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Free Vibration with Viscous Damping

—kx—cx=mX

iZFx:m a,:

mx+cx+kx=0

This linear, second-order, homogeneous, differential equation

has a solution of the form

At
X =€

e 1s the base of the natural logarithm and A 1s a constant.

mAe® +cie +ke” =0

e™ (m AF+eci+ k): 0

Since e* can never be zero, a solution is possible provided
mA +cA+k=0
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Free Vibration with Viscous Damping
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These roots give two solutions

At At '
x,=e" and x, =e™ So, the general solution

x=Ae™ + Be™
where 4 and B are arbitrary constants to be determined from the initial conditions

of the system.

There are three possible combinations of 4 and A, which must be considered.

Before discussing these combinations, however, we will first define the critical
damping coefficient ¢, and the damping ratio.
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Free Vibration with Viscous Damping

The critical damping is defined as the value of € which makes the radical in the last
equations equal to zero; i.e.,

2
k
[i] ——=0 or c,;= Zﬁ’“"v'-»,llE =2mo,
2m Fi7) b7,

For any damped system, the damping ratio ¢ is defined as the ratio of the damping
constant to the critical damping constant:

- c Damping constant
¢, Damping constant for critically damped condition
c c c_,
— . crit — é‘mn
2m ¢ 2m

crit

A, =l 1o,
(enlEos (oo

x=Ae
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Free Vibration with Viscous Damping

The nature of the roots 4 and 4, , hence the behavior of the solution depends upon

the magnitude of damping.

When ¢ =0 leads to the undamped vibrations =

When ¢ = 0and consider the following three cases. Cril
()
I Undamped (¢ = 0)

Underdamped (£ < 1)
{wyis snmller

Overdamped (£ > 1)
Critically

X
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Free Vibration with Viscous Damping

Case 1: Overdamped system
When ¢ > ¢ the roots 4 and A, are both real. The general solution of

Eq. (2.21) can then be written as
x=Ae" +Be™ =0

Motion corresponding to this solution is non-vibrating. The effect of
damping 1s so strong that when the block 1s displaced and released, it
simply creeps back to its original position without oscillating. The system
is said to be overdamped as indicated in Figure (2.6).
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Free Vibration with Viscous Damping

Case 2: Critically damped system
It ¢ = ceit then A4, =4, =c_, /2m = —w, This situation 18 known as critical
damping, since it represents a condition where ¢ has the smallest value
necessary to cause the system to be non-vibrating. Using the methods of
differential equations, it can be shown that the solution to Eq. (2.21) for

critical damping 18

x=(A+ Bt)e

Mechanical Vibrations - 3rd year - Industrial Dept.




Free Vibration with Viscous Damping

Case 3: Underdamped system
Most often ¢ < c.y In which case the system is referred to as
underdamped. In this case the roots 4 and 2, are complex numbers, and

it can be shown that the general solution of Eq. (2.21) can be written as

x= D[e_{"”’”}‘l sin(e,t + ¢)]
where D and ¢ are constants generally determined from the initial
conditions of the problem. The constant @, 1s called the damped natural

frequency of the system. It has a value of

S L [ )

H E crit
Note: When ¢ =1, one has the critically damped response because below

this value, the response i1s oscillatory (underdamped), and above this
value, the response is nonoscillatory (overdamped).
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Free Vibration with Viscous Damping

The graph of Eq. (2.29) is shown in Figure (2.7). The initial limit of
motion, D, diminishes with each cycle of vibration, since motion is
confined within the bounds of the exponential curve. Using the damped
natural frequency ,, the period of damped vibration can be written as

Since w, < ®, , Eq. (2.30), the period of damped vibration, 7, , will be
greater than that of free vibration, T =27/®, .
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Free Vibration with Viscous Damping
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Free Vibration with Viscous Damping

The variation of w,/w,, with ¢ 1s shown in Figure (2.8). In addition,

Figure (2.9) shows the time variation of displacement as a function of

©p

damping ratio {< 1 (underdamping). (m a)

Fig.2.8: variation of w, /m, , with damping factor¢ .
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Free Vibration with Viscous Damping

Logarithmic decrement
&= ]'n(xn f(‘xn+l)
From Eq. (2.29), x 1s given by

T
x=e % f(ot)=e“ siﬂ[[cﬂ2 S IJ + ;35:‘

Am
But
5 €@ wr
X, € flot+T)
Thus

5= CoT - fwy 2w 1= 2rd
R PN (| I ey

where T is the period of damped oscillation.

g

r
2

e

T

If the amount of damping present is small compared to the critical

damping, T approximates {07 =2z /w,_, and then

T

027l =

mao,
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Free Vibration with Viscous Damping

Specific loss

A further way of indicating the amount of damping in lightly damped

systems 1s to evaluate the energy lost per cycle as a fraction of the energy
at the start of the cycle.

