DEEP FOUNDATIONS

Dr. Youssef Gomaa Youssef

1. CLEAN SANDS - φ' only

The skin friction term

(LATERAL STRESS) x FRICTION COEFFICIENT

$$f_s = (K_s \sigma'_{v_o})(tan\delta)$$

KULHAWY (1984) – sand parameters

Pile Type	<u>K</u> _s K _o	<u>δ</u> φ'
Bored piles	0.7 to 1	1
Displacement piles		see below
- precast concrete	0.75 to 2	0.8 to 1
- smooth steel	0.75 to 2	0.5 to 0.7

END BEARING, fb

Analogous to the surcharge term in bearing capacity analysis

$$f_b = (\sigma'_{vb_o})(N_q)$$

N_q for Piles in Sand

 N_q = fn (density & method of construction)

Driven piling increases I_D and ϕ' , **locally** [Meyerhof 1959]

NOTE: min. penetration into bearing stratum = 5B

Densification

5B Rule

Layer 2

N_q – typical values, driven piles [AS2159 (1978)]

Sand Consistency	Density Index, I _D (%)	N_q
LOOSE	20-40%	60
MEDIUM DENSE	40-75%	100
DENSE	75-90%	180

Limiting (maximum) values of f_s and f_b for sands

$$f_{s max} = 110 \text{ kPa}$$

$$f_{b max} = 15 MPa$$

After Tomlinson 1995

Method Based on Standard Penetration Test

$$Q_u = 400 \, NA_b + 2 \, N_1 \, A_s$$

 Q_{ii} = the ultimate pile load, kN

N= the average standard penetration index at the pile tip elevation, blows/300 mm

 N_I = the average standard penetration index along the pile shaft blows/300 mm with a maximum value of 50

Minimum factor of safety of 4 should be applied to Q_u .

CLAYS, SILTS

The skin friction OR side shear term...

- effective stresses and drained strength?
 BUT the pwp's are uncertain
- Total stress analysis acceptable

"Adhesion"
$$f_s = F\alpha_p c_u = \alpha_p c_u$$

Generally,
$$\alpha_p = 1.0$$
 for $c_u < 40$ kPa $\alpha_p = 0.4$ for $c_u > 150$ kPa

Otherwise, Semple + Rigden (1984):

α_{p}	(c _u) (σ' _{vo})
1	< 0.35
0.5	> 0.8

End Bearing Term, f_b

Total Stress Analysis of Saturated NC Clay

$$f_b = 9c_u$$

```
-N_{c} = 5.14
```

$$- d_c N_c = 8.4$$
 for infinitely deep footing

$$-s_c d_c N_c = 9^+$$
 for a circular or square,
deep footing

PILE PARAMETERS from CPT (field test)

CPT = Cone Penetration Test

OR electronic friction cone

- designed specifically for interpreting pile parameters
- 36 mm diameter cone (60°) is pushed into the soil at 2 cm/sec
 - \Rightarrow 1.2 m in a minute

CPT provides a continuous record with time (= depth) of q_c and f_{sc} Sleeve friction, f_{sc} Tip resistance, q_c

PILE PARAMETERS from CPT

(A)
$$\underline{f_s} \Rightarrow \underline{f_{sc}}$$
, directly from cone

Scale effect: small cone displaces less soil

⇒ conservative for sands!

CLAY SOILS.....
$$f_s = f_{sc}$$

SANDS.....
$$f_s = 2f_{sc}$$

(BUT
$$f_s = f_{sc}$$
 for H-piles)

PILE PARAMETERS from CPT

(B) $\underline{f_b}$ measured directly $\Rightarrow q_c$

Interpretation of CPT for f_b

Various formulations exist, e.g.

ECP

Av. q_c

6B above

pile base level

AND

3B below

e.g. 0.4 m dia. pile founded at 10 m requires average q_c between 7.6 m and 11.2 m

Pile Capacity from CPT

For displacement piles:

$$Q_{all} = \frac{1}{3} \alpha q_c (\frac{\pi d^2}{4}) + \frac{1}{2} f_c (\pi dL)$$

 α : Scale factor = 0.70

 $q_c < 150 \text{kg/cm}^2$

 $f_c < 1.0 \text{kg/cm}^2$

Notes:

For bored piles: estimated values should be reduced by 0.0 to 50%

Reinforcement details of piles

- · Compression loading only
- · No eccentricity of loads

- $As_{min} = 0.006Ag$.
- · Use ₹16mm as minimum diameter.
- Length of reinforcement the largest of 6m or 3d
- Spiral stirrups 8mm @ 15CM pitch

Tension Piles

Vertical tension loading:

ULTIMATE GEOTECHNICAL STRENGTH

- or capacity, P_u

$$P_{u} = \overline{f_{s}} A_{s} + W_{p}$$

Pile Subjected to Eccentric Forces

$$P_{i} = \frac{P_{F.L}}{n} \pm \frac{M_{x}}{\sum_{i=1}^{n} y^{2}} y_{i} \pm \frac{M_{y}}{\sum_{i=1}^{n} x^{2}} x_{i}$$

+ve : compression

-ve: tension

 P_i : Load on Pile No. I

n : number of piles

 y_i , x_i : co-ordinates of pile

$$M_x = P * e_y$$

$$M_{y} = P * e_{x}$$

Check Loads on piles:

 $P_i(\text{max. comp.}) < P_{all} \text{ comp.}$

 $P_i(\text{max. ten.}) < P_{all} \text{ ten.}$