

Ahmed MELKholy

<u>Etabs</u> DXF

- 1. Prepare DXF for different floors in Autocad as shown in the given practice in lecture.
- 1. Try to avoid triangle and irregular elements shapes as much as possible
- 2. Choose carefully & fix (0,9) point in Cad & Etabs
- 3. The mesh should be applicable for continuity of the columns and shear walls in all floors
- 4. Check your mesh in Cad many times before working on Etabs
- 5. Delete any thing on layer 0
- 6. Draw Slabs in Cad & (Col, beams, SW) in Etabs

<u>Etabs</u> DXF

- 7. Large Columns supporting spaced parallel beams may be modeled using area elements.
- 8. Two alternatives to model the retaining wall.

Grid 9,10

7- Define Design Data and Material (Slab, Columns, Core..)

7- Design data (Options-Preferences-Concrete Frame Design/Shear Wall Design) ACI318-02 – Cm² -Cm²/m

8- Material properties (Define-Material Properties-Concrete 350) according the considered code

aterial Property Data		Display Con	
Material Name	50MPA	Color	
Type of Material		Type of Design	
Isotropic Orthotropic		Design	Concrete
Analysis Property Data	Ar	Design Property Data (ACI 318-02)	
Mass per unit Volume	0.2448	Specified Conc Comp Strength, I'c	5000.
Weight per unit Volume 🥢	2.4026	Bending Reinf. Yield Stress, fy	42000.
Modulus of Elasticity	3800699.	Shear Reinf. Yield Stress, fys	42000.
Poisson's Ratio	0.2	Lightweight Concrete	
Coeff of Thermal Expansion	9.900E-06	Shear Strength Reduc. Factor	
Shear Modulus	1583624.58		

Wall Pier/Spandrel Design Preferences

Design Code	ACI 318-02
Rebar Units	cm^2
Rebar/Length Units	cm^2/m
Phi (Tension Controlled)	0.9
Phi (Compression Controlled)	0.65
Phi (Shear and/or Torsion)	0.75
Phi (Shear Seismic)	0.6
Pmax Factor	0.8
Number of Curves	24
Number of Points	11
Edge Design PT-Max	0.06
Edge Design PC-Max	0.04
Section Design IP-Max	0.02
Section Design IP-Min	0.0025
Utilization Factor Limit	0.95

9- Define Wall, Column, Beam, Slab Sections

9- beams.... Define-Frame sections (Add Rectangular) .. Make C30x160, C40x90, B25x60, B12x60

9- slabs.... Define-Wall/Slab/..sections (Add slab, add wall) Make W30, W40, Slb20, Slb22 according the considered code

9- Define Wall, Column, Beam, Slab Sections

10- Import your DXF floors

File-Import-DXF floor plan

12- Draw Beams, Col, Shear walls

Draw beams, columns, shear walls with exact cross sections in Etabs

12- Draw Beams, Col, Shear walls

Draw beams, columns, shear walls with exact cross sections in Etabs

12- Draw Beams, Col, Shear walls

Draw beams, columns, shear walls with exact cross sections in Etabs

Select the base points and then, Assign-jointsrestraints and choose fixed

14- Define Diaphragms for floors

Menu: Define-diaphragm-D1,D2,D3,D4.....D10

After assigning all diaphrams

15- Mesh Shear Wall Areas D, L, Equivalent Static EQ ,... Temp, H, Wind, Snow 16- Define Static Load Cases **17-Define Response Spectrum Functions** Only for Spectra Method **18-Define Response Spectrum Cases 19-Define Load Combinations ??Spectra on k** 20-Assign Loads ...D, L, ... Retaining Wall !!.. Scale level 21- P-delta Effect/Dynamic Analysis **26-** If Spectra Method is utilized, 22- Define Mass sourc Scale the Base Shear of Spectra Method 23- Assign Piers to the 0.85 Base Shear of Equivalent Static. ...ECL2012 P141 24- Check mok 27- Re-Run & Check Log File... 25- Run Analyşis & Check Log F -26 28- Checks: Mass Ratio, Drift, Overturning & Sliding **29- Read Straining Actions** 30- Design

16-Static Load Cases ...Define...Static Load Cases

	Load	Туре	SWM	Auto Lateral Loads	Comment	
<u>1</u>	OW	Dead	1		Own Wight	
<u>2</u>	SID	Dead	0		Flooring+Walls+	
<u>3</u>	LN	Live	0		ψ=0.25, Table 8-7	
<u>4</u>	LG	Live	0		ψ=0.5, Table 8-7	
<u>5</u>	LGT	Live	,00		ψ=1.0, Table 8-7	
<u>6</u>	EXA	Quake	0	User Loads	+X dir & Ecc=+0.05	
<u>7</u>	EXB	Quake	0	User Loads	+X dir & Ecc=-0.05	
 <u>8</u>	EYA	Quake	0	User Loads	+Y dir & Ecc=+0.05	
<u>9</u>	EYB	Quake	0	User Loads	+Y dir & Ecc=-0.05	

18-Response Spectra Cases ...Define...Response Spectra Cases

Response Spectrum Case Data		Response Spectrum Case Data
Spectrum Case Name SPECY Structural and Function Damping 0.05 Modal Combination 0.05 • CQC · SRSS · ABS · GMC • 1 • 1 • 2 Directional Combination • SRSS • ABS · Orthogonal SF • Modified SRSS (Chinese) Input Response Spectra Direction Function Scale Factor U1 U2 Eccentricity Eccentricity Eccentricity Cc. Ratio (All Diaph.) 0.05 Override Diaph. Eccen. 0K	Define Response Spectra Spectra Click to: Add/Nel/ Spectrur. Belete Spectrum UK Cancel	Spectrum Case Name SPECIAL Structural ar 0 Function Damping Dampin 1 Dampin 1 0.05 Medal Combination CQC SRSS ABS GMC f1 f2 Directional Combination SRSS ABS Orthogonal SF Modified SRSS (Chinese) Input Response Spectra Direction Function Scale Factor U1 ECL2012 U2 Input U2 Input Excitation angle 0. Eccentricity 0.05 Override Diaph. 0.05 OK Cancel

19-Load Combinations...Define...Load Combinations

	Combination	Equation	
<u>1</u>	SD	OW+SID	
<u>2</u>	SL	LN+LG+LGT	S
<u>3</u>	SDL	OW+SID+LN+LG+LGT	
<u>4</u>	UD	0.90W+0.9SID	
<u>5</u>	UDL	1.4(OW+SID)+1.6(LN+LG+LGT)	G
<u>6</u>	UDLEXA	1.12SD+α SL+EXA	2
<u>7</u>	UDLEXAN	1.12SD+α SL-EXA	
<u>8</u>	UDLEXB	1.12SD+α SL+EXB	2
<u>9</u>	UDLEXBN	1.12SD+ α SL-EXB	
<u>10</u>	UDLEYA	1.12SD+α SL+EYA	~
<u>11</u>	UDLEYAN	1.12SD+α SL-EYA	
<u>12</u>	UDLEYB	1.12SD+α SL+EYB	2
<u>13</u>	UDLEYBN	1 125D+a SILEYB	50
<u>14</u>	UDEXA	0.95D4EXA	
<u>15</u>	UDEXAN	9.9SD-EXA	
<u>16</u>	UDEXB 🛩	0.9SD+EXB	
<u>17</u>	UDEXBN	0.9SD-EXB	
<u>18</u>	UDEYA	0.9SD+EYA	
<u>19</u>	UDEYAN	0.9SD-EYA	
<u>20</u>	UDEYB	0.9SD+EYB	
21	UDEYBN	0.9SD-EYB Ahmed MEL	holy

Comment	Equ
Service Dead (Deflection)	
Serivce Live (Deflection)	
Serivce Dead+Live	
Ultimate d Dead	
Ultimated Dead+Live	
Ultimate Dead+Live+EX+ECC	
Ultimate Dead+Live-EX+ECC	(2, 5)
Ultimate Dead+Live+EX-ECC	(3-5)
Ultimate Dead+Live-EX-ECC	
Ultimate Dead+Live+EY+ECC	
Ultimate Dead+Live-EY+ECC	(2, 5)
Ultimate Dead+Live+EY-ECC	(3-5)
Ultimate Dead+Live-EY-ECC	
Ultimate Dead+EX+ECC	
Ultimate Dead-EX+ECC	(2,0)
Ultimate Dead+EX-ECC	(3-9)
Ultimate Dead-EX-ECC	
Ultimate Dead+EY+ECC	
Ultimate Dead-EY+ECC	(2,0)
Ultimate Dead+EY-ECC	(3-9)
Ultimate Dead-EY-ECC	159

19-Load Combinations

... Define.. Load Combinations

	Combination	Equation	Comment	Equ
<u>22</u>	UDLSpecX	1.12SD+α SL+SpecX	Ultimate Dead+Live+SpecX+ECC	(3-5)
<u>23</u>	UDLSpecY	1.12SD+α SL+SpecY	Ultimat: Dead+Live+SpecY+ECC	(3-5)
<u>24</u>	UDSpecX	0.9SD+Spec X	Ultimate Dead+SpecX+ECC	(3-9)
<u>25</u>	UDSpecY	0.9SD+SpecY	Ultimate Dead+SpecY+ECC	(3-9)

<u>Dynamic</u> Load Combinations

...Assign..Area Loads... Uniform

21- Dynamic & P-A Parameters ...Analyze..Set Analysis Options..