1. - 1. -
—kx, —— ko Y
Specific loss = 2 - =1-| =L | =1-exp|- 2¢e 7]
lhl Irz
2 o

So, for small damping,

Specific Ems=1—e::-;p[— 2w T+ ] ~ 28w 1 ~ And ~ 26
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Free Vibration with Viscous Damping

Damped Free Vibration with Dry Damping (Coulomb's damping)

k m W
\ : !
SAVAVAAY e T .
Q 77V 7 kit 4—— m i
-— plN ———
R =pmg 19 i T
N

N is the normal force, equal to the weight of the mass (W = mg)
coefficient of friction (i) depends on the materials in contact and
the condition of the surfaces in contact.

For example, y = 0.1 for metal on metal (lubricated), 0.3 for metal

on metal (unlubricated), and nearly 1.0 for rubber on metal.
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Free Vibration with Viscous Damping

Damped Free Vibration with Dry Damping (Coulomb's damping)

the viscous damping force R 1s given by Coulomb's law of friction.

W
R=uF, l
F, 18 the normal force and u 18 the coefficient of friction. foX e gy p—1
mx + kx = yumg PN ——=
The general solutions of the above equation are
N
x:Asina)nr+Bcosa)nr—% N N
k e 1 X |
umg ko x Jcx l

x=Asmo t+ Bcosa t+—=
k

TA8) I T’ [IAR}
where the natural angular frequency is o, = ./k/m . ~ ~

The sign of last term in the above equation is depending on the direction of motion of the
block as shown in the figure
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Free Vibration with Viscous Damping

Damped Free Vibration with Dry Damping (Coulomb's damping)

Assume the body of mass m at rest and the spring 1s compressed (or

stretched) such that its mitial displacement 18|x,| > |x, = pmg/k|. With the

mitial conditions T 4

{x +x{} h 4 /\
r=0=> /\
|2t
. . . ] /\ /\ IA\

The equations of motion are 1

;J \/ \/ 30\/ \-«’40
{x:—(xﬂ—xs)cosmnz‘—xs 2t
H

(ID —3x, )cos @1+ x,

!

L

0
Ty

X
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Solved Example:1 (Free Vibration with Viscous Damping)

The schematic diagram of a large cannon is shown in Figure (E2.6).
When the gun is fired, high pressure gases accelerate the projectile
inside the barrel to a very high velocity. The reaction force pushes the
gun barrel m the direction opposite that of the projectile. Since it is
desirable to bring the gun barrel to rest m the shortest time without
oscillation, 1t 18 made to translate backward against a critically damped
spring-damper system called the recoil mechanism. In a particular case,
the gun barrel and the recoill mechamsm have a mass of 500 kg with a
recoil spring of stiffness 10,000 N/m. The gun recoils 0.4 m upon
firmg. Fmd (a) the critical dampmg coefficient of the damper, (b) the
mitial recoil velocity of the gun, and (¢) the time taken by the gun to
return to a position 0.1 m from its mitial position.
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Solved Example:1 (Free Vibration with Viscous Damping)

RN
Projectile

Gun barrel
N

Recoil mechanism
(spring and damper)
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Solved Example:1 (Free Vibration with Viscous Damping)

The undamped natural frequency of the system 1s

0, = \/E = fw = 4.4721 rad /s
m 500

and the critical damping coefficient of the damper 1s

c=2mam, =2 (500 4.4721)=4472.1 N.s/m Ans. (a)
The response of a critically damped system is given by Eq. (2.28):

X = (A B (E.1)
where A=x, and B=x%,+o,x,.The time # at which x(7) reaches a

maximum value can be obtained by setting %(z)=0. The differentiation of
Eq. (E.1) gives
i(t)=Be™™ — o (4+ Bt)e ™
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Solved Example:1 (Free Vibration with Viscous Damping)

Hence x(¢)=0yields

1 A
_ e, E.2
h @« B ( )

R

In this case x,=4=0, hence Eq. (E.2) leads to ¢ = 1 | Since the

n

maximum value of x(#) or the recoil distance is given to be xyx = 0.4 m,

we have
Ko =xle=t,)= Bty et = 20 gt - o
@, e,
or
%, =x,, m.e=(04)4.4721)(2.7183) = 4.8626 m/s Ans. (b)

If £, denotes the time taken by the gun to return to a position 0.1 m from
its initial position, we have

0.1=Bt, e =4.86261, e (E.3)
The solution of Eq. (E.3) gives £,=0.8258 s. Ans. (¢)
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Homework
Quiz

A railroad car of mass 2,000 kg traveling at a velocity v = 10 m/s is
stopped at the end of the tracks by a spring-damper system, as shown
in Figure (P2.13). If the stiffness of the spring is £ = 80 N/mm and the
damping constant is ¢ = 20 N.s/m determine (a) the maximum
displacement of the car after engaging the springs and damper and (b)
the time taken to reach the maximum displacement.

ki2

Tl

ki2

o

(. 4

N N A N N N A N A N N A N s N A N A N N A S A O O OO OO OO IO,
Fig. P2.13
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