DEEP FOUNDATIONS Dr. Youssef Gomaa Youssef ### 1. CLEAN SANDS - φ' only The skin friction term (LATERAL STRESS) x FRICTION COEFFICIENT $$f_s = (K_s \sigma'_{v_o})(tan\delta)$$ ### KULHAWY (1984) – sand parameters | Pile Type | <u>K</u> _s
K _o | <u>δ</u>
φ' | |--------------------|---|----------------| | Bored piles | 0.7 to 1 | 1 | | Displacement piles | | see below | | - precast concrete | 0.75 to 2 | 0.8 to 1 | | - smooth steel | 0.75 to 2 | 0.5 to 0.7 | # END BEARING, fb Analogous to the surcharge term in bearing capacity analysis $$f_b = (\sigma'_{vb_o})(N_q)$$ # N_q for Piles in Sand N_q = fn (density & method of construction) Driven piling increases I_D and ϕ' , **locally** [Meyerhof 1959] **NOTE**: min. penetration into bearing stratum = 5B ### **Densification** ### **5B Rule** Layer 2 # N_q – typical values, driven piles [AS2159 (1978)] | Sand
Consistency | Density Index,
I _D (%) | N_q | |---------------------|--------------------------------------|-------| | LOOSE | 20-40% | 60 | | MEDIUM
DENSE | 40-75% | 100 | | DENSE | 75-90% | 180 | # Limiting (maximum) values of f_s and f_b for sands $$f_{s max} = 110 \text{ kPa}$$ $$f_{b max} = 15 MPa$$ **After Tomlinson 1995** #### Method Based on Standard Penetration Test $$Q_u = 400 \, NA_b + 2 \, N_1 \, A_s$$ Q_{ii} = the ultimate pile load, kN N= the average standard penetration index at the pile tip elevation, blows/300 mm N_I = the average standard penetration index along the pile shaft blows/300 mm with a maximum value of 50 Minimum factor of safety of 4 should be applied to Q_u . ### CLAYS, SILTS #### The skin friction OR side shear term... - effective stresses and drained strength? BUT the pwp's are uncertain - Total stress analysis acceptable "Adhesion" $$f_s = F\alpha_p c_u = \alpha_p c_u$$ Generally, $$\alpha_p = 1.0$$ for $c_u < 40$ kPa $\alpha_p = 0.4$ for $c_u > 150$ kPa ### Otherwise, Semple + Rigden (1984): | α_{p} | (c _u)
(σ' _{vo}) | |--------------|--| | 1 | < 0.35 | | 0.5 | > 0.8 | ## **End Bearing Term, f**_b Total Stress Analysis of Saturated NC Clay $$f_b = 9c_u$$ ``` -N_{c} = 5.14 ``` $$- d_c N_c = 8.4$$ for infinitely deep footing $$-s_c d_c N_c = 9^+$$ for a circular or square, deep footing # **PILE PARAMETERS from CPT** (field test) **CPT = Cone Penetration Test** OR electronic friction cone - designed specifically for interpreting pile parameters - 36 mm diameter cone (60°) is pushed into the soil at 2 cm/sec - \Rightarrow 1.2 m in a minute CPT provides a continuous record with time (= depth) of q_c and f_{sc} Sleeve friction, f_{sc} Tip resistance, q_c #### PILE PARAMETERS from CPT (A) $$\underline{f_s} \Rightarrow \underline{f_{sc}}$$, directly from cone Scale effect: small cone displaces less soil ⇒ conservative for sands! **CLAY SOILS**..... $$f_s = f_{sc}$$ **SANDS**..... $$f_s = 2f_{sc}$$ (BUT $$f_s = f_{sc}$$ for H-piles) #### PILE PARAMETERS from CPT (B) $\underline{f_b}$ measured directly $\Rightarrow q_c$ Interpretation of CPT for f_b Various formulations exist, e.g. **ECP** Av. q_c **6B** above pile base level **AND** 3B below e.g. 0.4 m dia. pile founded at 10 m requires average q_c between 7.6 m and 11.2 m ### Pile Capacity from CPT For displacement piles: $$Q_{all} = \frac{1}{3} \alpha q_c (\frac{\pi d^2}{4}) + \frac{1}{2} f_c (\pi dL)$$ α : Scale factor = 0.70 $q_c < 150 \text{kg/cm}^2$ $f_c < 1.0 \text{kg/cm}^2$ #### **Notes:** For bored piles: estimated values should be reduced by 0.0 to 50% ### Reinforcement details of piles - · Compression loading only - · No eccentricity of loads - $As_{min} = 0.006Ag$. - · Use ₹16mm as minimum diameter. - Length of reinforcement the largest of 6m or 3d - Spiral stirrups 8mm @ 15CM pitch #### **Tension Piles** #### **Vertical tension loading:** #### ULTIMATE GEOTECHNICAL STRENGTH - or capacity, P_u $$P_{u} = \overline{f_{s}} A_{s} + W_{p}$$ ### Pile Subjected to Eccentric Forces $$P_{i} = \frac{P_{F.L}}{n} \pm \frac{M_{x}}{\sum_{i=1}^{n} y^{2}} y_{i} \pm \frac{M_{y}}{\sum_{i=1}^{n} x^{2}} x_{i}$$ +ve : compression -ve: tension P_i : Load on Pile No. I *n* : number of piles y_i , x_i : co-ordinates of pile $$M_x = P * e_y$$ $$M_{y} = P * e_{x}$$ #### **Check Loads on piles:** $P_i(\text{max. comp.}) < P_{all} \text{ comp.}$ $P_i(\text{max. ten.}) < P_{all} \text{ ten.}$