Dynamic Analysis Parameters Number of Modes 30		
Type of Analysis C Eigenvectors C Ritz Vectors		Lnor o
EigenValue Parameters Frequency Shift (Center) Cutoff Frequency (Radius) Relative Tolerance Include Residual-Mass Modes Starting Ritz Vectors List of Loads EXA EXB EYA EYB H LG LN OW OK Cancel	Building Active Degrees of Freedom Full 3D X Full 3D X Plane YZ I Iane Wez Rotation V V V UY V V V UY V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <th>P-Delta Parameters Method Non-iterative - Based on Mass Iterative - Based on Load Combination Iteration Controls Maximum Iterations 5 Relative Tolerance - Displacements 1.000E-04 P-Delta Load Combination 1 Load Case Scale Factor SIDL 1 LG .5 LGT 1 LN .25 DW 1 Delete 0</th>	P-Delta Parameters Method Non-iterative - Based on Mass Iterative - Based on Load Combination Iteration Controls Maximum Iterations 5 Relative Tolerance - Displacements 1.000E-04 P-Delta Load Combination 1 Load Case Scale Factor SIDL 1 LG .5 LGT 1 LN .25 DW 1 Delete 0
		OK Cancel

22- Mass Source ...Define..Mass Source..

...Analyze..Check Model..

25- Run ... Check log file

...Analyze.. Run../// ...File..Last Analysis log File

	A ETABS Nonlinear v9.7.1 - 2012-ECO-A-5000
A <u>n</u> alyze Dis <u>p</u> lay Design <u>O</u> ptions <u>H</u> elp <u>Set Analysis Options</u> <u>Check Model</u> <u>Run Analysis</u> F5	File Edit View Define Draw Select Assig Import New Model C*/I+ N C*/I+ N C*/I+ N C*/I+ N Import Ctrl+ C Ctrl+ S C*/I+ N C*/I+ N
Calculate Dianbragm Centers of Rigidity	Export
Run Static Nonlinear Analysis	<u>Create V Jeo</u> Print Se up Print <u>P</u> review for Graphics Print <u>G</u> raphics Ctrl+P Print Tables Capture Enhanced <u>M</u> etafile Capture <u>D</u> XF File Capture Picture
An	Modify/Show Project Information User Comments and Session Log
	Last Analysis Run Log
	Display Input/Output Text <u>F</u> iles
	Delete Analysis Files
	1 F:\\2012-ECO-A-5000.EDB 2 C:\Users\AMS\\G10.EDB 3 F:\\B4-T4 4 C:\Users\AMS\Desktop\\G1.EDB
	Exit

26.	- <i>S</i> c	cale t	the B	ase S	Shea	rt	for S	pecti	ra	
	N	<i>leth</i>	d				 ETABS Nonlinear v9.7.1 - 201 File Edit View Define New Model Open Save 	Ctrl+N Ctrl+O Ctrl+S	Analyze Display [오오오오오 오 ゐ 險 오오	Design [20] 3- [20] -
STORY	LOAD	LOC	Р	VX	VY	Т	Save <u>A</u> s Import Export <u>C</u> reate V deo			
ROOF	EXA	Top Bottom	-3.906E-06 -3.905E-06	-4.281E+02 -4.372E+02	4.307E-07 4.306E-07	8.097 8.255]	Fint S tup Print Freview fc Gfrichtin Print Graphics Print Table		nput	
ROOF	EYA	Top Bottom	4.882E-06 4.881E-06	2.510E-07 - 2.502E-07 -	4.281E+02 4.372E+02	.8.921] 2.106]	Capture Enhanced Metafile Capture DXF File Capture Picture Modify/Show Project Inforr User Comments and Sessio	nation	ummary <u>R</u> eport teel Frame Design oncrete Frame Design omposite <u>B</u> eam Design)
F19-TP32	EXA	Top Bottom	-3.907E-06 -3.907E-06	-6,494E-02 5-6.58TE+02	2.482E-09 8.665E-10	1.22 1.24	Last Analysis Run Log Display Input/Output Text <u>p</u> elete Analysis Files <u>1</u> F:\\2012-ECO-A-5000.EE	iles S	teel Joist Design hear <u>W</u> all Design	
F19-TP32	EYA	Top Botter	4.900E-05	-4.221É-07 -4.227E-07	-6.494E+02 -6.587E+02	-1.342 Print Output Tab	2 C:\Users\AMS\\G10.EDB bles ysis Results cements	Section Cut Forces	Select Loads	
BS2 F	EXA	Top Bottom	-5.740E-06 -1 -3.740E-06 -1	.548E+03 -1 1.549E+03 -1	.778E-05 .778E-05	F Reacting	ons Duilding Modal Forces Duilding Output	Select Output Select COMB1 Combo DCMPC1 Combo		
BS2 F	EYA	Top Bottom	8.090E-06 8 8.090E-06 8.	.468E-06 -1.: .468E-06 -1.:	548E+03 -: 549E+03 -:	- Print Sort Orc	Jer	DCMPC2 Combo DCMPD1 Combo DCMPD2 Combo DCMPS1 Combo DCMPS2 Combo EXA Static Load EXB Static Load EXA Static Load		OK Cancel
_	M Shea	ust be e ir estim	qual to ated ma	Base anually		First Sto	pries Pile ☐ Append G:\Courses\SAP-Etabs-Course\C	Course\Presentation\Examples	12- 3D High Brows	Clear All
				Ahmed M	EL Kholu		<u> </u>	Cancel		167

Structural and Function Damping		
Damping	0.05	Itom 807_3_3
Modal Combination		
● CQC O SRSS O A	ABS C GMC	
f1 f2		
Directional Combination		
C ICECC		
Input Response Spectra		
Input Response Spectra Direction Function U1 ZONE2A -	Scale Factor	0.85 Vstatic X
Input Response Spectra Direction Function U1 ZONE2A - U2 - UZ UZ	Scale Factor 1.78	0.85 Vstatic X
Input Response Spectra Direction Function U1 ZONE2A • U2 • UZ • Excitation argie	Scale Factor 1.78 0.	0.85 Vstatic X Vdynamic X
Input Response Spectra Direction Function U1 ZONE2A U2 UZ UZ Excitation argle Eccentricity	Scale Factor 1.78 0.	0.85 Vstatic X Vdynamic X
Input Response Spectra Direction Function U1 ZONE2A • U2 • UZ • Excitation argle Eccentricity Ecc. Ratio (All Diaph.)	Scale Factor 1.78 0. 0. 0.05	0.85 Vstatic X Vdynamic X

Ahmed M EL Kholy

	Mode	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
	1	4.07	0.12	7,35	0.00	0.12	7.35	0.00
28- Check Ma	SS /	-31	111	329	2.19	1506	+070	199
	3	2.88	38.57	12.32	0.00	54.43	55.32	0.00
	4	1.07	0.01	0.53	0.00	54.44	55.85	0.00
· - · · · · · · · ·	5	0.77	1.21	9.78	0.00	55.65	65.63	0.00
🖻 🖾 Modal Information						67.37	66.72	0.00
B- D Building Modes						67.37	66.72	0.00
						67.37	66.72	0.00
B-X Building Modal Informat	ion					67.37	66.92	0.00
- Table: Modal Partic	ipation	n Facto	sic	•	N/	67.15	71.79	0.01
M Tables Madel Devia			Datia			57.46	71.79	1.36
I able: Modal Partic	ipating	g mass	Ratio	os		67.71	72.26	1.37
Table: Modal Load	Partic	ipation	Ratio	IS		67.82	72.28	24.99
Table: Bernones S	nantu	Maa	-lar +	(and		67.84	72.30	26.03
	pecur	an acc	elerat	ions		71.58	72.52	37.36
Table: Response S	pectilu	ir Noc	dal Am	nplitud	es	72.91	72.54	40.30
Table: Besponse S	rectr	m Bas	e Rea	ections		73.80	72.74	59.34
			e nee	icdon.	» 	74.20	72.03	58.34
	20	0.24	0.01	0.03	8 31	74.20	72.92	66.65
	20	0.22	0.01	3.85	0.03	74.21	76.78	66.68
	22	0.17	5.08	0.12	0.30	79.30	76.90	66.98
Item 8-7-3-3-1-5	23	0.17	0.07	0.03	9.54	79.38	76.93	76.52
	24	0.15	0.03	3.04	0.05	79.40	79.97	76.57

