

Pervious Lecture Contents

- 2
- 1. Characteristics of Pressure
- 2. Pressure of fluid at rest
- 3. Measurement of Pressure
 - Simple manometers
 - Differential manometers
 - Mechanical gauge

Mechanical Engineering (2)

Fayoum University

Faculty of Engineering Mechanical Engineering Dept.

Lecture (3)

on

By

Dr. Emad M. Saad

Mechanical Engineering Dept. Faculty of Engineering Fayoum University

2015 - 2016

Hydrostatic Forces on Plane Surfaces

Lecture (3) – Mechanical Engineering (2) – 2nd year – Electrical Power Dept.

Hydrostatic forces on plane surfaces

To balance the bending-moment portion of the stress, the resultant force F does not act through the centroid. So, To find the coordinates (x_{CPr}, y_{CP})

Hydrostatic forces on plane surfaces

6

To compute y_{CP}

$$F y_{cp} = \int_{A} ypdA = \int_{A} y(p_a + \gamma\xi\sin\theta)dA = \gamma\sin\theta\int_{A} y\xi dA$$

$$\xi = \xi_{CG} - y$$

$$F y_{cp} = \gamma\sin\theta \left(\xi_{CG}\int_{A} ydA - \int_{A} y^2 dA\right) = -\gamma\sin\theta I_{xx}$$

where $\int_{A} ydA = 0$

and I_{xx} is the area moment of inertia of the plate

area about its centroidal x axis

$$y_{CP} = -\gamma \sin \theta \frac{I_{xx}}{p_{CG}A}$$

Hydrostatic forces on plane surfaces

7

To compute *x_{CP}*

$$F x_{cp} = \int_{A} xp \, dA = \int_{A} x \left[p_a + \gamma \left(\xi_{CG} - y \right) \sin \theta \right] dA$$

$$= -\gamma \sin \theta \int_{A} xy \, dA = -\gamma \sin \theta I_{xy}$$

Free surface

 $p = p_a$

where I_{xy} is the product of inertia of the plate

$$x_{CP} = -\gamma \sin \theta \frac{I_{xy}}{p_{CG}A}$$

For positive I_{xy} , x_{CP} is negative because the dominant pressure force acts in the third or lower left, quadrant of the panel. If $I_{xy} = 0$, usually implying symmetry, $x_{CP} = 0$ and the center of pressure lies directly below the centroid on the y axis.

If ambient pressure p_a is neglected $p_{CG} = \gamma h_{CG}$

$$F = \gamma h_{CG} A$$
 $y_{CP} = -\frac{I_{xx} \sin \theta}{h_{CG} A}$ $x_{CP} = -\frac{I_{xy} \sin \theta}{h_{CG} A}$

Resultant force: $F = P_{CG}A$ θ CPyyx

Hydrostatic forces on plane surfaces

Geometry	Centroid	Moment of Inertia Ix x	Product of Inertia Ixy	Area
	b/ L/2	$\frac{bL^3}{12}$	0	ъ·L
	0,0	$\frac{\pi R^4}{4}$	0	πR^2
	b/3 , L/3	$\frac{bL^3}{36}$	$-\frac{b^2L^2}{72}$	$\frac{\mathbf{b} \cdot \mathbf{L}}{2}$
	$0, a = \frac{4R}{3\pi}$	$R^{4}\left(\frac{\pi}{8}-\frac{8}{9\pi}\right)$	0	$\frac{\pi R^2}{2}$
	$a = \frac{L}{3}$	$\frac{bL^3}{36}$	$\frac{\mathbf{b} (\mathbf{b} - 2\mathbf{s})\mathbf{L}^2}{72}$	$\frac{1}{2}\mathbf{b}\cdot\mathbf{L}$
y_⊥_x → ⊢	$a = \frac{4R}{3\pi}$	$\left(\frac{\pi}{16}-\frac{4}{9\pi}\right)R^4$	$\left(\frac{1}{8}-\frac{4}{9\pi}\right)R^4$	$\frac{\pi R^2}{4}$
	$a = \frac{h(b+2b_1)}{3(b+b_1)}$	$\frac{h^{3}(b^{2}+4bb_{1}+b_{1}^{2})}{36(b+b_{1})}$	0	$(\mathbf{b} + \mathbf{b}_1) \frac{\mathbf{h}}{2}$

Lecture (3) - Mechanical Engineering (2) - 2nd year - Electrical Power Dept.

