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Chapter 4 

Superposition and Standing Waves 

Lesson 10: 

Objectives: 

The student will be able to: 

- Define the superposition & the interference 

- Define the types of the interference 

- Define the standing wave. 

- Describe the formation of standing waves. 

- Describe the characteristics of standing waves.  

- Define the resonance phenomena. 

- Define the standing wave in air columns. 

 

*Key words: 

 Standing wave: superposition of two identical waves propagating in opposite 

directions. 

 Nodes : the points of zero amplitude, 

 Antinodes: the points of max amplitudes, where constructive interference is 

greatest.  

 Loops: the regions of greatest amplitude in a standing wave  

 

4.1 Superposition and Interference: 
 

Since many wave phenomena cannot be described by a single traveling wave. 

We must analyze complex waves in terms of a combination of traveling waves. 

So we can use the superposition principle which said that 
  

"If two or more traveling waves are moving through a medium, the resultant 

value of the wave function at any point is the algebraic sum of the values of the 

wave functions of the individual waves" 

 

Linear Waves: 

                      The waves which obey the superposition principle, as we see in 

opposite figure, the wave function for the pulse moving to the right is y1, and 

that for the pulse moving to the left is y2 (fig4.1a). The pulses have the same 

speed but different shapes, and the displacement of the elements of the medium 

is in the positive y direction. When the waves go to overlap (fig4.1b), the wave 
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function for the resulting wave is y1+y2. When the crests of the pulses coincide 

(fig4.1c), the resulting wave has larger amplitude than that of the individual 

pulses. Finally, the two pulses separate and continue moving in their original 

direction (fig4.1d). 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Interference: 

                     Defined as the combination of separate waves in the region of space, 

and the resultant pulse has amplitude greater than that of their individual pulse. 
 

 

 
 

 

 

Types of 

Interference 

 

       Constructive 

 

Destructive 

Figure 4.1: a-d two plus traveling on a stretched 

string in opposite direction. 

b, c the net displacement of the string equals the sum 

of the displacements of the string. 
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a- Constructive Interference      

   Formed when the displacements caused by the 

two pulses are in the same direction. 
 

b- Destructive Interference: 

  Formed when the displacements caused by the 

two pulses are in opposite direction. 
 

 

 

  

  

 

 

 

 

 

 

4.2 Superposition of Sinusoidal Waves: 
 

At this time we apply the principle of superposition to two sinusoidal waves 

traveling in the same direction. If the two waves have the same frequency, 

wavelength, and amplitude but differ in phase as we can express 
 

                    y1= A sin (kx-ωt)                &      y2 = A sin (kx-ωt+Ф)  

 Where k=2π/λ,  ω =  2πƒ, and  Ф is the phase constant. 
 

The resultant wave function is  
                           

                                    Y = y1 + y2 = A[ sin (kx-ωt) + sin (kx-ωt+Ф) ] 

 

Since    sin a +sin b = 2 cos [(a-b)/2] sin [(a+b)/2]  

 

We find that  
                        Y = 2A cos (Ф/2) sin (kx-ωt+Ф/2) 

 

From this result we conclude that  

 The resultant wave function Y is sinusoidal and has the same frequency 

and wavelength as the individual waves. 

 The amplitude of the resultant wave is 2A cos (Ф/2) and its phase is Ф/2. 
 

If the phase constant Ф equals zero, then cos (Ф/2) = cos 0 =1, and the 

amplitude of the resultant wave is 2A. in this case the waves are said to be in 

phase and thus interference constructively. As shown in fig 4.3 a 

Figure 4.2:  
Two pulses traveling in opposite direction 

and having displacements that are inverted 

relative to each other. When the two overlap 

in (c), their displacements cancel each other. 
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Generally, constructive interference 

occurs when cos (Ф/2) = ±1 this is 

when Ф = 0, 2π, 4π, ……….rad 

But when Ф is equal to π rad or any 

odd multiple of π, then cos (Ф/2) = 

cos (π /2) = 0, and the crests of one 

wave occur at the same positions as 

the troughs of the second wave so 

the resultant wave has zero 

amplitude. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Standing Waves: 
 

In your opinion, what will happen when two speakers face each other and 

each one emits sound waves of the same frequency and amplitude???? 

