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Preface

In this new edition there are two types of changes: I have made improvements to the
text of the first edition and have added some new topics.

In addition to making some corrections and reworking some arguments from the
first edition, I have added an introduction before Chap. 1, in which I have said a
bit about how the Lebesgue integral arose and indicated something about how the
topics covered are related to one another. I hope that this will make it easier for the
reader to see the structure of what he or she is studying. I have also improved the
layout of the pages a bit, with the examples now easier to find.

There are a number of new topics. These main additions are the Henstock—
Kurzweil integral, the Banach—Tarski paradox, and an introduction to measure-
theoretic probability theory. These are, of course, supplementary to the main lines
of the book, but they should give the reader a better feel for the relationship
between measure theory and other parts of mathematics. As minor additions there
are introductions to the Daniell integral and to the theory of liftings.

The mathematical level of the book and the background expected of the reader
have not changed from the first edition.

There are several people and organizations that I would like to thank. Suffolk
University’s College of Arts and Sciences, together with its Department of Mathe-
matics and Computer Science, made possible a sabbatical leave to work on this new
edition. Richard Dudley and the Department of Mathematics at MIT provided office
space and library access during that leave. Henry Cohn, Carl Offner, and Xinxin
Jiang read and commented on parts of the manuscript. A number of people, some
of whom I can no longer name, sent me useful comments on and corrections for the
first edition. Ann Kostant, Tom Grasso, Kate Ghezzi, and Allen Mann, along with
the production staff at Birkhéduser, were very helpful. My wife, Linda, typed parts
of the manuscript, did a large amount of proofreading, and put up with my schedule
as I worked on the book. I thank them all.

vii



viii Preface
The Preface from the First Edition

This book is intended as a straightforward treatment of the parts of measure
theory necessary for analysis and probability. The first five or six chapters form an
introduction to measure and integration, while the last three chapters should provide
the reader with some tools that are necessary for study and research in any of a
number of directions. (For instance, one who has studied Chaps. 7 and 9 should be
able to go on to interesting topics in harmonic analysis, without having to pause to
learn a new theory of integration and to reconcile it with the one he or she already
knows.) I hope that the last three chapters will also prove to be a useful reference.

Chapters 1 through 5 deal with abstract measure and integration theory and
presuppose only the familiarity with the topology of Euclidean spaces that a student
should acquire in an advanced calculus course. Lebesgue measure on R (and on RY)
is constructed in Chap. 1 and is used as a basic example thereafter.

Chapter 6, on differentiation, begins with a treatment of changes of variables
in R? and then gives the basic results on the almost everywhere differentiation of
functions on R (and measures on R?). The first section of this chapter makes use of
the derivative (as a linear transformation) of a function from R4 to RY; the necessary
definitions and facts are recalled, with appropriate references. The rest of the chapter
has the same prerequisites as the earlier chapters.

Chapter 7 contains a rather thorough treatment of integration on locally compact
Hausdorff spaces. I hope that the beginner can learn the basic facts from Sects. 7.2
and 7.3 without too much trouble. These sections, together with Sect. 7.4 and the
first part of Sect. 7.6, cover almost everything the typical analyst needs to know
about regular measures. The technical facts needed for dealing with very large
locally compact Hausdorff spaces are included in Sects. 7.5 and 7.6.

In Chap. 8 I have tried to collect those parts of the theory of analytic sets that
are of everyday use in analysis and probability. I hope it will serve both as an
introduction and as a useful reference.

Chapter 9 is devoted to integration on locally compact groups. In addition to a
construction and discussion of Haar measure, I have included a brief introduction
to convolution on L' (G) and on the space of finite signed or complex regular Borel
measures on G. The details are provided for arbitrary locally compact groups but in
such a way that a reader who is interested only in second countable groups should
find it easy to make the appropriate omissions.

Chapters 7 through 9 presuppose a little background in general topology.
The necessary facts are reviewed, and so some facility with arguments involving
topological spaces and metric spaces is actually all that is required. The reader who
can work through Sects. 7.1 and 8.1 should have no trouble.

In addition to the main body of the text, there are five appendices. The first
four explain the notation used and contain some elementary facts from set theory,
calculus, and topology; they should remind the reader of a few things he or she may
have forgotten and should thereby make the book quite self-contained. The fifth
appendix contains an introduction to the Bochner integral.



Preface ix

Each section ends with some exercises. They are, for the most part, intended
to give the reader practice with the concepts presented in the text. Some contain
examples, additional results, or alternative proofs and should provide a bit of
perspective. Only a few of the exercises are used later in the text itself; these few are
provided with hints, as needed, that should make their solution routine.

I believe that no result in this book is new. Hence the lack of a bibliographic
citation should never be taken as a claim of originality. The notes at the ends
of chapters occasionally tell where a theorem or proof first appeared; most often,
however, they point the reader to alternative presentations or to sources of further
information.

The system used for cross-references within the book should be almost self-
explanatory. For example, Proposition 1.3.5 and Exercise 1.3.7 are to be found in
Sect. 1.3 of Chap. 1, while C.1 and Theorem C.8§ are to be found in Appendix C.

There are a number of people to whom I am indebted and whom I would like to
thank. First there are those from whom I learned integration theory, whether through
courses, books, papers, or conversations; [ won’t try to name them, but I thank them
all. I would like to thank R.M. Dudley and W.J. Buckingham, who read the original
manuscript, and J.P. Hajj, who helped me with the proofreading. These three read the
book with much care and thought and provided many useful suggestions. (I must, of
course, accept responsibility for ignoring a few of their suggestions and for whatever
mistakes remain.) Finally, I thank my wife, Linda, for typing and providing editorial
advice on the manuscript, for helping with the proofreading, and especially for her
encouragement and patience during the years it took to write this book.

Boston, MA, USA Donald L. Cohn
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Introduction

In this introduction we

* briefly review the Riemann integral as studied in calculus and elementary
analysis,

* sketch how some difficulties with the Riemann integral led to the Lebesgue
integral, and

 outline the main topics in this book and note how they relate to the Riemann and
Lebesgue integrals.

The Riemann Integral—Darboux’s Definition

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence
{a;}*_, of real numbers such that

a=ayp<a;<---<ap=>h.

Sometimes we will call the values a; the division points of the partition. We will
generally denote a partition by a symbol such as .

Suppose that f is a bounded real-valued function on [a,b] and that &7 is a
partition of [a,b], say with division points {@;}*_ . Fori =1, ..., k define numbers
m; and M; by m; = inf{f(x) : x € [a;_1,a;]} and M; = sup{f(x) : x € [a;_1,ai]}. Then
the lower sum I(f, &) corresponding to f and & is defined to be ¥X_, m;(a; —a;_1).
Similarly, the upper sum u(f,?) corresponding to f and & is defined to be
>k Mj(a;—a;_). See Fig. 1 below.

Since f is bounded, there are real numbers m and M such that m < f(x) <M
holds for each x in [a,b]. Then each lower sum of f satisfies

1, 2) = Y milai—ai-1) ai—ai 1) = M(b—a),

7 M»

XV



XVvi Introduction

Fig. 1 A lower sum and an upper sum

and so the set of lower sums of f is bounded above, in fact by M(b — a). It follows
that the set of lower sums has a supremum (a least upper bound); this supremum is
called the lower integral of f over [a,b] and is denoted by [ b ¢ A similar argument
shows that the set of upper sums of f is bounded below, and so one can define

the upper integral of f, written Ta f, to be the infimum (the greatest lower bound)
of the set of upper sums. It is not difficult to show (see Sect. 2.5 for details) that

—b . —b
JOf < Jof X JUf = [of, then f is said to be Riemann integrable on [a,b], and the
common value of iz f and TZ f is called the Riemann integral of f over |a,b] and is
denoted by [’ f or [? f(x)dx.

The Riemann Integral—Riemann’s Definition

It is sometimes useful to view Riemann integrals as limits of what are called
Riemann sums. For this we need a couple of definitions. A tagged partition of an
interval [a,b] is a partition {a;}X_, of [a,b], together with a sequence {x;}¥_ | of
numbers (called tags) such thata; ;| <x; <a; holdsfori=1, ..., k. (In other words,
each tag x; must belong to the corresponding interval [a;_;,a;].) As with partitions,
we will often denote a tagged partition by a symbol such as &.

The mesh || Z?|| of a partition (or of a tagged partition) & is defined by || 2| =
max;(a; —a;_1), where {a;} is the sequence of division points for &2. In other words,
the mesh of a partition is the length of the longest of its subintervals.

The Riemann sum Z%(f,2?) corresponding to the function f and the tagged
partition &7 is defined by

k
R(f,P) =Y f(x)(ai—ai1).

i=1

Then, according to Riemann’s definition, the function f is integrable over [a,b] if
there is a number L (which will be the value of the integral) such that

lim%(f,?) =L
gl(f,) ,
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where the limit is taken as the mesh of &2 approaches 0. If we express this in terms
of €’s and &’s, we see that the function f is Riemann integrable, with integral L, if
for every positive € there is a positive 8 such that | Z(f, &) — L| < € holds for each
tagged partition & of [a, b] that satisfies || || < 6.

Darboux’s and Riemann’s definitions are equivalent:' they give exactly the
same classes of integrable functions, with the same values for the integrals (see
Proposition 2.5.7).

Another standard result is that every continuous function on [a,b] is Riemann in-
tegrable; see Example 2.5.2 (or, for a somewhat stronger result, see Theorem 2.5.4).

The final thing to recall is the fundamental theorem of calculus (see Exer-
cise 2.5.6 for a sketch of its proof):

Theorem 1 (The Fundamental Theorem of Calculus). Suppose that f: [a,b] —
R is continuous and that F: [a,b] — R is defined by F(x) = [ f(¢)dt. Then F is
differentiable at each x in |a,b] and its derivative is given by F'(x) = f(x).

From Riemann to Lebesgue

In many situations involving integrals (for example, when integrating an infinite
series term by term or when differentiating under the integral sign), it is necessary
to be able to reverse the order of taking limits and evaluating integrals—that is, to
be able to say things like

b b
/ lirIlnf,,(x) dx = lirIln/ Ju(x)dx.

Thus one needs to have theorems of the following sort:

Theorem 2. Suppose that { f,} is a sequence of integrable functions on the interval
[a,b] and that f is a function such that { f,} converges to f in a suitable* way. Then
f is integrable and

/a ? pydx = lim / £ () dx.