Item 8-7-3-3-1-5 ECL 2012 ≥90%

0.15 0.03 3.04 0.05 /9.40 /9.9/ /6.5/ 25 0.12 0.09 0.05 8.03 79.49 80.03 84.60 0.11 7.46 0.11 0.16 26 86.95 80.14 84.77 27 0.11 0.42 6.94 0.07 87.37 87.08 84.84 28 0.07 7.32 3.57 0.00 94.69 90.65 84.84 2.73 6.99 97.42 97.64 84.87 29 0.06 0.03 170 0.05 93.24 30 0.00 0.04 8.37 97.42 97.67

₿ [] Design Ov	erwrites		6	alact Out	tout	TT		T 7	_		
B.L] Options/Pr	eferences Dat	a		Clett Ou	iput	U.	DLSp	ecX		tem 8-8	3-3-1- a
	MISCHIANE	n Ark	2F. ta	ITI	ITS	~t			ωσV			
ė-D	Displacem	ents	4 0				U.	Droh			ECL	2012
	- 🛛 Displacen	nent Data				LHT Con	nbo	~				
	- Table:	Point Displacem	ients			DLSPCX 0	Combo		01		< 0.0)05
	Table:	Point Drifts	N: 1		U	DLSPCXO	Combo					
	I able:	Diaphragm CM I Story Drifts	Displac	ements	UC	LSPCYO	Combo		Cano	a	0	
Story	Itom	Load	Daint	v	v	T Comb	DriftY	DriftV	Conc			
ROOF	Max Drift V	LUDI SPCX	278	2.099	5 471	86.05	0.00076	Dimi		- (
ROOF	Max Drift V	UDLSPCX	2023	2.500	28.25	86.05	0.00070	0 00043		N		
POOF	Max Drift Y	UDLSI CX	3023	24.25	29.25	96.05	0 00060	0.0045			Max Drift X	Max Drift V
POOF	Max Drift V	UDI SPCV	2022	25 099	29.25	96.05	0.0000	0.0074)		0.00205	0.00215
F21 TD2	Max Drift Y	UDLSI CI	3025	35.900	30.25	92.25	0 00000	0.00074	X 0 7 1	D	0.00205	0.00213
F21-11 5	Max Drift X	UDLSI CX	2702	30.090	22.01	03.25	0.00090	Q00054	X U. / I	`	0.00710	0.00752
F21-11 5	Max Drift Y	UDLSI CX	2192	36.906	30,430	03.25	0.00086	0.00034	Δν		Safe	Safe
F21-11 3	Max Drift V	UDLSI CI	2702	27 595	22 01	12.25	0.00000	0 00003	Code		0.00500	0.00500
F21-11 5	Max Drift Y	UDLSI CI	2192	37.303	20 450	70.55	0 00000	0.00095	Coue		0.00500	0.00500
F20-113	Max Drift V	UDLSI CX	2702	30.890	39.439	79.55	0.00099	0 00060				
F20-113	Max Drift Y	UDI SPCV	2192	51.005	20 450	79.55	0 00007	0.00000				
F20-11 3	Max Drift X	UDLSI CI	5124	27 595	39.439	79.55	0.00097	0.00105				
T10 TD27	Max Drift Y	UDI SECV	2102	37.303	40.120	79.55	0.00111	0.00105				
710 TD37	Max Drift X	UDLSICA	3192	37.402	40.139	75.05	0.00111	0 00068				
710 TD22	Max Drift Y	UDI SPCV	2113	37.004	40.120	75.05	0.00111	0.00000				
710 TD27	Max Drift X	UDLSPC1	3192	37.402	40.139	75.05	0.00111	0.00116				
F18 TD2	Max Drift Y	UDISPCT	21/3	37.004	40 120	73.85	0.00122	0.00110				
F10-1F2	Max Drift X	UDLSPCA	3192	37.402	40.139	72.15	0.00125	0.00076		_		
F10-1F2	Max Drift Y	UDLSPCX	21/5	37.884	33.580	72.15	0.00125	0.00070				
F10-TF2	Max Drift X	UDLSPCY	3192	37.402	40.139	72.15	0.00125	0.00120				
F16-1P2	Max Drift Y	UDLSPCY	2/75	37.884	33.586	72.15	0.00122	0.00129				171
$r_1/-1P_2$	Max Drift X	UDLSPCX	3192	37.402	40.139	68.45	0.00132					±/±

Story	Load	Loc	P	VX	VY	Т	MX	MY	
TOR	SD	Top	0	-56.65	47.42	-426.647	0	0	
TOR		Bottom	1648.83	0		A! 2	26514 645	6701 675	
ROOF		Тор	4 09.65	0	0	-4 32	81 35 903	94 18.2	riirnino
ROOF	50	Bottom	4.59.20		e		8 0 0 2	-103.503.2.7	
F21-TP3	SD	Тор	6526.81	0	0	-5.379	115004.828	-131985.054	U
F21-TP3	SD	Bottom	7030.2	0	0	-5.822	124244.26	-142028.047	
F20-TP3	SD	Тор	8587.63	0	0	-5.822	150764.997	-170509.854	
F20-TP3	SD	Bottom	9091.91	0	0	-6.307	159341.436	-180571.941	
F19-TP32	SD	Top	11205.29	0	0	-6.307	193887.539	-218584.742	
F19-TP32	SD	Bottom	11708.67	0	0	-6.886	202483.671	-228851.961	
F18-TP2	SD	Тор	13677.32	0	0	-6.886	232299.385	-265629.634	
F18-TP2	SD	Bottom	14187.38	0			ions/rieleienc	es Dala	
F17-TP2	SD	Тор	16156.03	0	88	🗆 Mis	cellaneous Dat	a	Select Output
F17-TP2	SD	Bottom	16667.87	0		ANALY	SIS RESULTS	f1 of 26 table	
F16-TP2	SD	Тор	18636.52	0			I SIS HESOEIS		
F16-TP2	SD	Bottom	19148.35	0	BB-		placements		
F15-TP3	SD	Тор	20705.84	0	B.		actions		Jelec
F15-TP3	SD	Bottom	21231.64	0	Ī		1-11-6		
F14-TP31	SD	Тор	23138.5	0	B .		al information	<u> </u>	H Stite Load
F14-TP31	SD	Bottom	23671.49	0	B.	🛛 Buil	ding Output		LG Static Load 🔤
F13-TP1	SD	Тор	25488.08	0		ė. M R	uilding Output		LN Static Load
F13-TP1	SD	Bottom	26021.64	0			railaing o'atpat		DW Static Load
F12-TP1	SD	Тор	27838.23	0] Table: Center M	Mass Rigidity	Ow/1 Static Load
F12-TP1	SD	Bottom	28371.22	0			Table: Story Sk	nears	Ou/SO Static Mentin
FII-TPI	SD	Тор	30187.81	0					Cancel
FII-TPI	SD	Bottom	30720.81	0		·····	l aple: Inputar	y Area and FLEP	SD Compo
FI0-TP1	SD	Тор	32537.4	0	B.	Sec	tion Cut Force	s	SDEXA Combo
FIO-TPI	SD	Bottom	33083.63	0	1			· · · · · · · · · · · · · · · · · · ·	SDEXAN Combo
F09-TP2	SD	Тор	34917.5	0			us onther		SDEXB Combo
F09-TP2	SD	Bottom	35463.73	0	B-	🔲 🔥 re	a Otlpu		SDEXBN Combo
F08-TP1	SD	Тор	37280.32	0	÷.		II Au out		Clear All
F08-TP1	SD	Bottom	37826.54	0	1 Ť				
F0/-TP1	SD	Top	39643.13	0	B.		ects and Eleme	ents	
F0/-IPI	SD	Bottom	40189.3	0		7.00			
FUG-TPI	SD	Top	42005.55	0		12.002	702542 55	01 4027 (04	
FUO-IPI	SD	Bottom	425073	0		-12.902	703543.55	-81493/.084	
FUS-IFI	SD	Detter	44385.02		0	-12.902	733133.03	-849021.303	
FUS-IFI FOA TDI	SD	Ten	44945.11	0	0	-12.935	771024 909	-0002/2.70	
F04-1F1	SD	Pottom	40703.7	0	0	-12.933	7/1924.090	-094550.501	
F04-111	SD	Top	4/32/.98	0	0	12.909	810604 214	020601 000	
F03-TP1	SD	Bottom	49700.85	0	0	-12 830	810851 783	-950944 111	
F02-TP1	SD	Top	51517.44	0	0	-12.039	840463 883	-930944.111	
F02-TP1	SD	Bottom	52078 73	0	0	-12.035	858622 302	-996280 637	
F01	SD	Top	54375 85	0	0	-12.766	895722 767	-1050533 56	
F01	SD	Bottom	55121 7	0	0	-12 685	907778 895	-1066458 405	
PODIUM	SD	Ton	57896 93	0	0	-12 685	929323 982	-1130610 169	
PODIUM	SD	Bottom	58788.65	0	0	-12.667	942701.728	-1149856 485	
GROUND	SD	Top	63892.79	0	0	-12.667	1018848.553	-1200110.218	
GROUND	SD	Bottom	65651.56	0	0	-12.68	1056718.602	-1212918.137	
BS1	SD	Top	69459.71	0	0	-12.68	1117378.052	-1250412.685	
BS1	SD	Bottom	70901.17	0	0	-12.674	1148390.569	-1261839.498	
BS2	SD	Тор	75801.19	0	0	-12.674	1233765.51	-1301045.575	
DCO	CID			0	•		1	1010	173
BS2	SD	Bottom	77246	0	U	-13	1264548	-1312539	1/2

