

Fayoum University

Faculty of Engineering Mechanical Engineering Dept.

Lecture (1)

on

Introduction to Vibration Engineering

By

Dr. Emad M. Saad

Mechanical Engineering Dept. Faculty of Engineering Fayoum University

2015 - 2016

Course Description and Outline

Course Description

This course is designed for 3rd year students. It covers the vibrations of discrete systems and continuous structures, and an introduction to the computational dynamics of linear engineering systems.

Course Outline

- Harmonic motion.
- One-degree-of-freedom free vibration systems.
- One-degree-of-freedom forced vibration systems.
- Two-degree-of-freedom vibration systems.
- Approximate and numerical methods
- Multi-degree-of-freedom systems.
- Applications on vibration systems.
- Unbalanced vibration systems cases.
- Rotor dynamics.
- Vibration isolation.
- Vibration measurements devices.

Course Prerequisites and Objectives

Course Prerequisites

- Dynamics.
- Basic knowledge of linear algebra and ODEs.
- General Physics (Waves).
- Basic knowledge on structural analysis.
- Microsoft Excel.
- MATLAB (recommended but not required).

Course Objectives

- 1. To present the fundamentals and applications of vibration theory.
- 2. Students will demonstrate the ability to model and analyze free and forced vibration of multi-degree of freedom systems.
- 3. Students will be able to apply vibration principles for the design of engineering systems and devices.
- Students will demonstrate the ability to use experimental as well as theoretical vibration analysis for system parameter identification and vibration trouble shooting.
- 5. Enhance a team work spirit and report writing.

Text Books and References

Text Books		
Will be assigned by instructor		
References		
 S.S. Rao, "Mechanical Vibrations", Addison Wesley, fifth Edition. S. G. Kelly, "Mechanical Vibrations – Theory and Applications", Cengage Learning. C. M. Harris and A. G. Piersol, "Harris's Shock and Vibration Handbook ", McGraw-HILL, fifth Edition. 		

 P. Girdhar and C. Scheffer, "Practical Machinery Vibration Analysis and Predictive Maintenance", ELSEVIER.

Course Outcomes

Course Outcomes

- 1. Students will be able to draw a free-body and kinetic diagrams for dynamic configurations.
- Students will be able to formulate the dynamic equations of motion of problems in vibrations using Newton's second law, energy equations and influence coefficients.
- 3. Students will have the ability to obtain the solutions to vibration problems that contain two- and multi-degree-of freedom systems. This includes the determination of natural frequencies and mode shapes and the evaluation of time response of systems under free and forced conditions.
- Students shall become familiar with the design of vibration isolators for harmonic and shock loading.
- 5. Select the appropriate parameters for the vibration absorbers.
- 6. Students will be able to identify major faults in rotating machinery components using vibration signal analysis.
- 7. Students shall become familiar with vibration isolation.
- 8. Students will be able to use the vibration measurements devices.

Students' Evaluation and Exam Method

Contact

Professor:	Facebook:	DrEmad Elasid
	Website:	http://www.fayoum.edu.eg/emad
	Email:	<u>emadsaad@fayoum.edu.eg</u>
	Office Hours:	Tuesday: 10:00 - 15:30 Wednesday: 09:00 - 15:30 or by Appointment

Importance of the Study of Vibration

9

What is the Vibration?

A vibration is the oscillating motion of a body or system of connected bodies displaced from a position of equilibrium.

Vibration in our Daily lives

Human body resonance frequencies

Engineering Applications of Vibration

- 1. Machine design,
- 2. Foundations,
- 3. Structures,
- 4. Engines,
- 5. Turbines,
- 6. Control systems.

Undesirable Effects of Vibration

- 12
- 1. Excessive noise,
- 2. Material fatigue of structure or machine component
- 3. Rapid wear of machine parts
- 4. High power consumption
- 5. Low products quality,
- 6. Over control scheme.

Tacoma Narrows Bridge Collapse; The first Tacoma Narrows Bridge was built between November 23, 1938, and July 1, 1940, at a cost of approximately \$6,400,000.

Desirable Effects of Vibration

- 13
- Vibratory equipment; vibratory conveyors, hoppers, sieves, compactors, washing machines, electric toothbrushes, drills, clocks, alerts, and electric massaging units.
- 2. Pile driving
- 3. Simulation of geological activities; earthquakes
- 4. Vibratory finishing processes,

Importance of the Study of Vibration

Desirable Effects of Vibration

- 4. Electronic circuits to filter out the unwanted frequencies
- 5. Improve the efficiency of certain machining, casting, forging, and welding processes.
- 6. Improve the efficiency of certain thermal processes.
- 7. Vibratory testing of materials and machines,
- 8. Conduct studies in the design of nuclear reactors.

14

Desirable Effects of Vibration

Vibration Categories According to Main Parameters

- 1. Free and forced
- 2. Damped and undamped
- 3. Linear and nonlinear
- 4. Deterministic and random
- 5. Steady state and transient

Free and Forced Vibration

17

Free and Forced Vibration

18

Linear and nonlinear Vibration

19

Nonlinear and linear springs

Steady State and Transient Vibration

20

Deterministic and Random Vibration

21

A deterministic (periodic) excitation

A random excitation

Mechanical Vibrations – 3rd year

22

The minimum number of independent coordinates required to determine completely the position of all parts of a system at any instant of time defines the degree of freedom of the system.

Number of degrees of freedom = of the system	Number of masses in the system
	number of possible types of motion of each mass

24

Human hand has 27 DOF

Ship has 6 DOF