In elementary analysis courses one sees that Theorem 2 is valid for the Riemann
integral if by “converges to f in a suitable way,” we mean “converges uniformly
to f7 (see Exercise 2.5.7). On the other hand, if we do not assume uniform

IThe reader may well be asking why people consider two definitions of the Riemann integral.
The general answer is that Darboux’s definition is simpler and more elegant, while Riemann’s is
useful for various calculations of limits (see, for example, Exercise 2.5.8). For our purposes, the
Darboux approach makes our discussion of the relationship between the Riemann and Lebesgue
integrals simpler, while the Riemann approach is more closely related to the Henstock—Kurzweil
and McShane integrals (see Appendix H).

2The problem is, of course, to figure out what “suitable” might mean and to define the integral in
such a way that theorems like this one will be applicable in many situations.
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0,00 (L0) (1,0)

Fig. 2 Function defined in Example 3

convergence of {f,} to f, but only pointwise® convergence, then, as we see in the

following examples, Theorem 2 may fail.

Example 3. For each positive integer n let f, be the piecewise linear function
on [0,1] whose graph is made up of three line segments, connecting the points
(0,0), (%,2n), (1,0), and (1,0). See Fig.2. Then for each n the triangle formed
by the graph of f, and the x-axis has area 1, and so f, satisfies [01 Sfu(x)dx =1.
Furthermore, for each x in [0, 1] we have lim,, £, (x) = 0. Thus lim,, [ f,(x)dx = 1

but jol lim, f, (x)dx = 0, and the conclusion of Theorem 2 fails for the sequence

{fn} O

The failure of the conclusion of Theorem 2 in the preceding example comes from
the fact that the sequence {f;,} is not uniformly bounded—that is, from the fact that
there is no constant M such that | f, (x)| < M holds for all n and x. Next let us look at
an example in which the functions f;, are uniformly bounded, in fact, in which we
have 0 < f,,(x) < 1 for all n and all x, and yet the conclusion to Theorem 2 fails.

Example 4. Recall that the set of rational numbers is countable (see A.6). Hence
we can choose an enumeration {x,} of the rational numbers in the interval [0, 1]
(that is, a sequence whose members are the rational numbers in [0, 1], with each
rational in that interval occurring exactly once in the sequence). For each n define a
function f;,: [0,1] — R by

1 ifxe{x,x0,...,x,}, and
falx) = bt}
0 otherwise.

3Recall that {f,,} converges pointwise to f on [a,b] if lim,, f,(x) = f(x) for each x in [a,b].
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Thus f,(x) has value 1 for n values of x (namely for xj, ..., x,) and has value O
otherwise. It is easy to check that for each n, all the lower sums of f, are O and
hence that the lower integral Ll) fn 18 0. On the other hand, it is not hard to construct,
for each n and each positive 0, a partition & of [0, 1] in which each of x1, x2, ..., x,
is in the interior of some subinterval that belongs to &7 and has length at most § /n.
It follows that u(f,, &) < §. Since this can be done for each positive 8, it follows

that the upper integral T(l) fu is also 0. Consequently f, is Riemann integrable over
[0,1] and [, f,(x)dx = 0.

For each x let us consider the behavior of the sequence {f,(x)}. If x is rational,
then f,(x) = 1 for all large n, while if x is irrational, then f,(x) = O for all n. Thus
{fu(x)} converges pointwise to the function f: [0,1] — R defined by

1 if x is rational and belongs to [0, 1], and
flx) =

0 ifxisirrational and belongs to [0, 1].

Since the rationals are dense in [0, 1], as are the irrationals, it follows that every
lower sum for f has value O and every upper sum for f has value 1. Thus the lower

and upper integrals of f are given by f f=0and [ of =1, and f is not Riemann
integrable. Thus the conclusion of Theorem 2 fails for this example. a

Example 5. It may seem that the difficulty in the previous example comes from
the fact that the functions f; fail to be continuous. However, one can also produce a
sequence { f,, } such that

(a) each f; is continuous,
(b) 0 < f,(x) < 1 holds for each n and each x, and
(c) {fa} converges pointwise to a function that is not Riemann integrable.

(See Exercise 2.5.4.) O

The questions involved in making Theorem 2 precise were important unresolved
issues in the late nineteenth century; they arose, for example, in the study of Fourier
series.

In the early twentieth century, Lebesgue defined a new integral, which he used
to give very useful answers to questions of the sort discussed above. For example,
Lebesgue showed that Theorem 2, when formulated in terms of his new integral,
holds for pointwise convergence of the sequence { f,}, subject only to some rather
natural boundedness conditions on that sequence (see the dominated convergence
theorem, Theorem 2.4.5). It is hard to overemphasize the simplicity and ease of
application of the limit theorems for the Lebesgue integral.

Let us briefly sketch how the Lebesgue integral is defined. For simplicity, we will
for now restrict our attention to functions f: [a,b] — R that are nonnegative and
bounded (those assumptions are in no way necessary). So let ¢ be a positive number
such that 0 < f(x) < ¢ holds for each x in [a,b]. As we have seen, the definition of
the Riemann integral deals with partitions of the interval [a, b], that is, of the domain
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of f. One way of defining the Lebesgue integral deals with partitions of the range
of f, rather than of the domain. So suppose that & is a partition of [0, c], say given
by a sequence of {a;}*_, of dividing points. Fori =1, ..., k define A; by

Ai={x€a,b]: f(x) € lai_1,ai)}. (1)

(Note that the sets A; are not necessarily subintervals of [a,b]—they can also be
empty, unions of finite collections of subintervals, or even more complicated sets.)
Let us consider the sum s(f, &?) given by

k

s(f, 2) =Y ai_ymeas(4;), 2)

i=1

where meas(4;) is the size, in a sense still to be defined, of the set A;. Subject to
the condition that the function f must be simple enough that meas(A;) makes sense
for all sets A; as defined by (1), the Lebesgue integral of f is defined to be the
supremum of the set of all sums of the form (2), where these sums are considered
for all partitions & of the interval [0,c]. (One can check that this does not depend
on the value of ¢, as long as it is large enough that f(x) < ¢ holds for all x.)

Now let us survey some of the contents of this book.

The first issue that needs resolving is the meaning of the expression meas(A;)
that occurs in Eq. (2). That is the goal of Chap. 1, which begins with the question
of how to describe and organize the subsets of R whose size can reasonably be
measured (that is, the measurable sets) and then continues with the question of how
to measure the sizes of those subsets (the study of Lebesgue measure and of more
general measures). Since it is useful to consider integration not just for functions
defined on R or on subintervals of R but also in more general settings, including
R4, some of the discussion in Chap. 1 is rather abstract. This abstractness does not
add much to the level of difficulty of the chapter.

Appendix G is in some sense a continuation of Chap. 1. It gives an exposition of
the Banach-Tarski paradox, which is a very famous result that quite vividly shows
that Lebesgue measure on R cannot be extended in any reasonable way to all the
subsets of R3. (Appendix G is deeper than Chap. 1 and requires more background
on the reader’s part.)

The main objective of Chap.2 is the definition of the Lebesgue integral.
Section 2.1 deals with measurable functions, those functions that are tame enough
that the sets A; in Eq.(2) are measurable. Section 2.2 introduces properties that
hold almost everywhere and in particular considers convergence almost everywhere,
which can often be used in place of pointwise convergence. The integral is finally
defined in Sect.2.3, and the basic limit theorems for the integral are proved in
Sect. 2.4.

Chapter 3 deals more deeply with limits and convergence in integration theory,
while Chap. 4 deals with measures that have signed or complex values and with
relationships between measures.



Introduction XXi

In multivariable calculus courses one learns how to calculate integrals over
subsets of R¢ by repeatedly calculating one-dimensional integrals. Chapter 5 deals
with such matters for the Lebesgue integral. Section 6.1 deals with another aspect of
integration on R, namely with change of variable in integrals over subsets of R?.

The fundamental theorem of calculus (Theorem 1 above) relates Riemann
integrals to derivatives. Such relationships for the Lebesgue integral are discussed
in the last two sections of Chap. 6.

In the discussion above of Chap.1 we noted that our treatment of measures
and measurable sets is fairly general. This generality is useful for a number of
applications, such as to cases where integration on locally compact topological
spaces is needed (see Chaps.7 and 9) and to the study of probability theory (see
Chap. 10 for a brief introduction to the application of measure theory to probability
theory).

Many deeper questions about measurable sets and functions arise naturally. Some
useful and classical results along these lines are given in Chap. 8.

Let us return for a moment to the second of our definitions of the Riemann
integral, the one expressed in terms of limits of Riemann sums. In the second half
of the twentieth century Henstock and Kurzweil gave what may seem to be a small
modification of this definition. The resulting integral is known as the Henstock—
Kurzweil integral or the generalized Riemann integral. Although their definition
seems very simple, their integral (for functions on R) turns out to be more general
than the Lebesgue integral and to have what is in some ways a more natural
relationship to derivatives. See Appendix H for an introduction to the Henstock—
Kurzweil integral.



Chapter 1
Measures

Suppose that X is a set and f: X — R is a function that we want to integrate.
As we noted in the introduction, we need to deal with the sizes of subsets of
X in order to define the integral of f. In this chapter we introduce measures,
the basic tool for dealing with such sizes. The first two sections of the chapter
are abstract (but elementary). Section 1.1 looks at o-algebras, the collections of
sets whose sizes we measure, while Sect. 1.2 introduces measures themselves. The
heart of the chapter is in the following two sections, where we look at some
general techniques for constructing measures (Sect. 1.3) and at the basic properties
of Lebesgue measure (Sect. 1.4). The chapter ends with Sects. 1.5 and 1.6, which
introduce some additional fundamental techniques for handling measures and o-
algebras.

1.1 Algebras and Sigma-Algebras

Let X be an arbitrary set. A collection .o of subsets of X is an algebra on X if

(a) X € o,

(b) for each set A that belongs to o7, the set A€ belongs to o7,

(c) for each finite sequence Ay, ..., A, of sets that belong to <7, the set U} |A;
belongs to <7, and

(d) for each finite sequence Ay, ..., A, of sets that belong to 7, the set N?_|A;
belongs to 7.

Of course, in conditions (b), (c), and (d), we have required that .27’ be closed under
complementation, under the formation of finite unions, and under the formation
of finite intersections. It is easy to check that closure under complementation
and closure under the formation of finite unions together imply closure under the

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 1
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 _1,
© Springer Science+Business Media, LLC 2013
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formation of finite intersections (use that fact that N?_;A; = (U’ A¢)). Thus we
could have defined an algebra using only conditions (a), (b), and (c). A similar
argument shows that we could have used only conditions (a), (b), and (d).

