

Hydraulic & Pneumatic Circuits

Faculty of Engineering Mechanical power Engineering Dept.

Lecture (7)

on

Basic Circuits and Sizing Hydraulic Components

By

Dr. Emad M. Saad

Industrial Engineering Dept. Faculty of Engineering Fayoum University

2014 - 2015

Constant Flow Systems (C-Q)

Constant Pressure Systems (C-P)

- Constant torque output regardless of variations in speed.
- With both valves in the center position, flow through the system is negligible and the pump supplies only make-up oil.
- The power loss is also small. The use of pressure-compensated variable displacement pumps eliminates the need for both relief and unloading valves, since the pump compensates to limit system pressure.

C-P circuit with two actuators

- Relief valves or hydraulic fuses are usually installed, however, to protect the system against:
 - ✓ Hydraulic shocks,
 - Thermal expansion of the fluid,
 - Possible malfunction of the pressure compensation mechanism in the pump.

Constant Horsepower Systems (C-Hp)

Output Horsepower = p.Q = T.N = Constant

- An in-line check prevents the motor from driving the pump when the load resistance is over capacity.
- A braking valve in the exhaust line is controlled by a manually operated two-way control valve.
- Setting the motor at maximum displacement will cause it to generate maximum torque at minimum speed.

C-Hp output circuit

Reducing the displacement will cause an increase in rpm accompanied by a decrease in torque such time as the torque is not sufficient to sustain rotation. At this displacement, the load resistance will stall the motor.

- In a certain application requires a capacity flow of 75 L/min at 172 bar.
- If a partial load required a pressure of only 89 bar, and a metered flow rate of 34 L/min.
- The flow valve would direct 34 L/min against the load resistance and the remaining 41 L/min would flow across the relief valve at 172 bar with a resulting <u>16 hp loss</u>. This energy would be lost in the form of heat.
- The traditional closed-center system under the same condition would deliver only the required 34 L/min, but at the destroke pressure of 172 bar, thereby causing a 83 bar pressure drop across the control valve with a resulting additional <u>6.4 hp loss</u> in the form of heat.

Lecture (7) - Hydraulic and Pneumatic Circuits - 4th year - Mech. power Engineering Dept.

- The load-sensing system that uses a variable displacement pump has the destroking mechanism set at 13.8 bar,
- This is accomplished by having a separate pilot line from the work port used to establish the minimum pressure to move the load resistance, plus an amount necessary to provide make-up oil for leakage and serve other pilot and auxiliary needs in the system.
- The variable displacement pump would be destroked at 102.8 bar rather than at 172 bar, and deliver 34 L/min to the actuator while permitting only 13.8 bar pressure drop across the control valve with a resulting only 1.065 hp loss in the form of heat.

10

Unloading Circuits

The open-center control valve is probably the simplest example used to unload a circuit when the control valve is in the center position

Open-center circuit with linear actuator

The open-center control value is used to unload both pumps to drain when the control value is in the center position.

Unloading Circuits

12

cylinder control valve is centered, the two-way solenoid valve is energized and opens the pilot drain from the relief valve.

A pilot relief valve controlled by a second pilot operated pressure relief valve.

13

Sequencing Circuits

 Events can be ordered using unequal loading against cylinders of equal area by using electrical limit switches.

Presence step sequence circuit

2. Using an independent cam operated switches to shift control valves to order cycle operations in the desired way.

14

Regenerative Circuits

Regenerative circuits make use of the differential areas between the blank and rod ends of cylinder actuators to increase cylinder velocity without increasing the flow rate from the pump.

15

Synchronous Circuits

Synchronous circuit using flow divider

- 1. Using a mechanical link between both cylinders or rotary actuators together.
- 2. meter an equal amount of fluid to each circuit by using two fixed displacement fluid motors of equal volume or a flow divider.

16

Synchronous Circuits

Flow Divider

17

Synchronous Circuits

Synchronous circuit using equal area cylinders

18

Synchronous Circuits

Correction for minor variation in synchronization at the end of each cycle can be by made using а replenishing circuit to supply make-up oil for that lost due to leakage.

On extension, if cylinder 1 bottoms first, it contacts a limit switch energizing solenoid valve A, which supplies additional fluid to fully extend cylinder 2.

Replenishing synchronous circuit

On retraction, if cylinder 2 bottoms first, it contacts a limit switch energizing solenoid valve A, which supplies additional fluid to retract cylinder 1.

19

Synchronous Circuits

Conveyor fluid motor control circuit

20

Safety Circuits

Fail-safe circuit

Lecture (7) - Hydraulic and Pneumatic Circuits - 4th year - Mech. power Engineering Dept.

21

Operating the threeway manual control valve will have no effect on the circuit unless detented overload valve 3 is reset manually.

Fail-safe circuit with overload protection

Lecture (7) - Hydraulic and Pneumatic Circuits - 4th year - Mech. power Engineering Dept.

Open-center circuit with rotary actuator

Open-center meter-in circuit

Open-center meter-out circuit

Open-center bleed-off circuit with filter and heat exchanger

The two-way safety solenoid valve drains the accumulator when the system is turned off.

Closed-center accumulator circuit

Closed-center circuit with variable displacement pressure compensated pump

Closed-center circuit with variable displacement pressure compensated pump