Example 1: Hydrostatic forces on plane surfaces

The gate in the following figure is 5 ft wide, is hinged at point B, and rests against a smooth wall at point A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal force P exerted by the wall at point A, and (c) the reactions at the hinge Β.

Example 1: Hydrostatic forces on plane surfaces

10

Lecture (3) - Mechanical Engineering (2) - 2nd year - Electrical Power Dept.

Example 1: Hydrostatic forces on plane surfaces

11

- By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or at elevation 3 ft above point B.
- The depth h_{CG} is thus 15 3 = 12 ft.
- The gate area is 5(10) = 50 ft².
- Neglect p_a as acting on both sides of the gate.
- From Eq. (2.20) the hydrostatic force on the gate is
- $F = p_{CG}A = \gamma h_{CG}A = (64(lbf/ft^3)(12(ft))(50(ft^2)) = 38400lbf \quad Ans. (a)$

Example 1: Hydrostatic forces on plane surfaces

12

First we must find the center of pressure of F. A free-body diagram of the gate is shown in Figure (E2.4b). The gate is a rectangle, hence

$$I_{xy} = 0 = and I_{xx} = \frac{bL^3}{12} = \frac{(5(ft))(10(ft))^3}{12} = 417 ft^4$$

The distance *l* from the CG to the CP is given by Eq. (2.26) since p_a is neglected.

$$l = -y_{CP} = +\frac{I_{xx}\sin\theta}{h_{CG}A} = \frac{(417(ft^4))(\frac{6}{10})}{(12(ft))(50(ft^2))} = 0.417 ft$$

The distance from point **B** to force **F** is thus $10 \cdot l \cdot 5 = 4.583$ ft. Summing moments counterclockwise about **B** gives $PL \sin \theta - F(5 - l) = P(6(ft)) - [(38400(lbf))(4.583(ft))] = 0$ or

 $P = 29300 \, lbf$

Ans. (b)

Example 1: Hydrostatic forces on plane surfaces

13

With F and P known, the reactions B_x and B_z are found by summing forces on the gate $\sum F_x = 0 = B_x + F \sin \theta - P = B_x + ((38400)(0.6)) - 29300$ or $B_x = 6300 lbf$ $\sum F_z = 0 = B_z + F \cos \theta = B_z - ((38400)(0.8))$ or $B_z = 30700 lbf$ Ans. (c)

This example should have reviewed your knowledge of statics.

Force to pressure vessels

14

Cylindrical pressure vessel

Lecture (3) - Mechanical Engineering (2) - 2nd year - Electrical Power Dept.

Force to pressure vessels

15

Cylindrical pressure vessel

the stress σ_1 is called circumferential stressor the hoop stress, and the stress σ_2 is called the longitudinal stress or the axial stress.

Force to pressure vessels

16

Cylindrical pressure vessel Equilibrium of forces to find the circumferential stress:

$$2lt \,\sigma_1 = 2lrp \implies \sigma_1 = \frac{pr}{2t}$$

Equilibrium of forces to find the longitudinal stress

$$\frac{2\pi rt\sigma_2 = \pi r^2 p}{\sigma_2 = 2\sigma_1} \quad \Rightarrow \quad \sigma_2 = \frac{pr}{t}$$

We note that the longitudinal welded seam in a pressure tank must be twice as strong as the circumferential seam.