Again let X be an arbitrary set. A collection . of subsets of X is a ¢-algebra’
on X if

(a) X € 4,

(b) for each set A that belongs to .27, the set A belongs to <7,

(c) for each infinite sequence {A;} of sets that belong to <7, the set U7 | A; belongs
to .7, and

(d) for each infinite sequence {A;} of sets that belong to <7, the set N° | A; belongs
to o7 .

Thus a o-algebra on X is a family of subsets of X that contains X and is closed
under complementation, under the formation of countable unions, and under the
formation of countable intersections. Note that, as in the case of algebras, we could
have used only conditions (a), (b), and (c), or only conditions (a), (b), and (d), in our
definition.

Each o-algebraon X is an algebra on X since, for example, the union of the finite
sequence Ay, Ay, ..., A, is the same as the union of the infinite sequence A, Ay, ...,
A, Any An,s ...

If X is a set and .7 is a family of subsets of X that is closed under complemen-
tation, then X belongs to 7 if and only if @ belongs to .27. Thus in the definitions
of algebras and o-algebras given above, we can replace condition (a) with the
requirement that & be a member of .. Furthermore, if .27 is a family of subsets of
X that is nonempty, closed under complementation, and closed under the formation
of finite or countable unions, then .27 must contain X: if the set A belongs to <7, then
X, since it is the union of A and A°, must also belong to 2/ Thus in our definitions
of algebras and o-algebras, we can replace condition (a) with the requirement that
4/ be nonempty.

If o7 is a o-algebra on the set X, it is sometimes convenient to call a subset of X
o/ -measurable if it belongs to .o7.

Examples 1.1.1 (Some Families of Sets That Are Algebras or c-algebras, and
Some That Are Not).

(a) Let X be a set, and let o« be the collection of all subsets of X. Then .27 is a
o-algebra on X.

(b) Let X be a set, and let &/ = {@,X}. Then & is a c-algebra on X.

(c) Let X be an infinite set, and let .« be the collection of all finite subsets of X.
Then &7 does not contain X and is not closed under complementation; hence it
is not an algebra (or a ¢-algebra) on X.

IThe terms field and o-field are sometimes used in place of algebra and c-algebra.
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(d) Let X be an infinite set, and let .2/ be the collection of all subsets A of X such
that either A or A€ is finite. Then 7 is an algebra on X (check this) but is not
closed under the formation of countable unions; hence it is not a ¢-algebra.

(e) Let X be an uncountable set, and let .27 be the collection of all countable
(i.e., finite or countably infinite) subsets of X. Then .27 does not contain X and
is not closed under complementation; hence it is not an algebra.

(f) Let X be a set, and let .o be the collection of all subsets A of X such that either
A or A€ is countable. Then <7 is a o-algebra.

(g) Let &7 be the collection of all subsets of R that are unions of finitely many
intervals of the form (a, b], (a,+o0), or (—eo,b]. It is easy to check that each set
that belongs to <7 is the union of a finite disjoint collection of intervals of the
types listed above, and then to check that <7 is an algebra on R (the empty set
belongs to 7, since it is the union of the empty, and hence finite, collection of
intervals). The algebra .7 is not a ¢-algebra; for example, the bounded open
subintervals of R are unions of sequences of sets in .27 but do not themselves
belong to <7 O

Next we consider ways of constructing c-algebras.

Proposition 1.1.2. Let X be a set. Then the intersection of an arbitrary nonempty
collection of o-algebras on X is a c-algebra on X.

Proof. Let € be a nonempty collection of c-algebras on X, and let o/ be the
intersection of the o-algebras that belong to . It is enough to check that .27 contains
X, is closed under complementation, and is closed under the formation of countable
unions. The set X belongs to 27, since it belongs to each c-algebra that belongs
to ©. Now suppose that A € 7. Each o-algebra that belongs to 4 contains A and
so contains A¢; thus A belongs to the intersection <7 of these o-algebras. Finally,
suppose that {A;} is a sequence of sets that belong to <7 and hence to each ¢-algebra
in . Then U;A; belongs to each c-algebra in ¢ and so to <7 O

The reader should note that the union of a family of o-algebras can fail to be a
o-algebra (see Exercise 5).

Proposition 1.1.2 implies the following result, which is a basic tool for the
construction of o-algebras.

Corollary 1.1.3. Let X be a set, and let F be a family of subsets of X. Then there
is a smallest 6-algebra on X that includes .7 .

Of course, to say that o is the smallest o-algebra on X that includes .# is to
say that o7 is a o-algebra on X that includes .# and that every o-algebra on X that
includes .% also includes <. If <7 and % are both smallest o-algebras that include
Z, then &7 C o and @ C @, and so &7] = o; thus the smallest c-algebra on X
that includes .% is unique. The smallest o-algebra is called the o-algebra generated
by .# and is often denoted by o (.%#).

Proof. Let € be the collection of all c-algebras on X that include .%. Then
% is nonempty, since it contains the o-algebra that consists of all subsets of
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X. The intersection of the o-algebras that belong to % is, according to Proposi-
tion 1.1.2, a o-algebra; it includes .% and is included in every o-algebra in ¥—that
is, it is included in every o-algebra on X that includes .%. O

We now use the preceding corollary to define an important family of o-algebras.
The Borel 6-algebra on R is the -algebra on R? generated by the collection of
open subsets of R?; it is denoted by Z(R?). The Borel subsets of R? are those that
belong to Z(R?). In case d = 1, one generally writes Z(R) in place of Z(R").

Proposition 1.1.4. The c-algebra B(R) of Borel subsets of R is generated by each
of the following collections of sets:

(a) the collection of all closed subsets of R;
(b) the collection of all subintervals of R of the form (—oo,b];
(c) the collection of all subintervals of R of the form (a,b).

Proof. Let #,, %>, and %5 be the c-algebras generated by the collections of sets in
parts (a), (b), and (c) of the proposition. We will show that B(R) 2> B, D %, O H;
and then that %3 O %(R); this will establish the proposition. Since %(R) includes
the family of open subsets of R and is closed under complementation, it includes the
family of closed subsets of R; thus it includes the o-algebra generated by the closed
subsets of R, namely ;. The sets of the form (—eo,b] are closed and so belong to
Py, consequently B D K. Since (a,b] = (—eo,b] N (—oo,a], each set of the form
(a,b] belongs to %y; thus B, O 5. Finally, note that each open subinterval of R
is the union of a sequence of sets of the form (a,b] and that each open subset of R
is the union of a sequence of open intervals (see Proposition C.4). Thus each open
subset of R belongs to %3, and so %3 O A(R). O

As we proceed, the reader should note the following properties of the o-algebra
B(R):
(a) It contains virtually? every subset of R that is of interest in analysis.
(b) It is small enough that it can be dealt with in a fairly constructive manner.

It is largely these properties that explain the importance of Z(R).

Proposition 1.1.5. The c-algebra B(R?) of Borel subsets of R? is generated by
each of the following collections of sets:

(a) the collection of all closed subsets of R?;

(b) the collection of all closed half-spaces in RY that have the form {(x1,...,xq) :
x; < b} for some index i and some b in R;

(c) the collection of all rectangles in R? that have the form

{(x1,.-0xg) rai<xi <bjfori=1,...,d}.

2See Chap. 8 for some interesting and useful sets that are not Borel sets.
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Proof. This proposition can be proved with essentially the argument that was used
for Proposition 1.1.4, and so most of the proof is omitted. To see that the o-algebra
generated by the rectangles of part (c) is included in the c-algebra generated by the
half-spaces of part (b), note that each strip that has the form

{(xl,...,xd) :a<xi§b}

for some i is the difference of two of the half-spaces in part (b) and that each of the
rectangles in part (c) is the intersection of d such strips. a

Let us look in more detail at some of the sets in Z(R?). Let ¢ be the family of all
open subsets of R?, and let .7 be the family of all closed subsets of RY. (Of course
¢ and .# depend on the dimension d, and it would have been more precise to write
¢(R?) and .7 (R?).) Let %5 be the collection of all intersections of sequences of
sets in ¢, and let % be the collection of all unions of sequences of sets in .%. Sets
in ¥ are often called G’s, and sets in % are often called Fg’s. The letters G and
F presumably stand for the German word Gebiet and the French word fermé, and
the letters ¢ and 0 for the German words Summe and Durchschnit.

Proposition 1.1.6. Each closed subset of R? is a Gg, and each open subset of R?
is an Fg.

Proof. Suppose that F is a closed subset of R?. We need to construct a sequence
{U,} of open subsets of R? such that F = N, U,. For this define U, by

Upy={xeR?: ||x—y| < 1/n for someyin F}.

(Note that U, is empty if F is empty.) It is clear that each U, is open and that
F C N,U,. The reverse inclusion follows from the fact that F is closed (note that
each point in N,U, is the limit of a sequence of points in F'). Hence each closed
subset of R is a Gg.

If U is open, then U°¢ is closed and so is a Gg. Thus there is a sequence {U,} of
open sets such that U¢ = N,U,. The sets Uy are then closed, and U = U,U;; hence
U is an Fg. O

For an arbitrary family . of sets, let . be the collection of all unions of
sequences of sets in ., and let . be the collection of all intersections of sequences
of sets in .. We can iterate the operations represented by ¢ and 6§, obtaining from
the class ¢ the classes ¥, Yso> Ysos- - - -» and from the class % the classes Zg,
Fss» Fosos ---- (Note that ¥ = 45 and .F = F5. Note also that Y55 = ¥, that
Fs6 = Fg,and so on.) It now follows (see Proposition 1.1.6) that all the inclusions
in Fig. 1.1 below are valid.

It turns out that no two of these classes of sets are equal and that there are Borel
sets that belong to none of them (see Exercises 7 and 9 in Sect. 8.2).

A sequence {A;} of sets is called increasing if A; C A;1 holds for each i and
decreasing if A; O A;11 holds for each i.
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Proposition 1.1.7. Let X be a set, and let o/ be an algebra on X. Then <7 is a
o-algebra if either

(a) o is closed under the formation of unions of increasing sequences of sets, or
(b) o is closed under the formation of intersections of decreasing sequences of
sets.

Proof. First suppose that condition (a) holds. Since <7 is an algebra, we can check
that it is a ¢-algebra by verifying that it is closed under the formation of countable
unions. Suppose that {A;} is a sequence of sets that belong to 7. For each n let
B, = U A;. The sequence {By,} is increasing, and, since </ is an algebra, each B,
belongs to 7 thus assumption (a) implies that U, B, belongs to .«#. However, U;A;
is equal to U, B, and so belongs to <. Thus &/ is closed under the formation of
countable unions and so is a o-algebra.

