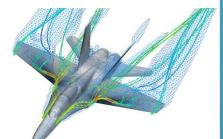


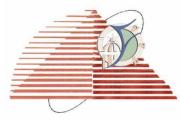
Pervious Lecture Contents

- 2
- 1. Characteristics of Pressure
- 2. Pressure of fluid at rest
- 3. Measurement of Pressure
 - Simple manometers
 - Differential manometers
 - Mechanical gauge

Fluid Mechanics I



Fayoum University



Faculty of Engineering Mechanical Engineering Dept

Lecture (3)

on

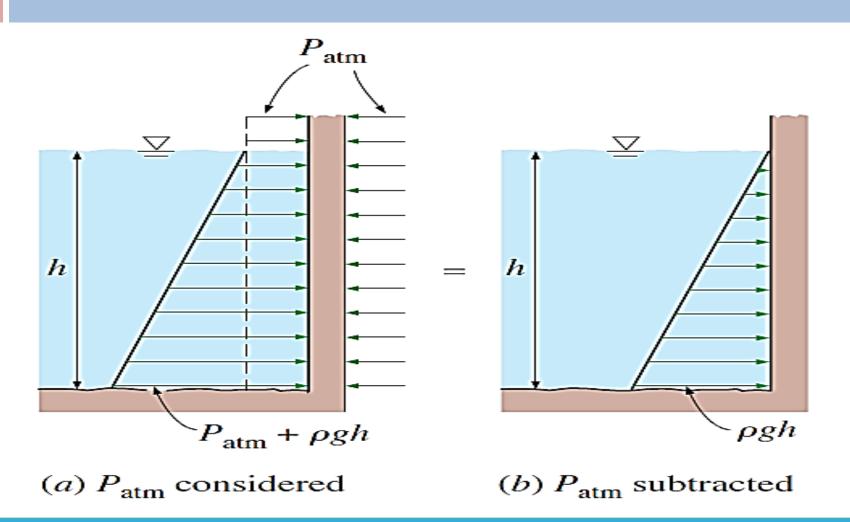
By

Dr. Emad M. Saad

Mechanical Engineering Dept. Faculty of Engineering Fayoum University

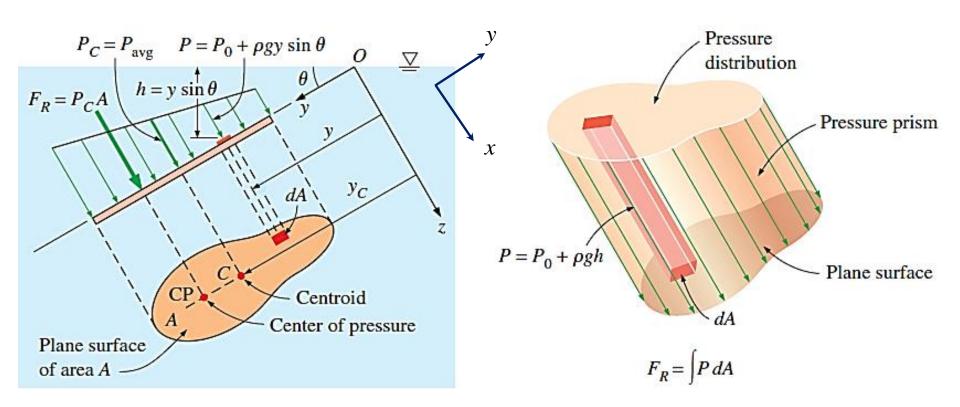
2015 - 2016

Hydrostatic Forces on Completely Submerged Plane Surfaces



Hydrostatic Forces on Completely Submerged Plane Surfaces

5



Lecture (3) - Fluid Mechanics I - 1st year - Mechanical Dept.