Read Results of Columns Read Results of Shear Walls Exporting Results to Excel & CSI Pier Local Axes Design of Columns Design of Shear Walls Using Etabs (ACI 318) 174Ahmed MELKholy

Grid 9,10

4- Grid, Axes, Story data according your project

Master story & similar stories (F2 is master)

<u> 3- Options – Graphic Colors - Display</u>

3- Change the windows number if you want Plan View - Story10 - Z = 30 (m) 3-D View **-** X 3-D View Add New Window Arrange Windows 3 (m) C $\left(\begin{array}{c} D \\ U \end{array} \right) \left(\begin{array}{c} E \\ B \end{array} \right) \left(\begin{array}{c} E \\ U \end{array} \right) \left(\begin{array}{c} F \\ U \end{array} \right) \left(\begin{array}{c} F \\ U \end{array} \right) \left(\begin{array}{c} G \\$ 3 (m) 4 3 (m) В H (\mathbf{J}) A) (10) 3-D View - X Ahmed 4

Units...

One Story

▼ Global

4- Change the Horizon if you want

General Object Assignments Othe	er Assignments		Set Display (Options (Ctrl+W)
View by Colors of Object	s 🔹			
Objects Present in View	Special Effects			
Joint Objects	Object Shrink			
Invisible	Object Fill			
Columns	Object Edge			
Beams	Extrude Frames			
Braces	Extrude Shells			
All Null Frames	-		*******	
V Floors	Other Special Items		*****	
Walls	📝 Joint Restraints and Spring:	or of of	XXXXXX	
V Openings	📃 Diaphrag n Extent		5 X X	
All Null Shells	Connections			
Wall Stacks	Story Labe s			
🔽 Links	Dine Islan Luies			
V Tendon	Art bilectural Plan Layers			
📃 Design Strip Laye A	Horizon			
Design Strip Layer 3	Shell Analysis Mesh			
Design Strip Layer Other	Slab Internal Ribs			
	Isolated Column Footings			
	Soil Profile for Joints			
	Soil Profile for Areas			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Apply to All Windows		o ka		
Set to Def	ault View Options			
		X X X°,	$\times$ $\times$ $\times$ $\times$ $\times$	
	Class Apply			

**4- Show bounding Plane if you want** 



				6	Named Units Sets
play Units			** 0		SET AMK
<u>5- Uni</u>	ts Length Unit	Force Temperature Unit Unit	Units Label	Decimal Places	
Structure Dimensions					
Absolute Distance	m		m	Consisten	t Units
Relative Distance					
Structure Area	m		m2	Length U	Jhit (n)
Angles			deg	Force Ur	t toni
Section Dimensions				Tempera	ture lov <b>ION-M</b>
Length	cm		cm	Tempere	
Area	cm		cm2		
Length3	cm		cm3		
Length4	cm		cm4		OK Can
Length6			cm6		
Rebar Area	cm		cm2	6	
Rebar Area/Length	cm2/m		cm2/m	5	U.S. Defaults
Displacements			•		Matria CI Defaulte
Translational Displ	m		m	6	ivietric SI Defaults
Rotational Displ			rad	6	Metric MKS Defaults
Drift				6	
Gen Displ L/Rad	m		m/rad	5	Consistent Units
Gen Displ Rad/L	m ()		rad/m	3	
Forces	K				Show Units Form
Force		tonf	tonf	4	
Force/Length	m	tonf	tonf/m	3	
Force/Area	m	tonf	tonf/m2	3	U.S. Defaults
Moment	m	tonf	tonf-m	4	Metric SI Defaults
Moment/Length	m	tonf	tonf-m/m	4	Matria MKC Defaulta
Stresses					
Modulus	cm	kgf	kgf/cm2	2	Consistent Units
Stress Input	cm	kgf	kgf/cm2	2	
Stress Output	cm	kgf	kgf/cm2	2	SET AMK
Strain	m		m/m	6	Show Units From
Cu:#					Show Units Form





# **7- Define Design Data for Shear Walls**



	ltem	Value	-	
▶ 04	Rebar Shear Material	A615Gr60		
05	Design System Rho	1		
06	Design System Sds	0.5		
07	Importance Factor	1		
08	System Cd	5.5		
09	Phi (Tension Control ed)	0.9		
0	Phi Compression Controlled)	0.65		
11	Phi ( inear and/or Torsion)	0.75		
12	Phi (Shear Seismic)	0.6		
13	Pmax Factor	0.8	=	
14	Number of Curves	24		
15	Number of Points	11		
16	Edge Design PT-Max	0.06		
17	Edge Design PC-Max	0.04		
18	Section Design IP-Max	0.04		
19	Section Design IP-Min	0.0025		
20	Utilization Factor Limit	0.95		
			1	

Selected Items

All Items

Shear Wall Design Preferences for ACI 318-08

All Items Selected Items

OK Cancel

# 7- Define Design Data For Columns

Design Detailing Options Tools H	Help			
I Steel Frame Design	• □ 🖌 🔟 🖷	171	4+ 1√1 🔤 nd	Λ
Concrete Frame Design	<ul> <li>View/Revis</li> </ul>	e Prefere	nces	
Composite Beam Design	View/Re	Concrete	Frame Design Preferences for . \CI 318- \8	
	016		ltem	Value
		01	Desi in Code	ACI 318-08
		02	Multi-kesponse Case Design	Step-by-Step All
		03	Numper of Interaction Curves	24
icrete Frame Design Preferences		4	Number of Interaction Points	11
Device Code	401,10,02	0	Consider Minimum Eccentricity?	Yes
Seismic Design Category	ACI 10-02	▶ 06	Seismic Design Category	С
Number of Interaction Curves		07	Design System Bho	1
Number of Interaction Points	11	00	Design System Edg	0.5
Consider Minimum Eccentricity	Yes	00	Design System Sds	0.5
Phi (Tension Controlled)	0.9	09	Phi (Tension Controlled)	0.9
Phi (Compression Controlled Tied)	0.65	10	Phi (Compression Controlled Tied)	0.65
Phi (Compression Controlled Spiral) Phi (Shear and/or Torsion)	0.7	11	Phi (Compression Controlled Spiral)	0.75
Phi (Shear Seismic)	0.6	12	Phi (Shear and/or Torsion)	0.75
Phi (Shear Joint)	0.85	12	Dhi (Chang Caingia)	0.0
Pattern Live Load Factor	0.75	13		U.D
Utilization Factor Limit	0.95	14	Phi (Joint Shear)	0.85
		15	Pattem Live Load Factor	0.75
		16	Utilization Factor Limit	1

#### **8- Define Material**

8- Material properties (Define-Material Properties-Concrete 350 for vertical elements and 250 for horizontal elements) according the considered code

eneral Data		Material Property Design Data		×
Material Name CON250				
Material Type Concrete	-	Material Name and Type		
Directional Symmetry Type	<b>-</b>	Material Name	CON250	_
Material Display Color	je	Material Ture	Concrete lectronic	
Material Notes Moulty/bhow Note	es	Material Tibe	Concrete, isotropic	
	A	- Lesign Properties for Concrete Materia	als	
laterial Weight and Mass		Specified Concrete Compressive St	renath f'c 200 kaf/c	m ²
Specify Weight Density     Specify Mass De	ensity	opeaned concrete compleasive of	adigat, to any agree	
Weight per Unit Volume 2.5	torif/m²	Lightweight Concrete		
Mass per Unit Volume 0:25492	9 tonf-s²/n	Shear Strength Reduction Fact	tor	
lechanical Property Data				
Modulus of Elasticity, E 22 350	43L kgf/cm ²			
Poisson's Ratio, U				
Coefficient of Thermal Expansion, A 0.00000	99 1/C			
Shear Modulus, G 92233.1	kgf/cm ²			
		OK	Cancel	
esign Property Data				
Modify/Show Material Property Design Data	a			
dvanced Material Property Data				
Nonlinear Material Data Material Data	noing Properties			
	iping repondot			
Time Dependent Properties				