Now suppose that condition (b) holds. It is enough to check that condition (a)
holds. If {A;} is an increasing sequence of sets that belong to <7, then {Af} is a
decreasing sequence of sets that belong to .o/, and so condition (b) implies that
M;AS belongs to 7. Since U;A; = (M;AS)C, it follows that U;A; belongs to <. Thus
condition (a) follows from condition (b), and the proof is complete. a

Exercises

1. Find the o-algebra on R that is generated by the collection of all one-point
subsets of R.

2. Show that Z(R) is generated by the collection of intervals (—eo, b] for which the
endpoint b is a rational number.

3. Show that Z(R) is generated by the collection of all compact subsets of R.

4. Show that if <7 is an algebra of sets, and if U,A, belongs to <7 whenever {A,}
is a sequence of disjoint sets in .27, then .«¢ is a o-algebra.

5. Show by example that the union of a collection of c-algebras on a set X can fail
to be a o-algebra on X. (Hint: There are examples in which X is a small finite
set.)

6. Find an infinite collection of subsets of R that contains R, is closed under the
formation of countable unions, and is closed under the formation of countable
intersections, but is not a o-algebra.
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7. Let .7 be a collection of subsets of the set X. Show that for each A in ¢(.¥),
there is a countable subfamily 6 of . such that A € 6(%p). (Hint: Let <7 be the
union of the o-algebras 6 (%), where € ranges over the countable subfamilies of
., and show that 7 is a o-algebra that satisfies . C &/ C ¢(.¥) and hence is
equal to 6(.%).)

8. Find all o-algebras on N.

9. (a) Show that Q is an Fg, but not a Gg, in R. (Hint: Use the Baire category

theorem, Theorem D.37.)
(b) Find a subset of R that is neither an Fi nor a Gg.

1.2 Measures

Let X be a set, and let ./ be a o-algebra on X. A function gt whose domain is the
o-algebra o7 and whose values belong to the extended half-line [0, 4] is said to
be countably additive if it satisfies

=

H(UZ1A) = D (A
i=1

for each infinite sequence {A;} of disjoint sets that belong to «7. (Since (A;) is
nonnegative for each i, the sum X7° | 11(A;) always exists, either as a real number or
as +oo; see Appendix B.) A measure (or a countably additive measure) on </ is a
function u : &/ — [0, 40| that satisfies (@) = 0 and is countably additive.

We should note a related concept which is sometimes of interest. Let <7 be an
algebra (not necessarily a o-algebra) on the set X. A function y whose domain is
</ and whose values belong to [0,+-co] is finitely additive if it satisfies

n
H(UL A = 3 (A
i=1
for each finite sequence Ay, ..., A, of disjoint sets that belong to 7. A finitely
additive measure on the algebra < is a function p: o/ — [0,+oo] that satisfies
1(2) =0 and is finitely additive.

It is easy to check that every countably additive measure is finitely additive:
simply extend the finite sequence Aj, ..., A, to an infinite sequence {A;} by
letting A; = & if i > n, and then use the fact that (&) = 0. There are, however,
finitely additive measures that are not countably additive (see Example 1.2.1(d) and
Exercise 8 in Sect. 3.5).

Finite additivity might at first seem to be a more natural property than count-
able additivity. However, countably additive measures on the one hand seem to
be sufficient for almost all applications and, on the other hand, support a much
more powerful theory of integration than do finitely additive measures. Thus we
will follow the usual practice and devote almost all of our attention to countably
additive measures.
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We should emphasize that in this book the word “measure” (without modifiers)
will always denote a countably additive measure. The expression “finitely additive
measure” will always be written out in full.

If X is a set, if &7 is a 0-algebra on X, and if u is a measure on .<7, then the triplet
(X, 47, ) is often called a measure space. Likewise, if X is a set and if <7 is a O-
algebra on X, then the pair (X,.<) is often called a measurable space. If (X, 7, 11)
is a measure space, then one often says that u is a measure on (X, <), or, if the
o-algebra o7 is clear from context, a measure on X.

Examples 1.2.1.

(a) Let X be an arbitrary set, and let <7 be a o-algebra on X. Define a function
U: o/ — [0,4o0] by letting tt(A) be n if A is a finite set with n elements and
letting t1(A) be 4o« if A is an infinite set. Then u is a measure; it is often called
counting measure on (X, ).

(b) Let X be a nonempty set, and let .o/ be a o-algebra on X. Let x be a member of
X. Define a function 6, : o7 — [0, 4] by letting 6,(A) be 1 if x € A and letting
Ox(A) be 0if x ¢ A. Then Oy is a measure; it is called a point mass concentrated
at x.

(c) Consider the set R of all real numbers and the o-algebra Z(R) of Borel subsets
of R. In Sect. 1.3 we will construct a measure on Z(R) that assigns to each
subinterval of R its length; this measure is known as Lebesgue measure and
will be denoted by A in this book.

(d) Let X be the set of all positive integers, and let .7 be the collection of all
subsets A of X such that either A or A€ is finite. Then 7 is an algebra, but not a
o-algebra (see Example 1.1.1(d)). Define a function i : o/ — [0, 40| by letting
U(A) be 1 if A is infinite and letting 1 (A) be 0 if A is finite. It is easy to check
that U is a finitely additive measure; however, it is impossible to extend p to a
countably additive measure on the o-algebra generated by <7 (if Ay = {k} for
each k, then u(Uy_Ax) = u(X) =1, while ;7 ; u(Ax) =0).

(e) Let X be an arbitrary set, and let o7 be an arbitrary c-algebra on X. Define a
function it : &/ — [0, 4] by letting 11 (A) be +o0 if A # &, and letting 1 (A) be
0if A= @. Then U is a measure.

(f) Let X be a set that has at least two members, and let </ be the c-algebra
consisting of all subsets of X. Define a function p: &/ — [0,+oo] by letting
u(A) be 1if A # & and letting ((A) be 0 if A = @. Then g is not a measure,
nor even a finitely additive measure, for if A; and A, are disjoint nonempty
subsets of X, then pt(A; UAy) =1, while g (A) + u(Az) = 2. O

Proposition 1.2.2. Let (X,47, 1) be a measure space, and let A and B be subsets of
X that belong to of and satisfy A C B. Then u(A) < w(B). If in addition A satisfies

H(A) < oo, then (B —A) = 1(B) — u(A).
Proof. The sets A and B — A are disjoint and satisfy B = AU (B — A); thus the
additivity of u implies that

1(B)=p(A)+u(B—A).
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Since p(B—A) > 0, it follows that t(A) < u(B). In case t(A) < oo, the relation
w(B)— w(A) = u(B—A) also follows. O

Let u be a measure on a measurable space (X, 7). Then y is a finite measure if
U(X) < +eo and is a o-finite measure if X is the union of a sequence Ay, Ay, ... of
sets that belong to 7 and satisfy t(A;) < +eo for each i. More generally, a set in .27
is o-finite under p if it is the union of a sequence of sets that belong to .«7 and have
finite measure under u. The measure space (X,.o7, 1) is also called finite or G-finite
if u is finite or o-finite. Most of the constructions and basic properties that we will
consider are valid for all measures. For a few important theorems, however, we will
need to assume that the measures involved are finite or o-finite.

If the measure space (X,.27, i1) is o-finite, then X is the union of a sequence {B;}
of disjoint sets that belong to .7 and have finite measure under u; such a sequence
{B;} can be formed by choosing a sequence {A;} as in the definition of o-finiteness,
and then letting By = Aj and B; = A; — (Uj;llAj) ifi > 1.

Examples 1.2.3 (Dealing with o-Finiteness). Note that the measure defined in
Example 1.2.1(a) is finite if and only if the set X is finite and is o-finite if and
only if the set X is the union of a sequence of finite sets that belong to .27’
The measure defined in Example 1.2.1(b) is finite. Lebesgue measure, described
in Example 1.2.1(c), is o-finite, since R is the union of a sequence of bounded
intervals. See also Exercises 2 and 7 below. O

The following propositions give some elementary but useful properties of
measures.

Proposition 1.2.4. Let (X, 1) be a measure space. If {Ay} is an arbitrary
sequence of sets that belong to <7, then

M

(U Ak) < D) i(Ag).

k=1

Proof. Define a sequence {B;} of subsets of X by letting Bj = A; and letting
B, =A;— (U;‘;llAi) if K > 1. Then each By belongs to ./ and is a subset of the
corresponding Ay, and so satisfies (t(By) < t(Ag). Since in addition the sets By are
disjoint and satisfy UpBy = UiAy, it follows that

1 (UeAr) = 1(UeBy) = D 1 (Br) < X 1(Ay).- a
% %

In other words, the countable additivity of u implies the countable subadditivity
of u.

31If in Example 1.2.1(a) the o-algebra 27 contains all the subsets of X, then  is o-finite if and only
if X is at most countably infinite.
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Proposition 1.2.5. Let (X,.<7, 1) be a measure space.

(a) If {Ax} is an increasing sequence of sets that belong to <, then U(UiAy) =
limy 11 (Ag).

(b) If {Ay} is a decreasing sequence of sets that belong to of, and if [L(A,) < +oo
holds for some n, then UL(MAx) = limy (L (Ay).

Proof. First suppose that {A;} is an increasing sequence of sets that belong to <7,
and define a sequence {B;} of sets by letting B; = A; and letting B; = A; — A;_ if
i > 1. The sets just constructed are disjoint, belong to .o, and satisfy A; = Uf?lei
for each k. It follows that U,A; = U;B; and hence that

k

1 (UrAy) Zu im Y 1 (B) =limpu (Ui, B;) = lim ().
i=1

This completes the proof of (a).

Now suppose that {A;} is a decreasing sequence of sets that belong to </ and
that (1(A,) < oo holds for some n. We can assume that n = 1. For each k let C;, =
Ay — Ay. Then {C;} is an increasing sequence of sets that belong to <7 and satisfy

UkCr = A1 — (MiAg)-
It follows from part (a) that p(UgCy) = limg 1t (Cy) and hence that

1AL — (MkAk)) = u(UkCi) = lilglu(ck) = 1iI£n.U(Al —Ayp).

In view of Proposition 1.2.2 and the assumption that (1(A|) < 4o, this implies that

1 (MeAk) = limy 11 (Ag). O
The preceding proposition has the following partial converse, which is sometimes

useful for checking that a finitely additive measure is in fact countably additive.