Force to pressure vessels

Spherical pressure vessel

 $F = \pi p r^{2}$ Horizontalforce = $\sigma (2\pi r_{m})t$

$$r_m = r + \frac{\tau}{2}$$
$$\sigma (2\pi r_m)t = p\pi r^2$$

1

$$\sigma = \frac{p r}{2t}$$

Welded seam σ

Buoyancy and Stability

Archimedes' Principle

Fluid pressure acts all over the wetted surface of a body floating in a fluid, and the resultant pressure acts in a vertical upward direction. This force is called buoyancy.

The buoyancy of air is small compared with the gravitational force of the immersed body, so it is normally ignored.

The force F_1 acting on the upper surface is

$$F_1 = (p_0 + \rho g h_1) A$$

The force F_2 acting on the lower surface is

$$F_2 = (p_0 + \rho g h_2) A$$

So, when the volume of the body in the liquid is V, the resultant force F from the pressure acting on the whole surface of the body is

$$F = F_2 - F_1 = \rho g (h_2 - h_1) A = \rho g h A = \rho g V$$

Pressure Distribution in Rigid-Body Motion

Equiaccelerated straight-line motion

minute element of mass m on the liquid surface, where its acceleration is α ,

 $\theta = \tan^{-1} \frac{a_x}{g + a_z}$ $\tan \theta = \alpha/g$ $p = \rho \beta h$ $\beta = F/m$ $\beta = [a_x^2 + (g + a_z)^2]^{1/2}$

Pressure Distribution in Rigid-Body Motion

Rotational motion

$$\tan\phi = \frac{mr\omega^2}{mg} = \frac{r\omega^2}{g}$$

but also

Therefore,

Putting c as a constant of integration,

$$z = \frac{\omega}{2g}r^2 + c$$

 $\tan\phi = \frac{\mathrm{d}z}{\mathrm{d}r}$

 $\frac{\mathrm{d}z}{\mathrm{d}r} = \frac{r\omega^2}{a}$

If
$$z = h_0$$
 at $r = 0, c = h_0$

$$z-h_0=\frac{\omega^2 r^2}{2q}$$

Example 2: Pressure Distribution in Rigid-Body Motion

The coffee cup in the following figure is removed from the drag racer, placed on a turntable, and rotated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity which will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point A for this condition.

Example 2: Pressure Distribution in Rigid-Body Motion

22

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to

the lip must equal the distance h/2 in Figure (2.16). Thus from Eq. (2.43)

$$h = 2(0.03(m)) = \frac{\omega^2}{2g}r^2 = \frac{\omega^2(0.03(m))^2}{2(9.81(m/s^2))}$$

Solving, we obtain

$$\omega^2 = 1308$$
 or $\omega = 36.2 \text{ rad}/\text{s}$

Where
$$\omega = \frac{2\pi N}{60}$$
 (*N*: revolution per minute)
 $36.2 = \frac{2\pi N}{60} \rightarrow N = 345 rpm$

Ans. (a)

Example 2: Pressure Distribution in Rigid-Body Motion

23

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bottom of the free-surface depression, as shown in Figure (E2.8). The gage pressure here is $p_0=0$, and point **A** is at (r, z) = (3 cm, -4 cm). Equation (2.44) can then be evaluated

$$p = \frac{1}{2} \rho r^2 \omega^2 + p_1 + p_0 = \left[0.5 \left(1010 \left(kg / m^3 \right) \left(0.03(m) \right)^2 \left(36.2 \left(rad / s \right) \right)^2 \right] - \left[\left(1010 \left(kg / m^3 \right) \left(9.81(m / s^2) - \left(0.04(m) \right) \right] + 0 = 990 Pa \right]$$

Ans. (b)

This is about 43 percent greater than the still-water pressure $p_A = 694$ Pa.

Homework

Quiz

Find the net hydrostatic force per unit width on the rectangular gate **AB** in the following figure and its line of action.

Lecture (3) - Mechanical Engineering (2) - 2nd year - Electrical Power Dept.

Exam (1) on 04/11/2015

