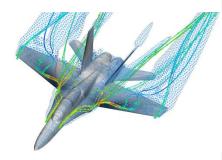


Fluid Mechanics I



Fayoum University

Faculty of Engineering Mechanical Engineering Dept

Lecture (2) on

Fluid Statics

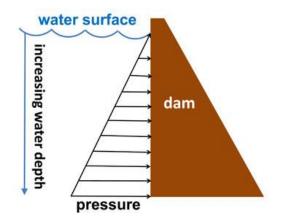
By

Dr. Emad M. Saad

Mechanical Engineering Dept.
Faculty of Engineering
Fayoum University

2015 - 2016

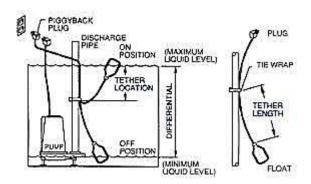
Fluid Statics Examples



Pressure measurement

Pressure vessels

Pressure behind dams or gates



Buoyancy and floating

Characteristics of Pressure (Pascal's law)

The pressure has the following three characteristics:

- 1. The pressure of a fluid always acts perpendicular to the wall in contact with the fluid.
- 2. The values of the pressure acting at any point in a fluid at rest are equal regardless of its direction.

Imagine a small wedge of fluid at rest of size Δx by Δz by Δs and depth b

$$\sum F_{x} = 0 = p_{x}b\Delta z - p_{n}b\Delta s \sin \theta$$

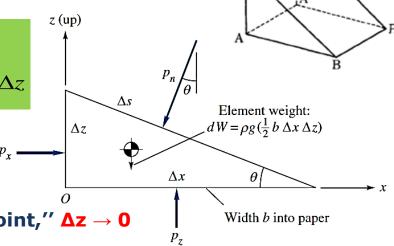
$$\sum F_{z} = 0 = p_{z}b\Delta x - p_{n}b\Delta s \cos \theta - \frac{1}{2}\rho g b \Delta x \Delta z$$

$$\Delta s \sin \theta = \Delta z \qquad \Delta s \cos \theta = \Delta x$$

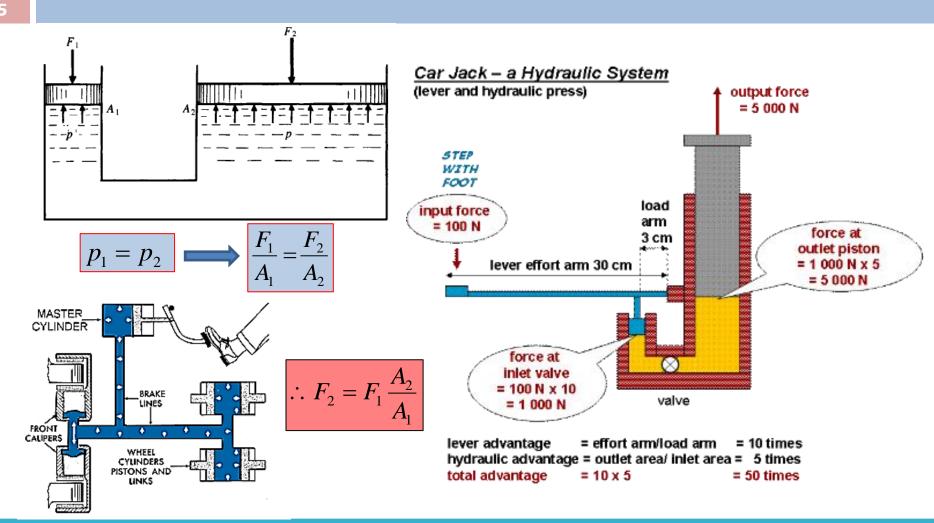
$$\therefore p_x = p_n \qquad p_z = p_n + \frac{1}{2} \rho g \Delta z$$

In the limit as the fluid wedge shrinks to a "point," $\Delta z \rightarrow 0$

$$p_x = p_z = p_n = p$$



Hydraulic Press



Pressure of Fluid at Rest

$$p dA - \left(p + \frac{dp}{dz}dz\right)dA - \rho g dA dz = 0$$
 : $\frac{dp}{dz} = -\rho g$