Proposition 1.2.6. Let (X, /) be a measurable space, and let | be a finitely
additive measure on (X, /). Then | is a measure if either

(a) limg pu(Ay) = p(UgAy) holds for each increasing sequence {A} of sets that
belong to <7, or
(b) limy 1 (Ax) = 0 holds for each decreasing sequence {A;} of sets that belong to
o and satisfy N Ay = &
Proof. We need to verify the countable additivity of u. Let {B;} be a sequence of
disjoint sets that belong to &/; we will prove that u(U;B;) = X; u(B;).
First assume that condition (a) holds, and for each k let A, = ’; 1Bj. Then the

finite additivity of u implies that t(A;) = 2/; | L(Bj), while condition (a) implies
that 1 (U Ag) = limy p(Ay); since U7 Bj = Ui Ay, it follows that

‘LL(U;O:IB]) = I'L(Uk 1Ak) = llm[.i Ak = Z
j=1
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Now assume that condition (b) holds, and for each k let A, = U;":kB ;- Then the
finite additivity of u implies that

k
U= ~1Bj) Z i)+ 1(Argr),

while condition (b) implies that limy tt (A1) = 0; hence /,L(Ujf’lej) =37 u(Bj).
O

Let us close this section by introducing a bit of terminology. A measure on
(R, 2(R?)) is often called a Borel measure on R, More generally, if X is a Borel
subset of R? and if .o/ is the c-algebra consisting of those Borel subsets of R? that
are included in X, then a measure on (X,.o/) is called a Borel measure on X.

Now suppose that (X,.<7) is a measurable space such that for each x in X the
set {x} belongs to </. A finite or o-finite measure y on (X, %) is continuous if
1({x}) = 0 holds for each x in X and is discrete if there is a countable subset D
of X such that u(D°) = 0. (More elaborate definitions are needed if 7 does not
contain each {x} or if u is not o-finite. We will, however, not need to consider such
matters.)

Exercises

1. Suppose that u is a finite measure on (X,.<).
(a) Show that if A and B belong to <7, then

H(AUB) = p(A)+ u(B) — u(ANB).
(b) Show that if A, B, and C belong to <7, then

HAUBUC) =u(A)+ pu(B) + u(C)
—U(ANB)—u(ANC) —pu(BNC)
+u(ANBNC).

(c) Find and prove a corresponding formula for the measure of the union of n
sets.

2. Define u on (R, %(R)) by letting 11(A) be the number of rational numbers in A
(of course L(A) = +oo if there are infinitely many rational numbers in A). Show
that 1 is a o-finite measure under which each open subinterval of R has infinite
measure.

3. Let &7 be the o-algebra of all subsets of N, and let y be counting measure on
(N, 7). Give a decreasing sequence {A;} of sets in &7 such that u(N;Ax) #
limy 1t (Ay). Hence the finiteness assumption cannot be removed from part (b) of
Proposition 1.2.5.



12 1 Measures

4. Let (X, o) be a measurable space.

(a) Suppose that u is a nonnegative countably additive function on 7. Show that
if (A) is finite for some A in <7, then p (@) = 0. (Thus y is a measure.)

(b) Show by example that in general the condition u (@) = 0 does not follow
from the remaining parts of the definition of a measure.

5. Let (X, /) be a measurable space, and let x and y belong to X. Show that the
point masses O, and J, are equal if and only if x and y belong to exactly the same
sets in 7.

6. Let (X, /) be a measurable space.

(a) Show that if {u,} is an increasing sequence of measures on (X,.2) (here
“increasing” means that 1, (A) < w,1(A) holds for each A and each n), then
the formula p(A) = lim, 1, (A) defines a measure on (X, .<7).

(b) Show that if {u,} is an arbitrary sequence of measures on (X,.2/), then the
formula u(A) =3, 1, (A) defines a measure on (X,.%).

7. Let {x,} be a sequence of real numbers, and define a measure it on (R, #(R))
by u =Y, 8, (see Exercise 6).

(a) Show that u assigns finite values to the bounded subintervals of R if and only
if limy, x| = H-oo.

(b) For which sequences {x,} is the measure y o-finite?

8. Let (X, <, ) be a measure space, and define 4°®: & — [0,+o0] by

u*(A) =sup{u(B) : BC A, Be &, and i(B) < +oo}.

(a) Show that u* is a measure on (X, .%7).
(b) Show that if u is o-finite, then u® = u.
(c) Find p® if X is nonempty and p is the measure defined by

A =
HA) 0 ifA=0.

{+oo if A€o andA # @, and

9. Let u be a measure on (X,.o7), and let {A;} be a sequence of sets in &7 such that
S U(Ag) < +eo. Show that the set of points that belong to Ay for infinitely many
values of k has measure zero under y. (Hint: Consider the set N>, U Ag, and
note that p (M Ui, Ax) < 1 (U ,Ax) holds for each p.)

1.3 Outer Measures

In this section we develop one of the standard techniques for constructing measures;
then we use it to construct Lebesgue measure on R¢.

Let X be a set, and let #(X) be the collection of all subsets of X. An outer
measure on X is a function u*: 92(X) — [0, +oo] such that
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() u'(2)=0,
(b) ifACBCX,then u*(A) < u*(B), and
(c) if {A,} is an infinite sequence of subsets of X, then u*(U,A,) <Y, u*(4,).

Thus an outer measure on X is a monotone and countably subadditive function from
P (X) to [0,+o0] whose value at & is 0.

Note that a measure can fail to be an outer measure; in fact, a measure on X is an
outer measure if and only if its domain is &?(X) (see Propositions 1.2.2 and 1.2.4).
On the other hand, an outer measure generally fails to be countably additive and so
fails to be a measure.

In Theorem 1.3.6, we will prove that for each outer measure y* on X there is
a relatively natural o-algebra .#,~ on X such that the restriction of u* to .#)+ is
countably additive, and hence a measure. Many important measures can be derived
from outer measures in this way.

Examples 1.3.1.

(a) Let X be an arbitrary set, and define u* on &(X) by u*(A) =0if A = & and
w*(A) =1 otherwise. Then p* is an outer measure.

(b) Let X be an arbitrary set, and define u* on &?(X) by u*(A) = 0if A is countable,
and u*(A) = 1 if A is uncountable. Then y* is an outer measure.

(c) Let X be an infinite set, and define u* on Z(X) by u*(A) =0 if A is finite, and
w*(A) = 1if A is infinite. Then pu* fails to be countably subadditive and so is
not an outer measure.

(d) Lebesgue outer measure on R, which we will denote by A%, is defined as
follows. For each subset A of R, let €4 be the set of all infinite sequences
{(ai,b;)} of bounded open intervals such that A C U;(a;, b;). Then A*: Z(R) —
[0,+o0] is defined by

A*(4) = inf{Z(b,- —a): {(aibi)} € %A}.

(Note that the set of sums involved here is nonempty and that the infimum of
the set consisting of +oo alone is 4. We check in the following proposition
that A* is indeed an outer measure.) a

Proposition 1.3.2. Lebesgue outer measure on R is an outer measure, and it
assigns to each subinterval of R its length.

Proof. We begin by verifying that A* is an outer measure. The relation A*(&) =0
holds, since for each positive number € there is a sequence {(a;,b;)} of open
intervals (whose union necessarily includes &) such that >;(b; —a;) < €. For the
monotonicity of A*, note that if A C B, then each sequence of open intervals
that covers B also covers A, and so A*(A) < A*(B). Now consider the countable
subadditivity of A*. Let {A,};,_, be an arbitrary sequence of subsets of R.
If ¥, A*(A,) = oo, then A*(U,A4,) <X, A*(A,) certainly holds. So suppose that
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Y. A*(A,) < +oo, and let € be an arbitrary positive number. For each n choose a
sequence {(an,i,bni)};>, that covers A, and satisfies

or

—_

(bni—an;) < A*(An) +€/2"

If we combine these sequences into one sequence {(a;,b;)} (see, for example, the
construction in the last paragraph of A.6), then the combined sequence satisfies

UnAn © Uj(aj;b;)

and

Z(bj —aj) < Z(A*(An) +¢e/2") = ZA*(An) + €.

J n n
These relations, together with the fact that € is arbitrary, imply that 1*(U,A,) <
Y. A*(A,). Thus A* is an outer measure.

Now we compute the outer measure of the subintervals of R. First consider a
closed bounded interval [a,b]. It is easy to see that A*([a,b]) < b — a (cover [a,b]
with sequences of open intervals in which the first interval is barely larger than
[a,b], and the sum of the lengths of the other intervals is very small). We turn to
the reverse inequality. Let {(a;,b;)} be a sequence of bounded open intervals whose
union includes [a,b]. Since [a,b] is compact, there is a positive integer n such that
[a,b] C UL (ai,b;). It is easy to check that b —a < Y, (b; — a;) (use induction on
n) and hence that b —a < X2 | (b; — a;). Since {(a;,b;)} was an arbitrary sequence
whose union includes [a,b], it follows that b —a < A*([a,b]). Thus A*([a,b]) =
b—a.

The outer measure of an arbitrary bounded interval is its length, since such an
interval / includes and is included in closed bounded intervals of length arbitrarily
close to the length of /. Finally, an unbounded interval has infinite outer measure,
since it includes arbitrarily long closed bounded intervals. a

Let us look at another basic example.

Example 1.3.3. Lebesgue outer measure on R4, which we will denote by A* (or, if
necessary in order to avoid ambiguity, by A7) is defined as follows. A d-dimensional
interval is a subset of RY of the form I} X -+ X 1;, where I, ..., I; are subintervals
of Rand I} x --- x I; is given by

I ><~~~><Id:{(xi,...,xd):x,'ell-fori:1,...,d}.

Note that the intervals Iy, ..., I;, and hence the d-dimensional interval I} X --- X I,
can be open, closed, or neither open nor closed. The volume of the d-dimensional
interval I} X --- x I; is the product of the lengths of the intervals Iy, ..., I;, and
will be denoted by vol(I; x --- x I;). For each subset A of R? let % be the set of all
sequences {R;} of bounded and open d-dimensional intervals for which A C U7 | R;.
Then A*(A), the outer measure of A, is the infimum of the set
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{Zmlvol(Ri) {R) ). ]

We note the following analogue of Proposition 1.3.2.

Proposition 1.3.4. Lebesgue outer measure on R? is an outer measure, and it
assigns to each d-dimensional interval its volume.