Hydrostatic Forces on Completely Submerged Plane Surfaces

6

Then the absolute pressure at any point on the plate is

 $P = P_0 + \rho g h = P_0 + \rho g y \sin \theta$

The resultant hydrostatic force F_R acting on the surface is determined by integrating the force $P \, dA$ acting on a differential area dA over the entire surface area,

$$F_R = \int_A P \, dA = \int_A \left(P_0 + \rho g y \sin \theta \right) dA = P_0 A + \rho g \sin \theta \int_A y \, dA$$

But the *first moment of area* $\int_{A} y \, dA$ is related to the y-coordinate of the centroid (or center) of the surface by $\int_{A} \frac{1}{y} \, dA$

$$y_C = \frac{1}{A} \int_A y \, dA$$

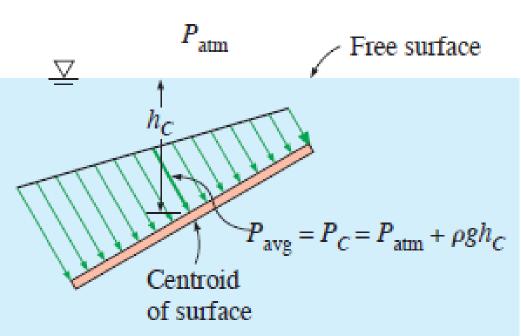
7

Hydrostatic Forces on Completely Submerged Plane Surfaces

Substituting,

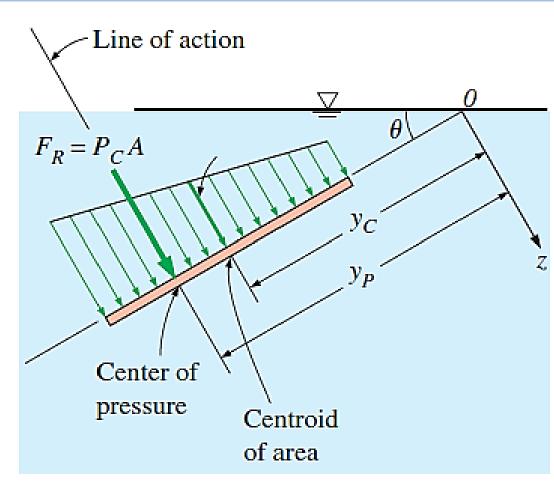
$$F_R = (P_0 + \rho g y_C \sin \theta) A = (P_0 + \rho g h_C) A = P_C A = P_{avg} A$$

of magnitude The the resultant force acting on a plane surface of a completely submerged plate in а (constant homogeneous density) fluid is equal to the product of the pressure P_c at the centroid of the surface and the area A of the surface.



Hydrostatic Forces on Completely Submerged Plane Surfaces

To balance the bendingmoment portion of the stress, the resultant force F_R does not act through the centroid. So, To find the coordinates (x_{Pr}, y_P)



Lecture (3) - Fluid Mechanics I - 1st year - Mechanical Dept.

Hydrostatic Forces on Completely Submerged Plane Surfaces

9

The vertical location of the line of action is determined by equating the moment of the resultant force to the moment of the distributed pressure force about the *x*-axis:

$$y_P F_R = \int_A y P \, dA = \int_A y (P_0 + \rho g y \sin \theta) \, dA = P_0 \int_A y \, dA + \rho g \sin \theta \int_A y^2 \, dA$$

or

$$y_P F_R = P_0 y_C A + \rho g \sin \theta I_{xx, O}$$

where y_P is the distance of the center of pressure from the *x*-axis (point *O* in Figure and $I_{xx, O} = \int_A y^2 dA$ is the *second moment of area* (also called the *area moment of inertia*) about the *x*-axis.

Hydrostatic Forces on Completely Submerged Plane Surfaces

10

Fortunately, the second moments of area about two parallel axes are related to each other by the parallel axis theorem, which in this case is expressed as: $I_{xx, 0} = I_{xx, C} + y_C^2 A$

where $I_{xx, C}$ is the second moment of area about the x-axis passing through the centroid of the area and y_C (the y-coordinate of the centroid) is the distance between the two parallel axes.

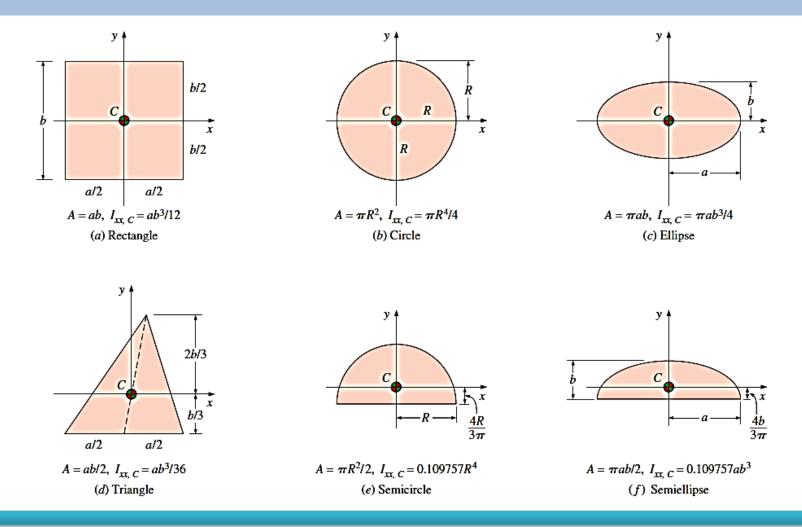
$$y_P = y_C + \frac{I_{xx, C}}{[y_C + P_0/(\rho g \sin \theta)]A}$$