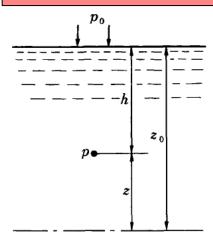
$$\therefore \frac{dp}{dz} = -\rho g$$

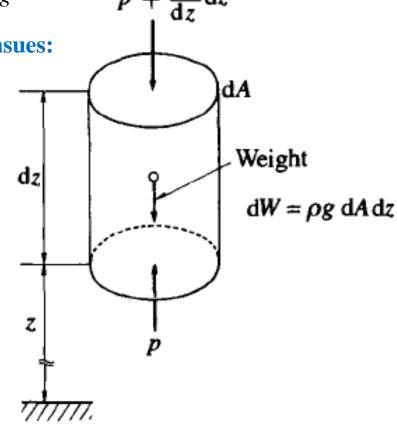
Assume ρ is constant, the following equation ensues:

$$p = -\rho g \int dz = -\rho gz + C$$

$$p = p_0$$
 when $z = z_0$, so $C = p_0 + \rho g z_0$

$$p = p_0 + (z_0 - z)\rho g = p_0 + h\rho g$$

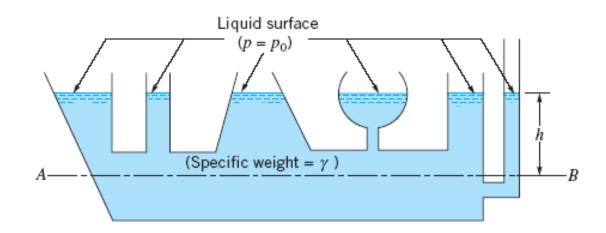




Pressure of Fluid at Rest

From the above relations illustrate two important principles of the hydrostatic condition:

- (1) There is no pressure change in the horizontal direction.
- (2) There is a vertical change in pressure proportional to the density, gravity, and depth change.



Example 1: Pressure of Fluid at Rest

Because of a leak in a buried gasoline storage tank, water has seeped in to the depth shown in Fig. E2.1. If the specific gravity of the gasoline is SG = 0.68, determine the pressure at the gasoline-water interface and at the bottom of the tank. Express the pressure in units of lb/ft^2 , $lb/in.^2$, and as a pressure head in feet of water.

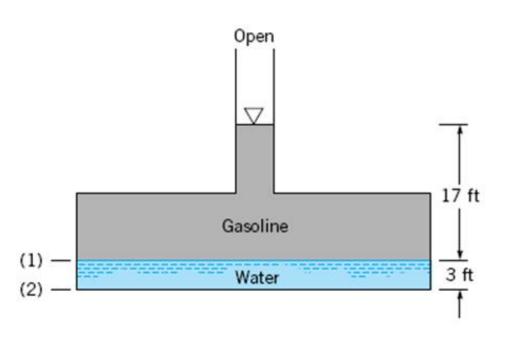
$$p = \gamma h + p_0$$

$$p_1 = SG\gamma_{\text{H}_2\text{O}}h + p_0$$

= (0.68)(62.4 lb/ft³)(17 ft) + p_0
= 721 + p_0 (lb/ft²)