#### **8- Define Material**

8- Material properties (Define - Material Properties – Steel RFT 36/52 for ribbed bars and Steel RFT 24/48 for smooth bars such as ties in columns)



### 9- Define Wall, Column, Beam, Slab Sections

#### 9-beams.... Define-Frame sections (Add Rectangular) .. Create C30x100, C40x90, B25x60, B12x60





### **9- Define Wall, Column, Beam, Slab Sections** 9- Slabs.... Define- Slab.. sections .... Slab20 and

Slab22

General Data	<b>9.3.</b> Stabs		
Property Name	Slab20	Property/Stiffness Modi icati	
Slab Material	CON250		
Notional Size Data	Modify/Show Notional Size	Property Stiffness Modifiers for	Analysis
Modeling Type	Shell-Thin	Membi ane f11 Direction	1
Modifiers (Currently Default)	Modify/Show	Nembrane f22 Direction	1
Display Color	Charge	Membrane f12 Direction	1
Property Notes	Modify /Show	Bending m11 Direction	0.25
		Bending m22 Direction	0.25
Property Data		Bending m12 Direction	0.25
Туре	Slab	Shear v13 Direction	1
Thickness	20	cm Shear v23 Direction	1
$\square$	1	Mass	1
		Weight	1
		ОК	Cancel

192

°_XKXXXXX

# 9- Define Wall, Column, Beam, Slab Sections

9- Walls.... Define- Wall.. sections .... W30 and W40

9.	4. Walls	. ()	
General Data Property Name Property Type Wall Material Notional Size Data Modeling Type Modifiers (Currently User Specified) Display Color Property Notes Property Data Thickness	W30 Specified CON350 Modify/Show lol o tal 5 ze. Shell-Thin Mc tify/Show Change Modify/Show	Property/Stiffness Modil cation is a Property. Stiflness Modifie's for Analy Membrine f11 Direction Membrane f22 Direction Membrane f12 Direction Bending m12 Direction Bending m12 Direction Shear v13 Direction Shear v23 Direction Mass Weight	x 0 0 0 0 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
ОК	Cancel	ОК	Cancel

# 9- Define Wall, Column, Beam, Slab Sections

#### Modifiers....

	ECL 12	Euro Code 8	IBC 2015	MUBC 97
Column	0.7	0.5	$\sqrt{2}$	0.7
Shear Wall	0.35	0.5	-0.35	0.35
Beam	0.5	0.5	0.35	0.35
Slab	0.25	0.5	0.25	0.25

These modifier for M1,M2,M12 Egyptian RC Code - Chapter 6 Egyptian Loads Code - Chapter 8 International Building Code 2015 Uniform Building Code 1997 **10- Import your DXF floors** 

#### **File-Import-DXF floor plan**



 Select Layers for Plan Items options. Check the check boxes to select beams, columns, floors and openings to be imported into ETABS, or select the zero check box to exclude that layer type from the import. Use the Default Properties drop-down lists to select properties for the beams, columns and floors, which will be imported into ETABS as assignments. ETABS will import 3dFace and Polyline entities in the DXF drawing as floors or openings and line entities as beams/columns.

1.75

المودل بعد سحبه و تغير قطاع البلاطة بالقطاع الفعلى



11-Select All ....and then goto Assign... Shell .... Slab Section .... and choose Slab20

# **12- Draw Beams, Col, Shear walls**

# Draw beams, columns, shear walls with exact cross sections in Etabs



# **12- Draw Beams, Col, Shear walls**

# Draw beams, columns, shear walls with exact cross sections in Etabs



### **12- Draw Beams, Col, Shear walls**

# Draw beams, columns, shear walls with exact cross sections in Etabs



### **13- Fix the base points**

#### Select the base points and then, Assign-jointsrestraints and choose fixed








#### **14- Assign Diaphragms for floors Menu: Select-by story- strory2** Assign-Shell- Diaphragm .... D02 ETABS Nonlinear v9.1.4 - Mr. el-01 - F 🗙 View Define Draw Select halyze Display Design Options Help Assign E G ◎●●●● 10 34略唿(金◆ 22回 名、口口开始、《 100 石。 🚾 Plan View - F2 - Elevation 6.4 Diaphragms 📃 🗖 🔀 🚾 3-D View Diaphr - I X -N 1 ж • 1.20 -Diap Click to: adm: D1 D1 Add New Diaphragm D2 D3 D4 D5 D6 D7 Modify/Show Diaphragm T 4 Delete Diaphragm all D8 OK ps clr® Cancel NR. Disconnect from All Diaphragms 4 -+4 H × -14 4 442 Points, 10 Lines, 415 Areas, 1660 Edges selected X5.16 Y20.44 Z6.40 GLOBAL Top-m 3 ETABS 🛃 start 🛅 6 Windo.. 🕑 Windows . 🕙 Hotmail - a. T BOOK ETA ... AutoCAD . EasyLingo CropImag... Document.. 🔍 🔜 🏤 K 🗐 🛛 10:24 PM

**15- Mesh Shear Wall Areas** D, L, Equivalent Static EQ ,... Temp, H, Wind, Snow 16- Define Static Load Cases **17-Define Response Spectrum Functions** Only for Spectra Method **18-Define Response Spectrum Cases 19-Define Load Combinations ??Spectra on k** 20-Assign Loads ...D, L, ... Retaining Wall !!.. Scale level 21- P-delta Effect/Dynamic Analysis **26-** If Spectra Method is utilized, 22- Define Mass sourc Scale the Base Shear of Spectra Method 23- Assign Piers to the 0.85 Base Shear of Equivalent Static. ...ECL2012 P141 24- Check mok 27- Re-Run & Check Log File... 25- Run Analyşis & Check Log F -26 28- Checks: Mass Ratio, Drift, Overturning & Sliding **29- Read Straining Actions** 30- Design

#### 15-Mesh (Vertically) Shear Wall Areas

#### .. Two Alternatives

#### ... 1- Bad Alternative ... Edit... Shell .. Divide Shells



<u>15-Mesh</u>	<u>(Vertically) Shear Wall Areas</u>	
Assign Analyze Assign Joint Joint Joint Frame Shell Joint Link Tendon Joint Loads Frame Loads Shell Loads Shell Loads Tendon Loads Clear Display of Assigns	sign A Contractive of the second seco	esh
Copy Assigns Paste Assigns	Advanced - Modify/Show Auto Rectangular Mesh Settings   OK   Close   Apply     Pier Label   Spandrel Label   Spandrel Label   Wall Hinge   Reinforcement for Wall Hinge   Floor Auto Mesh Options   Wall Auto Mesh Options	
E P L	the share of the s	206



## 16- P-Л Parameters ...Define.. P-Delta Options..



#### 17- Static Load Cases ...Define.. Load Patterns

	Load	Туре	SWM	Auto Lateral Loads	Comment	
<u>1</u>	OW	Dead	1		Own Wight	
<u>2</u>	SID	Dead	0		Flooring+Walls+	
<u>3</u>	LN	Live	0		ψ=0.25, Table 8-7	
<u>4</u>	LG	Live	0	, N	ψ=0.5, Table 8-7	Denne
<u>5</u>	LGT	Live	0	ed	ψ=1.0, Table 8-7	LOAU CASES
<u>6</u>	EXA	Quake	0<	User Loads	+X dir & Ecc=+0.05	check
<u>7</u>	EXB	Quake	0	User Loads	+X dir & Ecc=-0.05	every case
<u>8</u>	EYA	Quake	0	User Loads	+Y dir & Ecc=+0.05	
<u>9</u>	EYB	Quake	0	User Loads	+Y dir & Ecc=-0.05	209