Come with me to analyze this situation. Consider two transverse sinusoidal 

waves having the same frequency, amplitude, and wavelength but traveling in 

opposite directions 

                

                        y1= A sin (kx-ωt)                traveling in +X 

Figure 4.3 the superposition of two identical waves y1 and y2 (blue and green) 

to yield a resultant wave (red). 

 (a) When y1 and y2 are in phase, the result is constructive interference. 

 (b) When y1 and y2 are π rad out of phase, the result is destructive interference.  

(c) When the phase angle has a value other than 0 or π rad, the resultant wave Y 

falls somewhere between the shown in (a) and (b) 
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                        y2= A sin (kx+ωt)               traveling in –X 

                       Y = y1 + y2 = A sin (kx-ωt) + A sin (kx+ωt)             (4.1) 

Since sin(a ± b) = sin(a) cos(b) ±  cos(a) sin(b) 

 So equation (4-1) reduces to  

                                           Y = ( 2A sinkx) cos ωt                              (4.2) 

Equation (4.2) represents the wave function of a standing wave which defined 

as the superposition of two identical waves traveling in opposite directions as 

we see in Fig(4-5). 

  

 Figure 4.5 Multiflash photograph of a 

standing wave on a string. The time behavior 

of the vertical displacement from equilibrium 

of an individual element of the string is given 

by cos ωt. The amplitude of the vertical 

oscillation of any elements of the string 

depends on the horizontal position of the 

element. Each element vibrates within the 

confines of the envelope function 2A sin kx. 

 

         

As we see equation (4.2) describes a special kind of simple harmonic motion. 

Each element of the medium oscillates in simple harmonic motion with the 

frequency ω, the amplitude of the simple harmonic motion of a given element is 

2Asin kx. 

The maximum amplitude of an element of the medium has a minimum value of 

zero when x satisfies the condition sin kx = 0 
                  OR when   kx = π, 2π, 3π…….. Since k = (2π/ λ) x = λ/2, λ, 3λ/2 

So we have two definitions  

Nodes: 

            Are the points of zero amplitude. 

Antinodes: 

                  Are the position in the medium at which the maximum amplitude 

occurs, so antinodes are located at positions for which x satisfies the condition 

sin kx = ± 1 

                  OR when kx = π/2, 3π/2, 5π/2,........Since k = (2π/ λ) x = λ/4, 3λ/4, 5λ/4…… 

  

Wave patterns of the elements of the medium produced at various times by two 

waves traveling in opposite directions are shown in next Figure. The blue and 

green curves are the wave patterns for the individual traveling waves, and the 

red curves are the wave patterns for the resultant standing wave. 

At t =0 (Fig. 4.6a), the two traveling waves are in phase, giving a wave pattern 

in which each element of the medium is experiencing its maximum 

displacement from equilibrium. 
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At t =T/4 (Fig. 4.6b), the traveling waves have moved one quarter of a 

wavelength (one to the right and the other to the left). At this time, the traveling 

waves are out of phase, and each element of the medium is passing through the 

equilibrium position in its simple harmonic motion. The result is zero 

displacement for elements at all values of x—that is, the wave pattern is a 

straight line.  

At t = T/2 (Fig. 4.6c), the traveling waves are again in phase, producing a wave 

pattern that is inverted relative to the t = 0 pattern. In the standing wave, the 

elements of the medium alternate in time between the extremes shown in Figure 

(a&c). 

 

 

 
Figure 4.6 

Standing wave patterns 

produced at various times by 

two waves of equal 

amplitude 

 

 

Example 4.1 Formation of a Standing Wave 

Two waves traveling in opposite directions produced a standing wave. The 

individual wave functions are 

  y1= 4 sin (0.3x – 2t) , y2 = 4 sin (0.3x + 2t)  where x and y are measured in 

centimeters. 

(A) Find the amplitude of the simple harmonic motion of the element of the 

medium located at x = 2.3 cm 

(B) Find the position of the nodes and antinodes if one end of the string is at 

        x = 0 

( C ) What is the maximum value of the position in the simple harmonic motion 

of an element located at an antinode ? 