$$p_2 = \gamma_{\text{H}_2\text{O}} h_{\text{H}_2\text{O}} + p_1$$

= $(62.4 \text{ lb/ft}^3)(3 \text{ ft}) + 721 \text{ lb/ft}^2$
= 908 lb/ft^2



Example 2: Pressure of Fluid at Rest

Find the difference in pressure between two tubes under pressure

Pressure at surface o

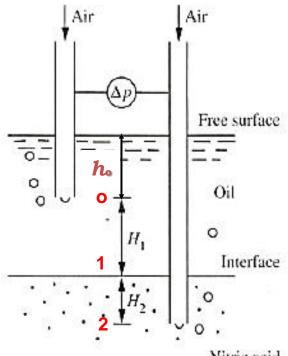
$$p_o = \rho_o g h_o + p_a$$

Pressure at surface 2

$$p_{2} = \rho_{o}gh_{o} + \rho_{o}gH_{1} + \rho_{N}gH_{2} + p_{a}$$

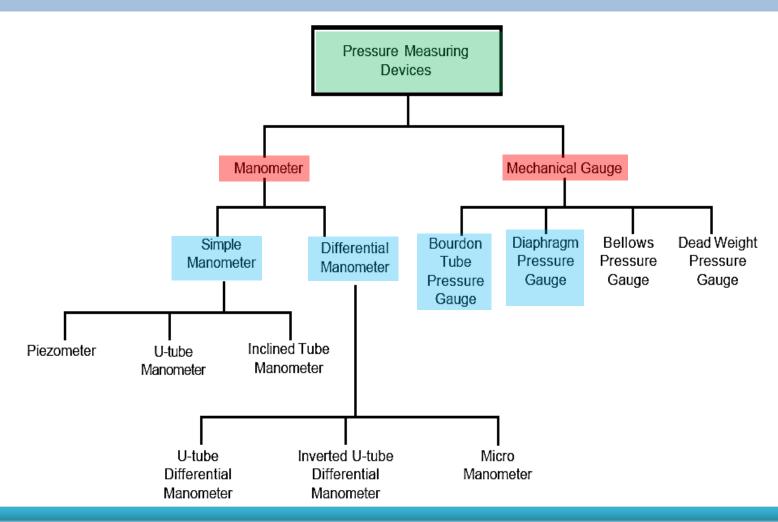
$$\Delta p = p_2 - p_o$$

$$\Delta p = \rho_o g H_1 + \rho_N g H_2$$



Nitrie acid

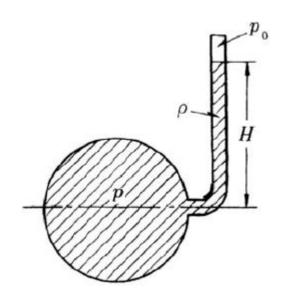
10



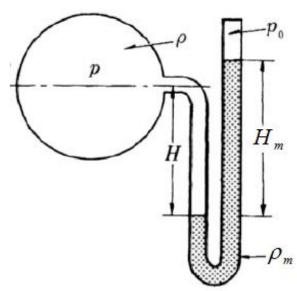
11

Simple Manometer

A device which measures the fluid pressure by the height of a liquid column is called a manometer.



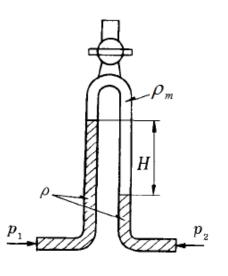
$$p = p_0 + H\rho g$$



$$p = p_0 + H_m \rho_m g - H \rho g$$

12

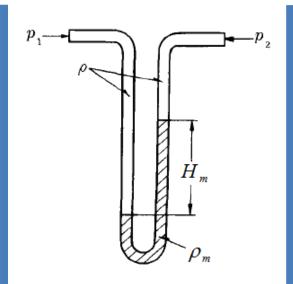
Differential Manometer



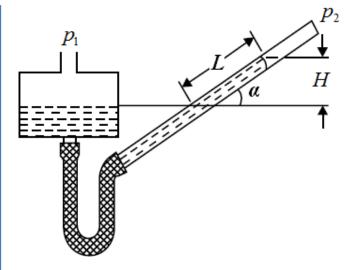
$$p_1 - p_2 = (\rho - \rho_m)gH$$

$$\rho_m$$
 is a gas,

$$p_1 - p_2 = H\rho g$$



$$p_1 - p_2 = (\rho_m - \rho)gH_m$$



$$H = L\sin\alpha$$

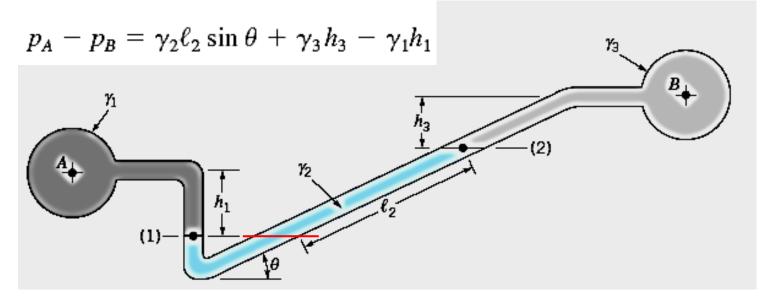
13

Differential Manometer

Inclined-Tube Manometer

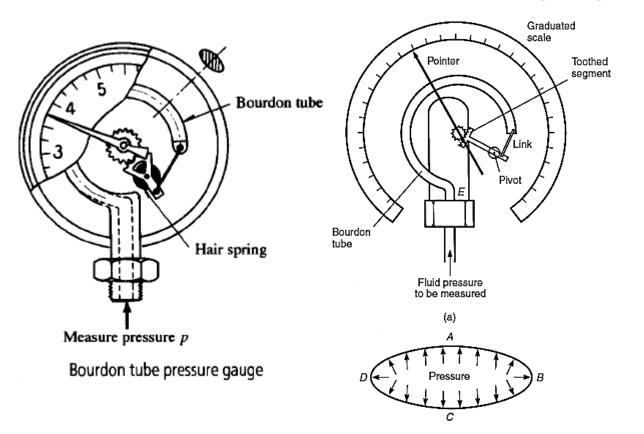
$$p_A + \gamma_1 h_1 - \gamma_2 \ell_2 \sin \theta - \gamma_3 h_3 = p_B$$