## 18- Mass Source

## ...Define..Mass Source..



## **19- Modal Analysis** ...Define ... Modal Case





## 21-Response Spectra Load Cases ...Define.. Load Cases .. Response Spectrum

Load Case Data	the last two		Load Case Data	a 1646 Mag	×
General Load Case Name Load Case Type Exclude Objects in this Group Mass Source Loads Applied Load Type Load: Nar Acceleration + U1	SPECX Response Spectrum Not Applicable Previous (MsSrc1) me Function Scale Factor ECL2012 1	Design	General Load Case Name Load Case Type Exclude Objects in this Group Mass Source Loads Apriled Loads Apriled Load Type Loy d Nam Acceler, tion UZ	SPECY Response 5 ectr. m Not Appl, abl. Peyduer (MsSrc1) e Function Scale Fa [ECL2012]	ctor Add Design
Other Parameters Modal Load Case Modal Combination Method Include Rigid Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Other Parameters Modal Load Case Modal Combination Method Include Rigid Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	
Earthquake Duration, td Directional Combination Type Absolute Directional Combination Modal Damping Constant at Diaphragm Eccentricity 0.05 for Al C	SRSS SCale Factor 0.05 Modify/Show Diaphragma OK Cancel		Earthquake Duration, td Directional Combination Type Absolute Directional Combination Modal Damping Constant at 0 Diaphragm Eccentricity 0.05 for All Du	SRSS Scale Factor 05 Modfy/ OK Cancel	





### 22-Load Combinations...Define...Load Combinations

	Combination	Equation	
<u>1</u>	SD	OW+SID	
<u>2</u>	SL	LN+LG+LGT	S
<u>3</u>	SDL	OW+SID+LN+LG+LGT	
<u>4</u>	UD	0.9OW+0.9SID	
<u>5</u>	UDL	1.4(OW+SID)+1.6(LN+LG+LGT)	G
<u>6</u>	UDLEXA	1.12SD+α SL+EXA	.2
<u>7</u>	UDLEXAN	1.12SD+α SL-EXA	
<u>8</u>	UDLEXB	1.12SD+α SL+EXB	n
<u>9</u>	UDLEXBN	1.12SD+ $\alpha$ SL-EXB	
<u>10</u>	UDLEYA	1.12SD+α SL+EYA	
<u>11</u>	UDLEYAN	1.12SD+α SL-EYA	
<u>12</u>	UDLEYB	1.12SD+α SL+EYB	0
<u>13</u>	UDLEYBN	1125D+q SILEYB	00
<u>14</u>	UDEXA	0.9514EXA	
<u>15</u>	UDEXAN	9.9SD-EXA	
<u>16</u>	UDEXB 🦊	0.9SD+EXB	·
<u>17</u>	UDEXBN	0.9SD-EXB	
<u>18</u>	UDEYA	0.9SD+EYA	
<u>19</u>	UDEYAN	0.9SD-EYA	
<u>20</u>	UDEYB	0.9SD+EYB	
21	UDEYBN	0.9SD-EYB Ahmed MEL	Sholu

Comment	Equ
Service Dead (Deflection)	
Serivce Live (Deflection)	
Serivce Dead+Live	
Ultimated Dead	
Ultimated Dead+Live	
Ultimate Dead+Live+EX+ECC	
Ultimate Dead+Live-EX+ECC	(3,5)
Ultimate Dead+Live+EX-ECC	(3-3)
Ultimate Dead+Live-EX-ECC	
Ultimate Dead+Live+EY+ECC	
Ultimate Dead+Live-EY+ECC	(3.5)
Ultimate Dead+Live+EY-ECC	(3-3)
Ultimate Dead+Live-EY-ECC	
Ultimate Dead+EX+ECC	
Ultimate Dead-EX+ECC	(2 0)
Ultimate Dead+EX-ECC	(3-9)
Ultimate Dead-EX-ECC	
Ultimate Dead+EY+ECC	
Ultimate Dead-EY+ECC	(2 0)
<b>Ultimate Dead+EY-ECC</b>	(3-9)
Ultimate Dead-EY-ECC	214

## **22-Load Combinations**

### ... Define.. Load Combinations

	Combination	Equation	/ Comment	E	Equ
<u>22</u>	UDLSpecX	1.12SD+α SL+SpecX	Ultima e Dead-Hive+Spe	ecX+ECC (3	3-5)
<u>23</u>	UDLSpecY	1.12SD+α SL+SpecY	Ultimat: Dead+Live+Spe	ecY+ECC (3	<b>3-</b> 5)
<u>24</u>	UDSpecX	0.9SD+Spec X	Ultimate Dead+Spec	K+ECC (3	3-9)
<u>25</u>	UDSpecY	0.9SD+SpecY	Ultimate Dead+Specy	V + ECC (3)	<b>3-9</b> )

<u>Dynamic</u> Load Combinations



#### ...Assign.. Shell Loads... Uniform



## 24- DOF

## 24 24- Check Model

# ...Analyze.. Set DOF.. ...Analyze.. Check Model..

<i>mial</i>	y 20 DEL	LUAU	asts	io nu	E le	Edit View	Define Di	raw Select	Assi
4 00	huno D					New Model		Ctrl+	۴N
	lyze Kl		4 4	Cla la	9	Close		Shint+Cur	÷Ε
<b>FIIC</b>	Snow Inj		utput	<i>me .10</i>		Save SaveAs.	J	Ctrl Shift+Ctrl	+S +S
					1	Import			)
			$ \sim $		100	Export			,
Case	Туре	Status Actio	° ⇒iC		_				
Modal	Modal - Ritz	Not Run Run		0		Create Video			1
OW	Linear Static	Not Run Run				Print Graphics		Ctrl-	+ P
SID	Linear Static	Not Run 🔛 🕅			-	· · · · · · · · · · · · · · · · · · ·			
LN	Linear Static	NutRun lun	<u> </u>		Ш	Create Report			
LG	Linear Static	Not Run Run			*	Cantura Dictur	~		
EVA	Linear Static	Not Din Run	- U		<b>r</b>	Capture Pictur	c		
1.68					0	Project Inform	ation		
Monitor Opt	ons	Diaphragm Centers of Rigidity			•	Comments an	d Log	Shift+Ctrl+	+C
vays Show ver Show		Calculate Diaphragm Cent	ers of Rigidity		5 Y	Show Input/O	utput Text Files	Shift+Ctrl	+F
	- secondar				Sciences				
Show Anter									
Show Anter									
Show Ane	re tables to Microsoft Access or XML	fter run completes							
Show Anter lar Output Automatically sa	re tables to Microsoft Access or XML a	fter run completes							
r Output Itomatically sa me C:1	ve tables to Microsoft Access or XML a Users\Ahmed\Desktop\iTi\M18.mdb	ifter run completes							

	Mod							
	1							
<b>26- Check Mas</b>	<b>S</b> 7							
	3							
Model Explorer	4							
Nodel Display Tables Reports Detailing	5 6							
	7							
- Model	8							
	9							
+ Options	10							
Response Spectrum Functions	11							
Time History Functions	12							
	13							
-Results								
+- Displacements								
+ Reactions	116							
- Modal Results	17							
Modal Periods and Frequencies	18							
	19							
Model Load Dat to Mathematica	20							
	21							
Item 8-7-3-3-1-5	22							
	23							
ECL 2012	24							
	25							
> 90%	20							
	28							
	20							

lode	Period	UX	UΥ	UZ	SumUX	SumU Y	SumUZ	
1	4.07	0.12	7.35	0.00	0.12	7.35	0.00	
24	23 63		3 4 5	559	<b>015.</b>	299	0.00	
3	2.88	38.57	15.32	0.00	-54.43	55.32	0.00	
4	1.07	0.01	0.53	0.00	54.44	55.85	0.00	
5	0.77	1.21	9.78	0.00	55.65	65.63	0.00	
6	0.64	11.72	1.08	0.00	67.37	66.72	0.00	
7	0.55	0.00	0.00	0.00	67. <mark>3</mark> 7	66.72	0.00	
8	0.55	0.00	0.00	0.00	67.37	66.72	0.00	
9	0.53	0.00	0.21	0.00	67,37,	66.92	0.00	
10	0.36	0.08	4.87	0.00	16 <b>7.45</b>	71.79	0.01	
11	0.34	0.00	0.00		67.46	71.79	1.36	
12	0.33	0.25	0.47	0.01	67.71	72.26	1.37	
13	0.32	0.12	0.01	23.62	67.82	72.28	24.99	
14	0.30	0.02	0.02	1.04	67.84	72.30	26.03	
<b>A</b>	0.29	3.73	0.22	11.34	71.58	72.52	37.36	
16	0.28	1.33	0.02	2.94	72.91	72.54	40.30	
7	0.27	0.89	0.20	11.56	73.80	72.74	51.87	
18	0.25	0.02	0.09	6.47	73.82	72.83	58.34	
19	0.24	0.38	0.09	0.00	74.20	72.92	58.34	
20	0.22	0.01	0.01	8.31	74.21	72.93	66.65	
21	0.21	0.01	3.85	0.03	74.22	76.78	66.68	
22	0.17	5.08	0.12	0.30	79.30	76.90	66.98	
23	0.17	0.07	0.03	9.54	79.38	76.93	76.52	
24	0.15	0.03	3.04	0.05	79.40	79.97	76.57	
25	0.12	0.09	0.05	8.03	79.49	80.03	84.60	
26	0.11	7.46	0.11	0.16	86.95	80.14	84.77	
27	0.11	0.42	6.94	0.07	87.37	87.08	84.84	
28	0.07	7.32	3.57	0.00	94.69	90.65	84.84	
29	0.06	2.73	6.99	0.03	97.42	97.64	84.87	
30	0.05	0.00	0.04	8.37	97.42	97.67	93.24	9