Solution(A): 

The standing wave is described by equation (4.2); in our problem, we have A = 

4 cm, k = 3 rad/cm, and ω = 2 rad/s. thus, 

 y = ( 2A sin kx ) cos ωt = ( 8 sin 3x ) cos 2t 
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Thus, we obtain the amplitude of the simple harmonic motion of the element at 

the position x =2.3cm by evaluating the coefficient of the cosine function at this 

position: 

                 y
max

 = 8 sin 3x ( x = 2.3 )  = 8 sin 6.9 = 4.6 cm 

Solution(B): 

With  k = (2π/ λ) = 3 rad/cm, and  the wavelength is λ = (2π/ 3).  

So we find the nodes are located at:  

                      x = ( nλ/2 ) = nπ/3         n = 0,1,2,3,… 

also we find that the antinodes are located at:  

                       x = ( nλ/4 ) = nπ/6         n = 1,3,5,… 

 Solution(C): 

The maximum position of an element at an antinode is the amplitude of the 

standing wave, which is twice the amplitude of the individual traveling waves: 

    ymax =2A (sin kx)max = 2(4.0)((1) = ± 8 cm 

where we have used the fact that the maximum value of sin kx is ±1. Let us 

check this result by evaluating the coefficient of our standing-wave function at 

the positions we found for the antinodes: 

       ymax = 8 sin 3x (x = (nπ/6)  = 8 sin (nπ/2) = ± 8cm 

4.4 Standing Waves in String Fixed at Both Ends: 

 
Consider a string of length L fixed at both ends. Standing waves are set up in 

the string by a continuous superposition of waves incident on and reflected from 

the ends.  

Note:  

       There is a boundary condition for the waves on the string. There is a node 

at ends of the string because they are fixed, must have zero displacement. 

The boundary condition results in the string having a number of natural patterns 

of oscillation, called normal modes, each of which has a characteristic 

frequency. 
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Figure 4.7  

(a) A string of length L 

fixed at both ends. 

(b) The fundamental, or 

the first harmonic 

(c) The second 

harmonic 

(d) The third harmonic. 

 

The first normal mode Fig (4.7 b), has nodes at its ends and one antinode in the 

middle. This is the longest wavelength mode. The first normal mode occurs 

when the length of the string is half the wavelength λ1 or λ1= 2L 

The second normal mode Fig (4.7 c) occurs when the wavelength equals the 

length of the string, λ2= L 

The third normal mode Fig (4.7 d) occurs when the wavelength equals 2L/3. 

In general, the wavelengths of the various normal modes for the string of length 

L fixed at both ends  

     ,.........3,2,12  n
n

L
n                                                     (4-3) 

The natural frequencies associated with these modes are obtained from the 

relationship v = λ ƒ, using equation (4.3), we find the natural frequencies are  

     ,......3,2,1
2

 n
L

vnvf
n

n 
                                               (4-4) 

Because:        


Tv       Where T is the tension in the string 

                                                     µ is the linear mass density 

   So ,......3,2,1
2







 nT

L
nfn 

                                           (4-5) 

The lowest frequency f1, which corresponds to n =1 is called the fundamental 

frequency and given by  1
2

1
1 






 nT

L
f


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Example 4.2:  

Middle C on a piano has a fundamental frequency of 262 HZ, and the first A 

above middle C has a fundamental frequency of 440 Hz. 

(a) Calculate the frequencies of the next two harmonics of the C string. 

(b) If the A and C strings have the same linear mass density µ and length L, 

(c) determine the ratio of tensions in the two strings. 

Solution(a): 

We know that the frequencies of higher harmonics are integer multiples of the 

fundamental frequency ƒ1 so we find that 

                                      ƒ2= 2ƒ1= 524 HZ 

                                      ƒ3= 3ƒ1= 786 HZ 

Solution (b): 
















C
C

A
A

T
L

fand
T

L
f

2
1

2
1

11  

82.2
2

1

1

1

1 







C

A

C

A

C

A

C

A

f
f

T
T

T
T

f
f  

Example 4.3: 

One end of a horizontal string is attached to a vibrating blade and the other end 

passes over a pulley as in the following figure. A sphere of mass 2 Kg hangs on 

the end of the string. The string is vibrating in its second harmonic. A container 

of water is raised under the sphere so that the sphere is completely submerged. 