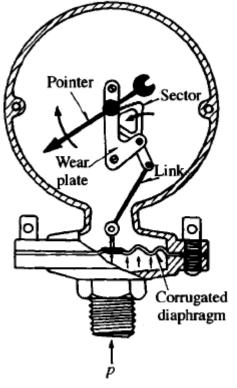
or



14

Elastic-type mechanical pressure gauge



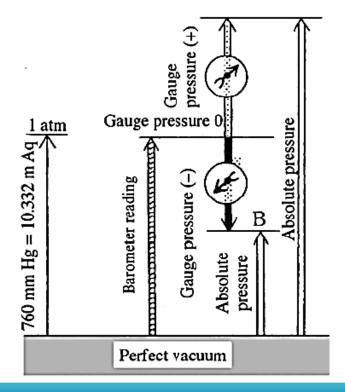


Diaphragm pressure gauge

15

Absolute pressure and gauge pressure

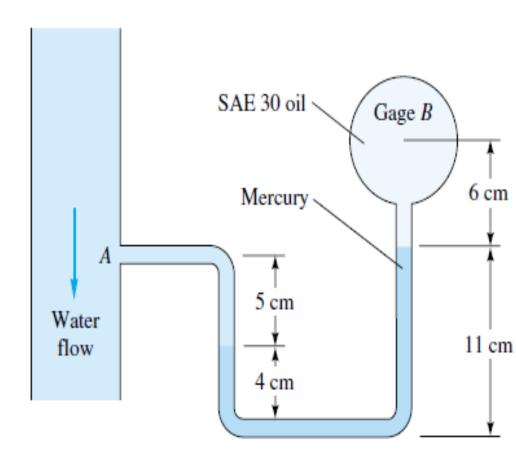
gauge pressure = absolute pressure - atmospheric pressure



16

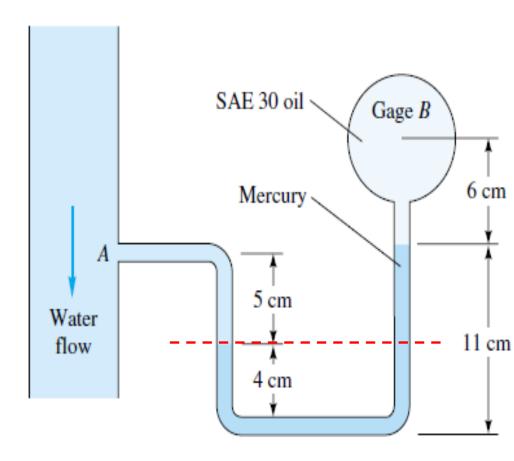
Example 3: Pressure of fluid at Rest

Pressure gage **B** is to measure the pressure at point **A** in a water flow. If the pressure at **B** is 87 kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See the following figure.



Example 3: Pressure of fluid at Rest

Pressure gage **B** is to measure the pressure at point **A** in a water flow. If the pressure at **B** is 87 kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See the following figure.



18

Example 3: Pressure of fluid at Rest

First list the specific weights from Table (A.1):

$$\chi_{\text{water}} = 9790 \text{ N/m}^3$$
 $\gamma_{\text{mercury}} = 133,100 \text{ N/m}^3$
 $\gamma_{\text{oil}} = 8720 \text{ N/m}^3$

Now proceed from **A** to **B**, calculating the pressure change in each fluid and adding: $p_A - \gamma_w (\Delta z)_w - \gamma_M (\Delta z)_w - \gamma_a (\Delta z)_z = p_B$

$$p_A - [(9790(N/m^3))(-0.05(m))] - [(133100(N/m^3))(0.07(m))] - [(8720(N/m^3))(0.06(m))] = 87000 Pa$$

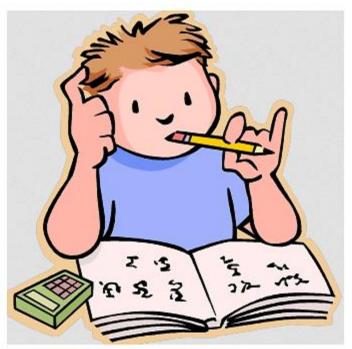
where we replace N/m² by its short name, Pa. The value $\Delta z_M = 0.07$ m is the net elevation change in the mercury (11 cm - 4 cm). Solving for the pressure at point **A**, we obtain

$$p_{A} = 96351 \, Pa$$
 Ans.

Q (2)

20

The velocity profile is a laminar flow through a round pipe is expressed as, $u = 2U \left[1 - \left(r^2/r_0^2\right)\right]$ where U= average velocity, r_0 = radius of pipe. Draw dimensionless shear stress profile $\left(r/r_0\right)$ against $\left(r/r_0\right)$ where r_0 is wall shear stress. Find r_0 , when oil flows with absolute viscosity $4 \times 10^{-2} \, \text{N.s/m}^2$ and velocity of 4 m/s in a pipe of diameter 150 mm.



Komework

HW (2)

In the following figure all fluids are at 20°C. Determine the pressure difference (Pa) between points A and B.