Proof. Most of the details are omitted, since they are very similar to those in the
proof of Proposition 1.3.2. Note, however, that if K is a compact d-dimensional
interval and if {R;}, is a sequence of bounded and open d-dimensional intervals
for which K C U2 | R;, then there is a positive integer n such that K C U |R;, and
K can be decomposed into a finite collection {K;} of d-dimensional intervals that
overlap only on their boundaries and are such that for each j the interior of K; is
included in some R; (where i < n). From this it follows that

vol(K) =) vol(K;) < ) vol(R;)
J i
and hence that vol(K) < A*(K). The remaining modifications needed to convert our

proof of Proposition 1.3.2 into a proof of the present result are straightforward. 0O

Let X be a set, and let u* be an outer measure on X. A subset B of X is p*-
measurable (or measurable with respect to L*) if

W(A) = W (ANB) + (AN B)

holds for every subset A of X. Thus a y*-measurable subset of X is one that divides
each subset of X in such a way that the sizes (as measured by u*) of the pieces
add properly. A Lebesgue measurable subset of R or of R? is of course one that is
measurable with respect to Lebesgue outer measure.

Note that the subadditivity of the outer measure y* implies that

W(A) < W(ANB) + U (ANB)

holds for all subsets A and B of X. Thus to check that a subset B of X is pu*-
measurable, we need only check that

H*(A) = p*(ANB)+p*(ANB) (1)

holds for each subset A of X . Note also that inequality (1) certainly holds if u*(A) =
+-co. Thus the p*-measurability of B can be verified by checking that (1) holds for
each A that satisfies t*(A) < 0.

Proposition 1.3.5. Let X be a set, and let u* be an outer measure on X. Then each
subset B of X that satisfies u*(B) = 0 or that satisfies t*(B¢) = 0 is u*-measurable.

Proof. Assume that p*(B) = 0 or that u*(B¢) = 0. According to the remarks above,
we need only check that each subset A of X satisfies
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W (A) > u*(ANB) + u*(ANB").

However our assumption about B and the monotonicity of pt* imply that one of the
terms on the right-hand side of this inequality vanishes and that the other is at most
W*(A); thus the required inequality follows. O

It follows that the sets & and X are measurable for every outer measure on X.
The following theorem is the fundamental fact about outer measures; it will be
the key to many of our constructions of measures.

Theorem 1.3.6. Let X be a set, let U* be an outer measure on X, and let //lw be
the collection of all W*-measurable subsets of X. Then

(a) Ay~ is a 6-algebra, and
(b) the restriction of U* to My~ is a measure on M.

Proof. We begin by showing that .#+ is an algebra of sets. First note that
Proposition 1.3.5 implies that X belongs to .#,+. Note also that the equation

W(A) = W (ANB) + (AN B)

is not changed if the sets B and B¢ are interchanged; thus the y*-measurability of
B implies that of B¢, and so .#;+ is closed under complementation. Now suppose
that By and B; are u*-measurable subsets of X; we will show that B UB; is u*-
measurable. For this, let A be an arbitrary subset of X. The u*-measurability of B
implies

U (AN(B1UBy)) =u"(AN(B1UBy)NBy)+u* (AN (B UBy) NBY)
=u"(ANB)+ U (ANB{NBy).

If we use this identity and the fact that (B; UB,)° = B{ N BS, and then simplify the
resulting expression by appealing first to the measurability of B, and then to the
measurability of By, we find

H*(AN(B1UBy)) + 1" (AN (B1UB))
=p"(ANBy)+ 1" (ANBSNBy) +u*(ANBSNBS)
=" (ANBy) +u*(ANBY)
= " (A).

Since A was an arbitrary subset of X, the set B{ UB, must be measurable. Thus .#),
is an algebra.

Next suppose that {B;} is an infinite sequence of disjoint *-measurable sets; we
will show by induction that

WH(A) = Y u (ANB) + (AN (ML, BY)) @
i=1
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holds for each subset A of X and each positive integer n. Equation (2) is, in the case
where n = 1, simply a restatement of the measurability of B;. As to the induction
step, note that the p*-measurability of B, and the disjointness of the sequence
{B;} imply that

ur (AN (MZ1B7))
= W (AN(NELBY) NByr1) + 1 (AN (N1 BY) N By )
= W (ANBy11) + 1 (AN (N B)).

With this (2) is proved.

Note that we do not increase the right-hand side of Eq.(2) if we replace
pr(AN (N, BS)) with u*(AN (N2, Bf)), and thus with u*(A N (U2 B;)); by
letting the n in the sum in the resulting inequality approach infinity, we find

8

HH(A) > YU (ANB) + 1 (AN (ULB)°). 3)
=1

1

This and the countable subadditivity of u* imply that

pr(A) >

M

W (ANB) +u*(An (U B:)°)
1

AN (UZBi) + 1 (AN (UZ,Bi)°)
W (A);

>

Y

it follows that each inequality in the preceding calculation must in fact be an equality
and hence that U7, B; is it *-measurable. Thus .#);+ is closed under the formation of
unions of disjoint sequences of sets. Since the union of an arbitrary sequence {B;}
of sets in .#;+ is the union of a disjoint sequence of sets in .#),+, namely of the
sequence

Bi,BSNBy,....B{NB5N---NBS_ | NB,, ...,

the algebra .+ is closed under the formation of countable unions. With this we
have proved that ./, is a c-algebra.

To show that the restriction of ©* to .#,+ is a measure, we need to verify its
countable additivity. If {B;} is a sequence of disjoint sets in .#,+, then replacing A
with U7, B; in inequality (3) yields

WU B) > Y (B) +0;

since the reverse inequality is automatic, the countable additivity of the restriction
of u* to .4~ follows. 0

We turn to applications of Theorem 1.3.6 and begin with Lebesgue measure.
We will denote the collection of Lebesgue measurable subsets of R by ) «.
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Proposition 1.3.7. Every Borel subset of R is Lebesgue measurable.

Proof. We begin by checking that every interval of the form (—e,b] is Lebesgue
measurable. Let B be such an interval. According to the remarks made just before
the statement of Proposition 1.3.5, we need only check that

A*(A) > A" (ANB)+ A" (ANB°) 4)

holds for each subset A of R for which A*(A) < 4eo. Let A be such a set, let €
be an arbitrary positive number and let {(a,,b,)} be a sequence of open intervals
that covers A and satisfies X (b, — an) < A*(A) + €. Then for each n the sets
(@n,by) N B and (an,by) ﬁBC are disjoint intervals (one of which may instead be the
empty set) whose union is (ay, b, ), and so

by —an = A*((an,bn)) = A" ((an,bn) NB) + A*((an,bn) N B°) Q)

(see Proposition 1.3.2). Since the sequence {(an,b,) N B} covers ANB and the
sequence {(an,b,) N B¢} covers AN B¢, we have from Eq.(5) and the countable
subadditivity of A* that

A*(ANB)+A*(ANB°) <Z)L (an,bn) NB) +2/1 (an,bn) NB°)
=Y (by—an) <A*(A) +e

However, € was arbitrary, and so inequality (4) and the Lebesgue measurability of
B follow.

Thus the collection .#« of Lebesgue measurable sets is a o-algebra on R
(Theorem 1.3.6) that contains each interval of the form (—eo,b]. However Z(R)
is the smallest o-algebra on R that contains all these intervals (Proposition 1.1.4),
and so Z(R) C 4)«. O

We will also use .#« to denote the collection of Lebesgue measurable subsets
of R,

Proposition 1.3.8. Every Borel subset of R? is Lebesgue measurable.

Proof. Tt is easy to give a proof of Proposition 1.3.8 by modifying that of
Proposition 1.3.7; the details are left to the reader. O

The restriction of Lebesgue outer measure on R (or on R?) to the collection . L
of Lebesgue measurable subsets of R (or of R?) is called Lebesgue measure and
will be denoted by A or by A,. The restriction of Lebesgue outer measure to Z(R)
or to B(R?) is also called Lebesgue measure, and it too will be denoted by A or by
Aq. We can specify which version of Lebesgue measure we intend by referring, for
example, to Lebesgue measure on (R, %(R)) or to Lebesgue measure on (R, .7 +).
We will deal most often with Lebesgue measure on the Borel sets; its relation to the
other version of Lebesgue measure is treated in Sect. 1.5.
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Two questions arise immediately. Is every subset of R Lebesgue measurable?
Is every Lebesgue measurable set a Borel set? The answer to each of these questions
is no; see Sects. 1.4 and 2.1 for details.

We close this section with a technique for constructing and representing all finite
measures on (R, Z(R)). We begin with the following elementary fact.

Proposition 1.3.9. Let i be a finite measure on (R, Z(R)), and let F;: R -+ R
be defined by Fy(x) = i((—ee,x]). Then F is bounded, nondecreasing, and right-
continuous, and satisfies limy_, o Fy (x) = 0.

Proof. Tt follows from Proposition 1.2.2 that 0 < p((—ee,x]) < u(R) holds for
all x in R and that p((—oe,x]) < p((—eo,y]) holds for all x and y in R such that
x < y; hence F), is bounded and nondecreasing. Next suppose that x € R and that
{x,} is the sequence defined by x,, = x+ 1/n. Then (—eo,x] = N7"_,(—eo,x,], and
so Proposition 1.2.5 implies that Fy,(x) = lim, Fj; (x,). The right continuity of F,
follows (note that if x <y < x,, then, since F}, is nondecreasing, |Fy (y) — Fy(x)| <
|Fii(xn) — Fyu(x)]). A similar argument shows that lim,_, .. Fj; (x) = 0. O

Let u and F,, be as in Proposition 1.3.9. The interval (a,b] is the difference of
the intervals (—eoo,b] and (—oo,al, and so Proposition 1.2.2 implies that

1((a,b]) = Fu(b) — Fu(a). (6)

Since F), is bounded and nondecreasing, the limit of F,(¢) as ¢ approaches x from
the left exists for each x in R; this limit is equal to sup{F,(¢) : # < x} and will be
denoted by Fj,(x—). Now let {a,} be a sequence that increases to the real number
b; if we apply Eq. (6) to each interval (a,, ] and then use Proposition 1.2.5, we find
that

u({b}) = Fu(b) = Fu(b—). @)

Consequently F}, is continuous at b if p({b}) = 0, and is discontinuous there, with
ajump of size u({b}) in its graph, if g ({b}) # 0. Thus the measure y is continuous
(see Sect. 1.2) if and only if the function F}, is continuous.

Equations (6) and (7) allow one to use F, to recover the measure under p of
certain subsets of R (see also Exercise 4); however, the following proposition allows
us to say more, namely that the measure under pt of every Borel subset of R is in
fact determined by F),.

