, is given by  

 

 the constant  is reference intensity, usually taken to be at the threshold of hearing 

  , and is the intensity of sound wave in watts per square meter.the 

change in frequency heard by an observer whenever there is relative motion between a source 

of sound waves and the observer is called the doppler effect. the observed frequency is   

 