Story Loa	d Loc	Р	VX	VY	Т	MX	MY	
ROOF SPEC	CX Top	107.15	156.66	45.99	2900.4	2566.3	3776.6	
27- 57909 510	🔒 B 🔊 🖓	<b>A</b>	-51.1	4835	3 00 4 3	2521.2	3121	<b>rtra</b>
ROOF SPEC	CY Top	129.63	73.96	160.78	4434.3	3387.1	3335.7	
DOOT SDEC	Pottom	133.82	77.32	168.13	4616.3	3191.4	3322.6	
Model Explorer	Top	1000.26	480.77	213.44	10200	18714	23759	
Model Display Tables Reports Detailing	ottom	1001.73	484 26	214 27	10232	19030	24433	
- Tables		1001.75	101.20	160.00	10252	17050		
. • • Model		Story	Load Case/Co	mbo Lo	ocation	P		VX VY tonf tonf
	Story1	0 5	PECX Ma:	Filter: 0	W	$\boldsymbol{\Lambda}$	JI, VY,	353 31.6063
Response Spectrum Functions	Story 1	0 5	PECY Ma:	S	PECX Max			778 49.5168
Time History Functions	Story9	s s	PECX Ma:	1	Non-blanks		- 3	885 46.3979
Eoad Cases	Story9	s s	PECY Ma	Clear Filte	er .		3	465 72.9143
Results     Isplacements	Story8	s	PECX Ma:	Clear All	Filters		9	794 51.4274
Image: Beautions	Story8			C. An	n din n			322 80.5475
- Modal Results	Story7		SPECX La:				4	806 53.0107
···· Modal Periods and Frequencies	Story	· · · · · · · · · · · · · · · · · · ·	SPECY Ma:			7	788 83.9205	
Modal Participating Mass Ratios	itory6		SPECX Ma:			2	72 54.9188	
- Modal Participation Factors	S ory6	s	<u> SPECY Ma</u> , 📔 Сору				5	686 87.6585
···· Modal Direction Factor	Stury5	S	SPECX Max Bottom 0		98.1		119 62.4232	
Response Spectrum Modal informa	nip) Tara	1270.10	210.20	(22.02	20204	20810	20554	
Centers of Mass and Digitity	Top	13/9.18	318.39	032.82	20304	29819	29554	
Story Forces	ottom	1391.24	320.97	651.32	20648	31137	30071	
Story Stiffners	Тор	1207.96	676.67	248.22	13402	23108	30132	
BS1 SPEC	CX Bottom	1222.49	679.62	250.86	13571	23830	31332	
BS1 SPEC	CY Top	1463.22	325.39	705.29	22258	32078	30615	
BS1 SPEC	CY Bottom	1480.90	327.88	706.75	22391	33568	31119	
BS2 SPEC	CX Top	1302.42	722.48	314.20	16713	25262	31749	Va
BS2 SPEC	X Bottom	1325.96	738.81	332.40	17658	26175	33099	vaynamic
BS2 SPEC	CY Top	1578.37	397.70	734.71	23113	35072	31737	
BS2 SPEC	CY Bottom	1607.10	419.72	756.40	23273	36796	32304	220

						120 N	Model Explore	er			
27 6	Yoo lo	the Dee		haa		Model	Display Tab	les Rep	oorts Detaili	ng	
<u> </u>	ocale (	lie Das	e SI	<b>16</b> 4			Model	<i>iec</i>			
		7				-	Analysis				
	Vleth	<b>NA</b>						<b>C</b>			
4							H Response	Spectru ory Euroct	m Functions		
							E Load Ca	ry runce rs	00113		
STORY LO	AD LOC	P V	X	VY			⊡ - Results				
							🕀 Displa	cements			
DOOF EVA	Tan	3 006E 06 1 391	E+02 4	207E 07	0 00		🕂 - Reat	a nris			
KUUF LAA	Rottom	-3.900E-00 -4.201	$E \pm 02 4$ .	306E 07	0.09		H Muda	I Results	ode and Fred	uencies	
1	Dottom	-5.70512-00 -4.572	E 102 4.	300E-07	0.23.			odal Part	ticipating Mas	s Ratios	
ROOF EVA	Ton	4.882E-06 2.510	E-07 -4.2	281F+02	8.92		M	odal Load	d Participation	Ratios	
	Bottom	4.881E-06 2.502	E-07 -4.3	2E+02	2.10		M	odal Part	ticipation Fac	tors	
			Δ	0			M	odal Dire	ction Factors		
F19-TP32 EX	А Тор	-3.907E-06 -6,49	4E-02 2	.482E-09	1.22		- R	esponse	Spectrum Mo	dal Informa	ation
	Bottom	-3.907E-06 6.58	STE+ 02 8	8.665E-10	1.2		E-Suuc	enters of	f Mass and Ri	nidity	
			V V					tory Forc	es	gioney	
F19-TP32 EY	A Top	4.900E-00 -4.22	1E-07 -6.	.494E+02	-1.34		S	tony Stiff	ness		
	Bottom	1 0005-060-4.227	7E-07 -6.	587E+ Stor	У	Load C-	Filter: EXA	1.000	- YX	tor	Y nf
		A AAAA		Story7	EXA		EXB			0	
DC2 EVA	Top		L03 1 7	Story7	EYA		EYB LG		-	-170	
D52 EAA	Bottom	-5.740E-00 -1.546E	+03 -1.77 +03 1 77	78F 05 ^{Story6}	EYA		Clear Filter			-200	
	Dottoll	- <b>J</b> ./40E-00 -1.J49E	105 -1.7	Story5	EXA		Clear All Filters			0	:
BS2 EYA	Top	8.090E-06 8.468E-	06 -1.548	Storys SE+03 Story4	EXA		Sort Ascending Sort Descending	1		-225	
202 200	Bottom	8.090E-06 8.468E-	06 -1.549	E+03 Story4	EYA		Clear Sort	,		-245	
				Story3	EXA	1	Сору			0	
Mund	ho oqual	to Bogo		Story2	EXA			Bottom	-270	0	
- WIUSU	be equal	to Dase		Story2	EYA			Bottom	0	-270	
Shear of	stimated	manually		Story1 Story1	EXA			Bottom Bottom	-277	0	
oncar c		manually	1000 0							22	)1
		Ah	med III Ee	L'Kholy						<u> </u>	41

Spectrum Case Arethood Structural and Function Damping Damping Damping 0.05 Modal Combination CQC SRSS ABS GMC 1 Directional Combination Scale Factor U1 ZONE2A C U2 C Excitation angle Eccentricity Ecc. Ratio (All Diaph.) OVerride Diaph. Eccen. OK Cancel	General       Load Case Name       Design         Load Case Type       Exclude Objects in this Group       Item 8,7-3-3-1-8         Mass Source       Item 8,7-3-3-1-8         Loads Applied       Item 8,7-3-3-1-8         Loads Applied       Item 8,7-3-3-1-8         Loads Applied       Scale Tactor         Loads Applied       Item 8,7-3-3-1-8         Loads Applied       Scale Tactor         Acceleration       U1         Load Nr/me       ECL2012         Acceleration       U1         Acceleration       U1         Acceleration       U1         Mass Source       O.855 V static X         Mass Combine       Second Frequency 12         Mass Combine       Second Frequency 12         Mass Combination Type       SHSS         Absolute Directional Combination Scale Factor       Modify/Show         Modal Damping       Constant at 0.05       Modify/Show         Diaphragm Eccentricity       0.05 for All Diaphragms       Modify/Show
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Response Spectrum Case Data		
27- Scale the B Spectrum Case Name SPECY Structural and Funktion Debts hod Damping 0.05	General Load Case Name Load Case Type Evolution Objects in this Conver	SPECY Response Spectrum Net Application
Scale Factor SpecY	= Scale Factor	
Directional Combination     SRSS     C ABS Orthogonal SF     O Modified SBSS (Chinese)	0.85 Vstatic Y	Delete Advanced
Input Response Spectra Direction Function	Nod: Combination Method Vdynamic Y Rigi	Modal   CQC  Id Frequency, f1  Id Frequency, f2
U2 ZONE 24 • 174	Earthquake Duration.td	
ECC. House (on Drapin)	<b>!!!</b> Check Log File	Cancel
OK Cancel	Check Base She	ar 223