Proposition 1.3.10. For each bounded, nondecreasing, and right-continuous
function F : R — R that satisfies lim,_, .. F (x) = 0, there is a unique finite measure
U on (R, B(R)) such that F (x) = p((—eo,x]) holds at each x in R.

Proof. Let F be as in the statement of the proposition. We begin by constructing
the required measure f. Define a function p*: Z(R) — [0, +oo] by letting u*(A)
be the infimum of the set of sums Y, (F(b,) — F(ay)), where {(an,by]} ranges
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over the set of sequences of half-open intervals that cover A, in the sense that
A C U:zl(a,,,b,,]. Then u* is an outer measure on R; the reader can check this
by modifying some of the arguments used in the proof of Proposition 1.3.2.

Next we verify that u*((—eo,x]) = F(x) holds for each x in R. The inequality
1*((—oo,x]) < F(x) holds, since (—eo,x] can be covered by the intervals in the
sequence { (x—n,x—n+1]}>_,, forwhichwehave ¥,>_| (F(x—n+1)—F(x—n)) =
F(x). We turn to the reverse inequality. Let {(a,,b,]} be a sequence that covers
(—eo,x], and let € be a positive number. Use the fact that lim,_,_.. F (t) = 0 to choose
a number # such that# < x and F(¢) < €, and for each n use the right continuity of
F to choose a positive number 8, such that F (b, + 8,) < F(b,) + £/2". Then the
interval [t,x] is compact, each interval (a,,b, + 0,) is open, [t,x] C Uy, (an, b, +
&), and Y, (F (b, + 6,) — F(an)) < X,(F(by) — F(ay)) + €. The compactness of
[t,x] implies that there is a positive integer N such that [t,x] C UN_, (an,by + 8,).
It follows that (,x] is the union of a finite collection of disjoint intervals (c;,d|],
each of which is included in some (ay, b, + 6,]. Consequently

F@) = P(0) = S(F(d) ~ Fle;)) < 3. (Fbu+ &)~ Fla),

J
and so

F(x)—e< i(F(b,,)—F(an))—i—e.

Since € and the sequence {(ay,,b,]} are arbitrary, the inequality F (x) < p*((—oe,x])
follows. With this we have shown that F(x) = p*((—ee,x]).

The reader should check that the proof of Proposition 1.3.7 can be modified so as
to show that each interval (—oo, b] is (1 *-measurable and then that each Borel subset
of R is pt*-measurable.

Let i be the restriction of u* to Z(R). The preceding steps of our proof, together
with Theorem 1.3.6, show that u is a measure and that it satisfies p((—eo,x]) =
F(x) at each x in R. Since F is bounded, while u(R) = lim,_ye ((—oo,n]) =
lim,,_.. F (n) (Proposition 1.2.5), the measure g is finite.

Finally we check the uniqueness of . Let 1 be as constructed above, and let v
be a possibly different measure such that v((—ee,x]) = F(x) holds for each x in R.
We first show that

V(A) < u(A) (®)

is true for each Borel subset A of R. To see this, note that if A is a Borel set and
if {(an,bn]} is a sequence such that A C Uy, (ay, by, then (according to (6), applied
to V)

A) < Y v((an,ba]) = X (F (bn) = F(an))- ©)
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Since p*(A) was defined to be the infimum of the set of values that can occur as
sums on the right side of (9), inequality (8) follows. If we apply inequality (8) to A
and to A, we find

V(R) = V(A) + V(A) < u(A) + p(A) = u(R).

Since V(R) = u(R) < o, it follows that v(A) and v(A°) are equal to p(A) and
W(A), respectively. With this the proof that v = u is complete. O

The uniqueness assertion on Proposition 1.3.10 can also be proved by means of
other standard techniques; see, for example, the discussion following the proof of
Corollary 1.6.3.

Exercises

1. Define functions uj, ..., u¢ on Z(R) by

. 0 if A is empty,
(A4) = L
1 if A is nonempty,

. 0 if A is empty,
uz(A) = o
+oo if A is nonempty,
. 0 if A is bounded,
U3 (A) = o
1 if A is unbounded,
0 if A is empty,
wi(A)y=<1 if A is nonempty and bounded,
4o if A is unbounded,
“ 0 if A is countable,
us(A) = o g
1 if A is uncountable,
“ 0 if A is countable, and
e (A) = e g
+oo if A is uncountable.

(a) Which of u3, puy, pj, and ug are outer measures? (We noted in Exam-
ples 1.3.1(a) and 1.3.1(b) that uj and us are outer measures.)
(b) For each i such that y is an outer measure determine the 1 -measurable
subsets of R.
2. Let C be a countable subset of R. Using only the definition of A*, show that
A*(C)=0.
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3. Show that for each subset A of R there is a Borel subset B of R that includes A
and satisfies A (B) = 1*(A).

4. Let F: R — R be a bounded, nondecreasing, and right-continuous function that
satisfies limy_,_. F(x) = 0, and let p be the measure on (R, ZA(R)) that is
associated to F by Proposition 1.3.10. Show that if a and b belong to R and
satisfy a < b, then

p((=oe,b)) = F(b=),
u((a,b)) = F(b—) — F(a),
t([a,b]) = F(b) — F(a—), and

t(la,b)) = F(b—) — F(a—).

5. Let X be a set, let &7 be an algebra of subsets of X, and let it be a finitely additive
measure on <. For each subset A of X let u*(A) be the infimum of the set of
sums Y7 U(Ag), where {A; } ranges over the sequences of sets in .o for which
A C UL A
(a) Show that u* is an outer measure on X.

(b) Show that each set in .o is y*-measurable.

(c) Show that if u is countably additive (in the sense that p(UAg) = D U(Ag)
holds whenever {A;} is a sequence of disjoint sets in o7 for which UgA;
belongs to «7), then each A in < satisfies (1(A) = u*(A).

(d) Conclude that if p is a countably additive measure on the algebra 27, then
there is a countably additive measure on ¢ (<) that agrees with  on 7.

6. (Continuation.) Let X, &7, u, and pu* be as in Exercise 5, and assume that y is
countably additive.

(a) Show that if v is a countably additive measure on ¢ (.<7) that agrees with
on 7, then v(A) < u*(A) holds for each A in 6 (A).

(b) Conclude that if u is finite (or if X is the union of a sequence of sets that
belong to <7 and have finite measure under i), then 1 can be extended to a
countably additive measure on 6() in only one way.

7. Show that a subset B of R is Lebesgue measurable if and only if

A*(I) = A*(INB) + A*(INB)

holds for each open subinterval I of R.

8. Let I be a bounded subinterval of R. Show that a subset B of I is Lebesgue
measurable if and only if it satisfies A*(I) = A*(B) + A*(IN B°).

9. Let A* be Lebesgue outer measure on R, and let 7 be the projection of R? onto
R given by 7(x,y) = x. Define a function u*: Z2(R?) — [0,+o0] by u*(A) =
A*(m(A)).

(a) Show that u* is an outer measure on R?.

(b) Show that a subset B of R? is measurable for the outer measure y* defined
in this exercise if and only if there are Lebesgue measurable subsets By and
B of R such that By C By, A*(B; —Bp) =0,and By x RC B C B} x R.
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1.4 Lebesgue Measure

This section contains a number of the basic properties of Lebesgue measure on
R?. The reader who wants to move quickly on to Chap. 2 might restrict his or her
attention to Proposition 1.4.1, Proposition 1.4.4, and Theorem 1.4.9.

Proposition 1.4.1. Let A be a Lebesgue measurable subset of R?. Then

(@ A(A) =inf{A(U):U is open and A C U}, and
(b) A(A) =sup{A(K) : K is compact and K C A}.
Proposition 1.4.1 can be put more briefly, namely as the assertion that Lebesgue

measure is regular. In the interest of simplicity, however, we will delay the study
and even the definition of regularity until Sect. 1.5 and Chap. 7.

Proof. Note that the monotonicity of A implies that
A(A) <inf{A(U):U isopenand A C U}

and
A(A) > sup{A(K) : K is compact and K C A}.

Hence we need only prove the reverse inequalities.

We begin with part (a). Since the required equality clearly holds if A(A) = +o,
we can assume that A(A) < +oo. Let € be an arbitrary positive number. Then
according to the definition of Lebesgue measure, there is a sequence {R;} of open
d-dimensional intervals such that A C U;R; and Y, vol(R;) < A(A) +¢€. Let U be
the union of these intervals. Then U is open, A C U, and (see Propositions 1.2.4
and 1.3.4)

AU) < S AR) = S vol(R;) < A(A) +e&.
Since ¢ is arbitrary, part (a) is proved.
We turn to part (b) and deal first with the case where A is bounded. Let C be a

closed and bounded set that includes A, and let € be an arbitrary positive number.
Use part (a) to choose an open set U that includes C — A and satisfies

A(U) <A(C—A)+e. (1)

Let K = C —U. (Drawing a sketch might help the reader.) Then K is a closed and
bounded (and hence compact) subset of A; furthermore, C C K UU and so

A(C) < A(K) + A(U). 2)

Inequalities (1) and (2) (and the fact that A(C —A) = A(C) — A(A)) imply that
A(A) — e < A(K). Since € was arbitrary, part (b) is proved in the case where A
is bounded.
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Finally, consider the case where A is not bounded. Suppose that b is a real number
less than A(A); we will produce a compact subset K of A such that b < A(K).
Let {A;} be an increasing sequence of bounded measurable subsets of A such that
A =UjA; (for example, we might let A; be the intersection of A with the closed ball
of radius j about the origin). Proposition 1.2.5 implies that A (A) =lim; A (A}), and
so we can choose jjo such that A(Aj,) > b. Now apply to A, the weakened form of
part (b) that was proved in the preceding paragraph; this gives a compact subset K
of Aj, (and hence of A) such that A (K) > b. Since b was an arbitrary number less
than A (A), the proof is complete. O

The following lemma will be needed for the proof of Proposition 1.4.3. In this
lemma we will be dealing with a certain collection of half-open cubes, namely with
those that have the form

{(x1,eeoxa) s j2 F <xi < (ji+ 12 fori=1,.... d} 3)
for some integers ji, ..., j; and some positive integer k.

Lemma 1.4.2. Each open subset of R? is the union of a countable disjoint
collection of half-open cubes, each of which is of the form given in expression (3).

Proof. For each positive integer k let 6 be the collection of all cubes of the form
{(xryexa) s j2 << i+ 127 % fori=1,..., d},

where ji, ..., jg are arbitrary integers. It is easy to see that

(a) each %} is a countable partition of R4, and
(b) if ki < ko, then each cube in ¢, is included in some cube in €, .