After this is done, the string vibrates in its fifth harmonic. What is the radius of 

the sphere? 

 
Solution: 
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When the sphere is immersed in the water. The buoyant force acts upward on 

the sphere, reducing the tension in the string. The change in tension causes a 

change in the speed of waves on the string, which in turn causes a change in the 

wavelength this altered wavelength results in the string vibrating in its fifth 

normal mode rather than the second. Apply Newton's second law 
                          ∑ F = T1- mg = o  

                          T1= mg = 2*9.8 = 19.6 

As soon as the sphere is immersed in water, the tension in the string decreases 

to T2, by applying Newton's second law to the sphere we have  

                  T2 +B – mg = 0               → B= T2- mg    

The frequency of a standing wave on a string before we immerse the sphere and 

after we immerse are,  


































2211

22
T

L
n

fand
T

L
n

f  

   

  Dividing the last two equations we get  
2

1

2

11
T

T
n

n
  

                                  
Where the frequency is the same in both cases, because it is determined by the 

vibrating blade, and the linear mass density µ and the Length L of the vibrating 

portion of the spring are the same in both cases. 

   NTmgBSoNT
n

n
T 5.1614.3 21

2

2

1
2 







  

Expressing the buoyant force in terms of the radius of the sphere  

                  
cmr

rggVB waterspherwater

38.7

)3/4( 3



 
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4.5 Resonance: 
We have seen that a system such as a taut string is capable of oscillating in one 

or more normal modes  
   

Resonance phenomenon: 

     If a periodic force is applied to a system, the amplitude of the resulting 

motion is greatest when the frequency of the applied force is equal to one of  the 

natural frequencies of the system, and this frequency is called resonance 

frequency. 

                                           

 

The opposite figure shows the response of an 

oscillating system to various frequencies, where 

one of the resonance frequencies is denoted by f◦. 

 

 

 

 

 

 

4.6 standing Waves in Air Columns: 
Standing waves can be setup in a tube of air, as the result of interference 

between two longitudinal sound waves traveling in opposite directions. 

In a pipe closed at one end, the closed end is a displacement node because the 

wall at this end doesn't allow longitudinal motion of the air. So at a closed end 

of a pipe, the reflected sound wave is 180◦ out of phase with the incident wave.  

The open end of an air column is approximately a displacement antinode. With 

the boundary conditions of nodes or antinodes at the ends of the air column, we 

have a set of normal modes of oscillation. 

The first three normal modes of oscillation of a pipe open at both ends are 

shown in figure 4.9a. In the first normal mode, the standing wave extends 

between two adjacent antinodes, which is a distance of half a wavelength. So 

the wavelength is twice the length of the pipe, and the fundamental frequency is  

ƒ1=v/2L 
 

 

 

Figure 

4.8a 

Opened 

pipe at 

both ends  
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We can express the natural frequencies of oscillation as  
 

             
L

nvfn 2
  

If a pipe is closed at one end and open at the other, the closed end is a 

displacement node. The standing wave for the fundamental mode extends from 

an antinode to the adjacent node, which is one fourth of a wavelength. So the 

wavelength for the first normal mode is 4L, and the fundamental frequency is  

              
L

vf
41   

 

 

 

 

Example 4.5: 

A section of drainage 1.23m in length makes a howling noise when the wind 

blows.  

(a) Determine the frequencies of the first three harmonics of the culvert if it is 

cylindrical in shape and open at both ends. Take v= 343 m/s as the speed 

of sound in air. 

(b) What are the three lowest natural frequencies of the culvert if it is blocked 

at one end ? 