Model	Model Explorer	S Reports Data	, ►	×	Out	put	U	DLSp	ecX	Tf	em <b>8-</b> 8	<b>-3-1-</b> a
28	bles Model	<b>IECK</b>	D	ri	t Sec	t	U	DLSp	ecY			2012
	Analysis Options Response Spectrum Functions					LHT Com LHTN Co LSPCX C	bo mbo ombo	^		< 0.005		
	Time History Functions     Load Cases     Results					LSPCX0 LSPCY C LSPCY0	Combo ombo Combo		Canc			
Sto RO	in Displace	ements nt Displacements nt Displacements	Absolute		71	Z 86.95	DriftX 0.00076	DriftY			UV	
RO RO	···· Joir ···· Joir ···· Joir	nt Velocities - Relat nt Velocities - Absol nt Accelerations - R	ive lute telative		25 25	86.95 86.95	0.00069	0,90043			Max Drift X	Max Drift Y
RO F21-	Joint Accelerations - Absolute     Joint Drifts     Joint Drifts     Diaphragm Center of Mass Displacements					86.95 83.25	0.00090	0.00074.	X 0.7	R	0.00205 0.00716	0.00215 0.00752
F21- F21-	···· Dia ···· Dia ···· Sto	phragm Max/Avg D phragm Acceleratio ry Drifts	orifts ons		91 59	83.25 83.25	0.00086	0.00054	Xv		0.00358 Safe	0.00376 Safe
F21- F20-TP3 F20-TP3	Max Drift X	UDLSPCX	3124 2792	36.896 37.584	39.459 /33.91	79.55	0.00099	0.00093	Cour	e	0.00500	0.00500
F20-TP3 F20-TP3	Max Drift X Max Drift Y	UDLSFCY UDLSFCY	3124 2 192	.6.896 37.585	39.459 33.91	79.55 79.55	0.00097	0.00105			OR	
519-TP32 519-TP32	Max Drift X Max Drift Y	UDLSPCX UDLSPCX	3192 2775	37.402 37.884	40.139 33.586	75.85 75.85	0.00111	0.00068			Spec	Κ
519-TP32 519-TP32	Max Drift X Max Drift Y	UDLSPCY UDLSPCY	3192 2775	37.402 37.884	40.139 33.586	75.85 75.85	0.00111	0.00116			Specy	
F18-1P2 F18-TP2 F18 TP2	Max Drift X Max Drift Y	UDLSPCX UDLSPCX	3192 2775	37.402 37.884	40.139 33.586	72.15	0.00123	0.00076				
F18-TP2 F17-TP <u>2</u>	Max Drift Y Max Drift X	UDLSPCY UDLSPCX	2775 3192	37.402 37.884 37.402	40.139 33.586 40.139	72.15 72.15 68.45	0.00123	0.00129				224

Story	Load	Loc	P	VX	VY	T	MX	MY	
TOR	SD	Top	0	-56.65	47.42	-426.647	0	0	
TOR		Bottom	1648-83	0		41 2	26514 645	16701.675	
ROOF		Тор	4 09.65	0	0	-4 32	81 35 903	94 15.2	
ROOF	50	Bottom	4.69.20		e		8 0.2	-103503.2.7	
F21-TP3	SD	Тор	6526.81	0	0	-5.379	115604.828	-131985.054	U
F21-TP3	SD	Bottom	7030.2	0	0	-5.822	124244.26	-142028.047	
F20-TP3	SD	Тор	8587.63	0	0	-5.822	150764.997	-170509.854	
F20-TP3	SD	Bottom	9091.91	0	0	-6.307	159341.436	-180571.941	
F19-TP32	SD	Top	11205.29	0	0	-6.307	193887.539	-218584.742	
F19-TP32	SD	Bottom	11708.67	0	0	-6.886	202483.671	-228851.961	
F18-TP2	SD	Тор	13677.32	0	0	-6.886	232299.385	-265629.634	
F18-TP2	SD	Bottom	14187.38	0			ions/Fielelenc	es Dala	
F17-TP2	SD	Тор	16156.03	0	BB-	🗆 Mis	cellaneous Dat	a	Select Output
F17-TP2	SD	Bottom	16667.87	0	- M	ANALY	SIS BESHITS	f1 of 26 table	
F16-TP2	SD	Тор	18636.52	0		C D.			
F16-TP2	SD	Bottom	19148.35	0	B.		placements		- Salad
F15-TP3	SD	Тор	20705.84	0	B.	□ Rea	actions		Jelec
F15-TP3	SD	Bottom	21231.64	0	Ĩ		1-11-6		
F14-TP31	SD	Тор	23138.5	0	<b>H</b> .		al information	K	H State Load
F14-TP31	SD	Bottom	23671.49	0	Ė.	🖾 Buil	ding Output		LG S atic Load 🔚
F13-TP1	SD	Тор	25488.08	0			uilding Output		LN Static Load
F13-TP1	SD	Bottom	26021.64	0			railaing o'atpat		Dw Static Load
F12-TP1	SD	Тор	27838.23	0			] Table: Center N	Mass Rigidity	DW1 Static Load
F12-TP1	SD	Bottom	28371.22	0			Table: Story Sk	hears	OV/CO Statia Manin
F11-TP1	SD	Тор	30187.81	0					Cancel
F11-TP1	SD	Bottom	30720.81	0		1	J Lable: Inputary	y Area and FLLF	SD Combo
F10-TP1	SD	Тор	32537.4	0	i ini⊧	□ Sec	tion Cut Force	s	SDEXA Combo
F10-TP1	SD	Bottom	33083.63	0	Ī				SDEXAN Combo
F09-TP2	SD	Тор	34917.5	0	H		us chatac		SDEXB Combo
F09-TP2	SD	Bottom	35463.73	0	BB-	I .\re	a Otlpu		SDEXBN Combo
F08-TP1	SD	Тор	37280.32	0	L				Clear All
F08-TP1	SD	Bottom	37826.54	0	1 1				
F07-TP1	SD	Тор	39643.13	0	B B.	🗆 Obj	ects and Eleme	ents	
F07-TP1	SD	Bottom	40189.35	0		n.Ur			
F06-TP1	SD	Тор	42005.55	0		0			
F06-TP1	SD	Bottom	42567.13	0		-12.902	703543.55	-814937.684	
F05-TP1	SD	Top	44383.32		0	-12.902	/33155.05	-849021.305	
F05-IPI	SD	Bottom	44945.11	0	0	-12.935	/42312./98	-8602/2./6	
F04-IPI	SD	Top	40/0]./	0	0	-12.935	7/1924.898	-894350.381	
F04-1P1	SD	Bottom	4/32.98	0	0	-12.909	/81082.114	-905008.28/	
F03-1P1	SD	Top	49139.57	0	0	-12.909	810094.214	-939691.909	
F03-1F1	SD	Bottom	49/00.85	0	0	-12.039	019031./03	-950944.111	
F02-1F1	SD	Pottom	52079 72	0	0	-12.039	959622 202	-905027.752	
F02-1F1	SD	Top	54275.95	0	0	-12.700	905722.767	-990200.037	
FOI	SD	Pottom	55121 7	0	0	-12.700	007779 905	1066459 405	
PODIUM	SD	Ton	57806 02	0	0	12.003	020222 002	1120610 160	
PODIUM	SD	Bottom	58788 65	0	0	-12.005	942701 728	-1140856 485	
GROUND	SD	Top	63892 70	0	0	-12.007	1018848 553	-1147030.403	
GROUND	SD	Bottom	65651 56	0	0	-12.00/	1056718 602	-12120110.210	
RSI	SD	Top	69459 71	0	0	-12.00	1117378 052	-1250412 685	
RSI	SD	Bottom	70901 17	0	0	-12.00	1148300 560	-1261830 408	
BS1 BS2	SD	Ton	75801.19	0	0	-12.674	1233765.51	-1301045.575	
		roh	10001117		0	1		1001040.070	
BS2	SD	Bottom	77246	0	0	-13	1264548	-1312539	225



**Read Results of Columns Read Results of Shear Walls** Exporting Results to Excel & CSI Pier Local Axes Design of Columns Design of Shear Walls Using Etabs (ACI 318) Ahmed MELKholy 227







Ahmed MELKholy



# Adjust Point Style, Draw Raft boundaries, DXF..





# Load Combinations (Working & Ult.), Auto Mesh

#### ...



## Run, Check Bearing Capacity, Design the Raft and find RFT meshes form M11 & M22, Punching..



**B.C. under Earthquake & Vertical Loads** 

**RFT under Earthquake & Vertical Loads** 

235