For $P_0 = 0$, which is usually the case when the atmospheric pressure is ignored, it simplifies to

$$y_P = y_C + \frac{I_{xx, C}}{y_C A}$$

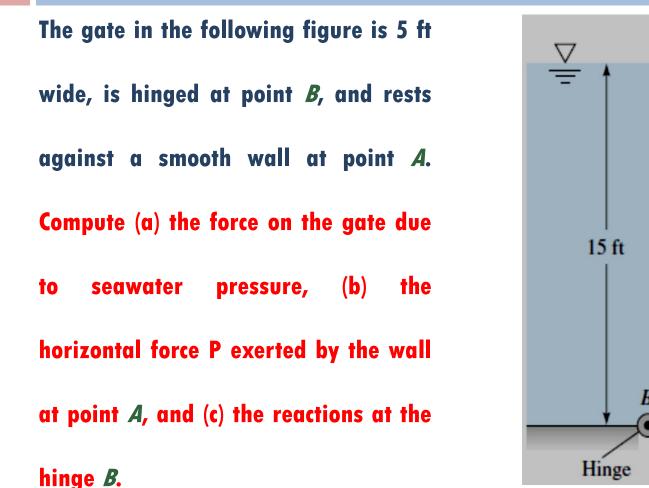
Hydrostatic Forces on Completely Submerged Plane Surfaces

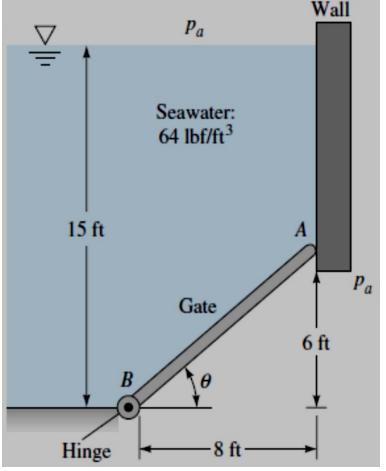
11



12

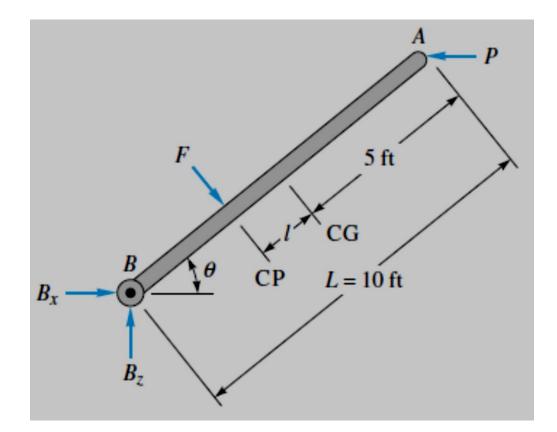
Ex1: Hydrostatic Forces on Completely Submerged Plane Surfaces





EX1: Hydrostatic Forces on Completely Submerged Plane Surfaces

13



Ex1: Hydrostatic Forces on Completely Submerged Plane Surfaces

- By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or at elevation 3 ft above point B.
- The depth h_{CG} is thus 15 3 = 12 ft.
- The gate area is 5(10) = 50 ft².
- Neglect p_a as acting on both sides of the gate.
- From Eq. (2.20) the hydrostatic force on the gate is
- $F = p_{CG}A = \gamma h_{CG}A = (64(lbf/ft^3)(12(ft))(50(ft^2)) = 38400lbf \quad Ans. (a)$