(c) For the culvert open at both ends, how many of the harmonics present fall 

within the normal human hearing range ( 20 to 20000 HZ) 

Solution(a): 

                The frequency of the first harmonic of a pipe open at both ends is 
ƒ1= v/2L 

                                                                         = 343/ (2* 1.23) = 139 HZ 

Because both ends are open, all harmonics are present; thus  
                 ƒ2 = 2 ƒ1= 278 HZ                        &               ƒ3 = 3ƒ1= 417 HZ 

 

Solution(b): 
               The fundamental frequency of a pipe closed at one end is  

                                                               ƒ1= v/4L= 343/ (4*1.23) = 69.7 HZ  

In this case, only odd harmonics are present; the next two harmonics have 

frequencies  
                 ƒ3 = 3ƒ1= 209 HZ        &             ƒ5 =5ƒ1= 349 HZ  

Figure 

4.8b 

Aclosed 

pipe at 

one end 

and open 

at the 

other  
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Solution(c): 

Because all harmonics are present for a pipe open at both ends, we can express 

the frequency of the highest harmonic heard asƒn = nƒ1 where n is the number 

of harmonics that we can hear. For ƒn= 20000Hz we find that the number of 

harmonics present in the audible range is  
n= (20000)/ (139) = 143 

So the first few harmonics are be heared. 
 

Example 4.6: 

A simple apparatus for demonstrating resonance in an air column is depicted in 

the following figure. A vertical pipe open at both ends is partially submerged in 

water, and a tuning fork vibrating at an unknown frequency is placed near the 

top of the pipe. The length L of the air column can be adjusted by moving the 

pipe vertically. The sound waves generated by the fork are reinforced when L 

corresponds to one of the resonance frequencies of the pipe. 
 

 

 

For a certain pipe, the smallest value of L for which a peak occurs in the 

sound intensity is 9cm what are  

(a) the frequency of the tuning fork 

(b) the value of L for the next two resonance frequencies? 

Solution: 

(a) although the pipe is open at its lower end to allow the water to enter, the 

water's surface acts like a wall at one end( i.e closed air column at one end ) so 

the fundamental frequency is given by                                ƒ1= v/4L 

                                            So ƒ1= 343/4(0.09) = 953 HZ 

(b) we know from figure 18.9b the wavelength of the fundamental mode is 
                                                              λ = 4L = 4( 0.09) = 0.36m  

the next two normal modes corresponds to lengths of  
L= 3λ/4 = 0.270m                                      &       L= 5λ/4 = 0.450m. 

 

 

 

             

Figure 4.9  

(a) apparatus 

fordemonstrating the 

resonance of sound 

waves in a pipe 

closed at one end. 

 

(b) The first three 

normal modes of the 

system in part a   
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Summary: 
 

1- When two traveling  waves having equal amplitudes and frequencies 

superimpose , the resultant waves has an amplitude that depends on the phase 

angle  between the resultant wave has an amplitude that depends on the two 

waves are in phase , two waves . Constructive interference  occurs when the 

two waves are in phase, corresponding to  rad Destructive 

interference occurs when the two waves are 180
o
 out of phase, corresponding 

to  rad. 

2- Standing waves are formed from the superposition of two sinusoidal waves  

having the same frequency , amplitude , and wavelength but traveling   in 

opposite directions . the resultant standing wave is described by 

                  

Hence the amplitude of the standing wave is 2A, and the amplitude of the 

simple harmonic motion of any particle of the medium varies according to its 

position as 2A sin kx.The points of zero amplitude(called nodes)occur at 

/2(  the maximum amplitude points (called antinodes) 

at /4( .Adjacent antinode are separated by a distance 

 Adjacent nodes also are separated by a distance . 

3- The natural frequencies of vibration of a string of length L and fixed at 

both ends are quantized and are given by  

 
Where T is the tension in the string and  is its linear mass density .The natural 

frequencies of vibration 1
2

1 
3

1,….. form a harmonic series.  

4- Standing waves can be produces in a column of air inside a pipe. If the 

pipe is open at both ends, all harmonics are present and the natural frequencies 

of oscillation are           

  If the pipe is open at one end and closed at the other, only the odd harmonics 

are present, and the natural frequencies of oscillation are 

 
5- An oscillating system is in resonance with some driving force whenever 

the frequency of the driving force matches one of the natural frequencies of 

the system. When the system is resonating, it responds by oscillating with a 

relatively large amplitude. 