Ex1: Hydrostatic Forces on Completely Submerged Plane Surfaces

15

First we must find the center of pressure of F. A free-body diagram of the gate is shown in Figure (E2.4b). The gate is a rectangle, hence

$$I_{xy} = 0 = and I_{xx} = \frac{bL^3}{12} = \frac{(5(ft))(10(ft))^3}{12} = 417 ft^4$$

The distance *l* from the CG to the CP is given by Eq. (2.26) since p_a is neglected.

$$l = -y_{CP} = +\frac{I_{xx}\sin\theta}{h_{CG}A} = \frac{(417(ft^4))(\frac{6}{10})}{(12(ft))(50(ft^2))} = 0.417 ft$$

The distance from point **B** to force **F** is thus $10 \cdot l \cdot 5 = 4.583$ ft. Summing moments counterclockwise about **B** gives $PL \sin \theta - F(5 - l) = P(6(ft)) - [(38400(lbf))(4.583(ft))] = 0$ or

 $P = 29300 \, lbf$

Ans. (b)

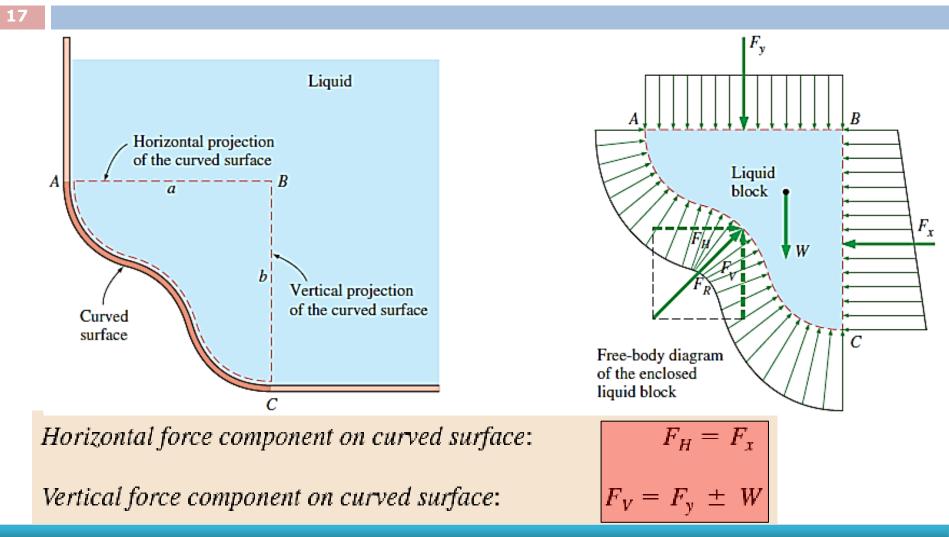
Ex1: Hydrostatic Forces on Completely Submerged Plane Surfaces

16

With F and P known, the reactions B_x and $\underline{B}_{\overline{x}}$ are found by summing forces on the gate $\sum F_x = 0 = B_x + F \sin \theta - P = B_x + ((38400)(0.6)) - 29300$ or $B_x = 6300 lbf$ $\sum F_z = 0 = B_z + F \cos \theta = B_z - ((38400)(0.8))$ or $B_z = 30700 lbf$ Ans. (c)

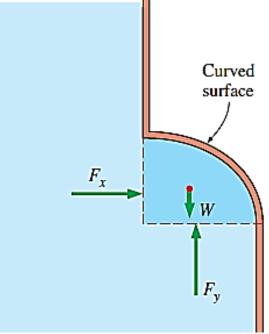
This example should have reviewed your knowledge of statics.

Hydrostatic Forces on Completely Submerged Curved Surfaces



Hydrostatic Forces on Completely Submerged Curved Surfaces

where the summation $F_y \pm W$ is a vector addition (i.e., add magnitudes if both act in the same direction and subtract if they act in opposite directions). Thus, we conclude that



Hydrostatic Forces on Completely Submerged Curved Surfaces

The magnitude of the resultant hydrostatic force acting on the curved surface is

$$F_R = \sqrt{F_H^2 + F_V^2}$$

and the tangent of the angle it makes with the horizontal is

$$\tan \alpha = F_V / F_H$$

EX2: Hydrostatic Forces on Completely Submerged Curved Surfaces

A

20

A long solid cylinder of radius 0.8 m hinged at point *A* is used as an automatic gate, as shown in the following figure. When the water level reaches 5 m, the gate opens by turning about the hinge at point A. **Determine** (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per m length of the cylinder.