The reader should keep these facts about the family {%}} in mind when checking
that the collection & defined below has the properties claimed for it.

Suppose that U is an open subset of RY. We construct a collection Z of cubes
inductively by letting & be empty at the start, and then at step k (for k=1, 2, ...)
adding to Z those cubes in %} that are included in U but are disjoint from all the
cubes putinto Z at earlier steps. It is clear that & is a countable disjoint collection of
cubes whose union is included in U. It remains only to check that its union includes
U. Let x be a member of U. Since U is open, the cube in %} that contains x is
included in U if k is sufficiently large. Let ko be the smallest such k. Then the cube
in ¢}, that contains x belongs to &, and so x belongs to the union of the cubes in Z.

O

Proposition 1.4.3. Lebesgue measure is the only measure on (R?, B(R?)) that
assigns to each d-dimensional interval, or even to each half-open cube of the form
given in expression (3), its volume.

Proof. That Lebesgue measure does assign to each d-dimensional interval its
volume was noted in Sect. 1.3. So we need only assume that y is a measure on
(R, 2(R?)) that assigns to each cube of the form given in expression (3) its volume
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and prove that y = A. First suppose that U is an open subset of R?. Then according
to Lemma 1.4.2 there is a disjoint sequence {C;} of half-open cubes that have the
form given in expression (3) and whose union is U, and so

(V) = Y u(C) = TA(C) = AU);
J J

hence u and A agree on the open subsets of R?. Next suppose that A is an
arbitrary Borel subset of R?. If U is an open subset of R that includes A, then
1(A) < u(U) = A(U); it follows that u(A) < inf{A(U): Uisopenand A CU}.
The regularity of A (Proposition 1.4.1) now implies that

1(A) <A(A). @)

We need to show that this inequality can be replaced with an equality. First suppose
that A is a bounded Borel subset of R? and that V is a bounded open set that includes
A. Then inequality (4), applied to the sets A and V — A, implies that

H(V) = H(A) + (V= A) < A(A) + A(V —A) = A(V);

since the extreme members of this inequality are equal, and since p(A) and pu(V —A)
are no larger than A (A) and A(V — A), respectively, it follows that 11(A) and A(A)
are equal. Finally, an arbitrary Borel subset A of R¢ is the union of a sequence of
disjoint bounded Borel sets and so must satisfy (t(A) = A(A). O

For each element x and subset A of R? we will denote by A + x the subset of RY
defined by

A+x={yeR?:y=a+xforsomeainA};

the set A + x is called the translate of A by x. We turn to the invariance of Lebesgue
measure under such translations.

Proposition 1.4.4. Lebesgue outer measure on R? is translation invariant, in the
sense that if x € RY and A C RY, then A*(A) = A*(A +x). Furthermore, a subset B
of R? is Lebesgue measurable if and only if B+ x is Lebesgue measurable.

Proof. The equality of A*(A) and A*(A + x) follows from the definition of A* and
the fact that the volume of a d-dimensional interval is invariant under translation.
The second assertion follows from the first, together with the definition of a
Lebesgue measurable set—note that a set B satisfies

AA=—x)=A"((A—x)NB)+ A" ((A—x)NB°)
for all sets A — x if and only if B + x satisfies

A*(A) = A*(AN (B+x)) + A" (AN (B+x)°)

for all sets A. O



26 1 Measures

Lebesgue measure on (RY, %(R?)) is characterized up to constant multiples by
the following result; see Chap.9 for analogous results that hold in more general
situations.

Proposition 1.4.5. Let u be a nonzero measure on (R4, Z(R%)) that is finite on the
bounded Borel subsets of RY and is translation invariant, in the sense that [1(A) =
U(A +x) holds for each A in (RY) and each x in R%. Then there is a positive
number ¢ such that [L(A) = cA(A) holds for each A in ZB(R%).

Note that for the concept of translation invariance for measures on (R?, Z(R¢))
to make sense, the Borel ¢-algebra on R4 must be translation invariant, in the sense
that if A € Z(R?) and x € R?, then A +x € B(R?). To check this translation
invariance of Z(R?), note that {A C R? : A+ x € B(R?)} is a c-algebra that
contains the open sets and hence includes (R?).

Proof. Let C = {(x1,...,x4) : 0<x; < 1foreach i}, and let c = u(C). Then c is
finite (since U is finite on the bounded Borel sets) and positive (if it were 0, then
R4, as the union of a sequence of translates of C, would have measure zero under
). Define a measure v on %(R?) by letting v(A) = (1/c)u(A) hold for each A
in 2(R¥). Then v is translation invariant, and it assigns to the set C defined above
its Lebesgue measure, namely 1. If D is a half-open cube that has the form given in
expression (3) and whose edges have length 27, then C is the union of 2% translates
of D, and so
2%v(D) = v(C) = 2(C) =2%A(D);

thus v and A agree on all such cubes. Proposition 1.4.3 now implies that v = A and
hence that it = cA. O

Example 1.4.6 (The Cantor Set). We should note a few facts about the Cantor
set, a set which turns out to be a useful source of examples. Recall that it is defined
as follows. Let Ky be the interval [0, 1]. Form K| by removing from Kj the interval
(1/3,2/3). Thus K; = [0,1/3]U[2/3,1]. Continue this procedure, forming K, by
removing from K,_; the open middle third of each of the intervals making up
K,—1. Thus K, is the union of 2" disjoint closed intervals, each of length (1/3)".
The Cantor set (which we will temporarily denote by K) is the set of points that
remain; thus K = N, K.

Of course K is closed and bounded. Furthermore, K has no interior points, since
an open interval included in K would for each n be included in one of the intervals
making up K, and so would have length at most (1/3)". The cardinality of K is that
of the continuum: it is easy to check that the map that assigns to a sequence {z, }
of 0’s and 1’s the number Y, 2z, /3" is a bijection of the set of all such sequences
onto K; hence the cardinality of K is that of the set of all sequences of 0’s and 1’s
and so that of the continuum (see Appendix A). O

Proposition 1.4.7. The Cantor set is a compact set that has the cardinality of the
continuum but has Lebesgue measure zero.
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Proof. We have already noted that the Cantor set (again call it K) is compact and
has the cardinality of the continuum. To compute the measure of K, note that for
each n it is included in the set K, constructed above and that A (K, ) = (2/3)". Thus
A(K) < (2/3)" holds for each n, and so A (K) must be zero. (For an alternative proof,
check that the sum of the measures of the intervals removed from [0, 1] during the
construction of K is the sum of the geometric series

P ()
andsois 1.) a

Example 1.4.8 (A Nonmeasurable Set). We now return to one of the promises
made in Sect. 1.3 and prove that there is a subset of R that is not Lebesgue
measurable. Note that our proof of this uses the axiom of choice.* Whether the
use of this axiom is essential was an open question until the mid-1960s, when R.M.
Solovay showed that if a certain consistency assumption holds, then the existence
of a subset of R that is not Lebesgue measurable cannot be proved from the axioms
of Zermelo—Frankel set theory without the use of the axiom of choice.’

Theorem 1.4.9. There is a subset of R, and in fact of the interval (0, 1), that is not
Lebesgue measurable.

Proof. Define a relation ~ on R by letting x ~ y hold if and only if x — y is rational.
It is easy to check that ~ is an equivalence relation: it is reflexive (x ~ x holds for
each x), symmetric (x ~ y implies y ~ x), and transitive (x ~ y and y ~ z imply x ~ z).
Note that each equivalence class under ~ has the form Q + x for some x and so is
dense in R. Since these equivalence classes are disjoint, and since each intersects
the interval (0, 1), we can use the axiom of choice to form a subset E of (0, 1) that
contains exactly one element from each equivalence class. We will prove that the
set E is not Lebesgue measurable.

Let {r,} be an enumeration of the rational numbers in the interval (—1,1), and
for each n let £, = E + r,,. We will check that

(a) the sets E, are disjoint,
(b) U,E, is included in the interval (—1,2), and
(c) theinterval (0,1) is included in U, E,,.

To check (a), note that if E,, N E, # &, then there are elements e and ¢’ of E such
that e + r,,, = €’ + ry,; it follows that e ~ ¢’ and hence that e = ¢’ and m = n. Thus (a)
is proved. Assertion (b) follows from the inclusion E C (0, 1) and the fact that each
term of the sequence {r,} belongs to (—1,1). Now consider assertion (c). Let x be

4See items A.12 and A.13 in Appendix A.
SFor details, see Solovay [110].



28 1 Measures

an arbitrary member of (0, 1), and let e be the member of E that satisfies x ~ e. Then
x — e is rational and belongs to (—1, 1) (recall that both x and e belong to (0,1)) and
so has the form r,, for some n. Hence x € E,,, and assertion (c) is proved.

Suppose that the set E is Lebesgue measurable. Then for each n the set E,, is
measurable (Proposition 1.4.4), and so property (a) above implies that

AUE,) = 3 A(Ey);

furthermore, the translation invariance of A implies that A(E,) = A(E) holds for
each n. Hence if A(E) = 0, then A(U,E,) = 0, contradicting assertion (c) above,
while if A(E) # 0, then A(U,E,) = +oo, contradicting assertion (b). Thus the
assumption that £ is measurable leads to a contradiction, and the proof is complete.

O

Let A be a subset of R. Then diff(A) is the subset of R defined by
diff(A) ={x—y:xc€Aandy € A}.
The following fact about such sets is occasionally useful.

Proposition 1.4.10. Let A be a Lebesgue measurable subset of R such that A(A) >
0. Then diff(A) includes an open interval that contains 0.

Proof. According to Proposition 1.4.1, there is a compact subset K of A such that
A(K) > 0. Since diff(K) is then included in diff(A), it is enough to prove that
diff(K) includes an open interval that contains 0. Note that a real number x belongs
to diff(K) if and only if K intersects x + K; thus it suffices to prove that if |x| is
sufficiently small, then K intersects x + K.

Use Proposition 1.4.1 to choose an open set U such that K C U and A(U) <
2A(K). The distances between the points in K and the points outside U are bounded
away from O (since the distance from a point x of U to the complement of U is
a continuous strictly positive function of x and so has a positive minimum on the
compact set K; see D.27 and D.18). Thus there is a positive number € such that if
|x| < &, then x+ K is included in U. Suppose that |x| < €. If x+ K were disjoint
from K, then it would follow from the translation invariance of A and the relation
x+ K CU that

2A(K) = A(K) +A(x+K)=A(KU (x+K)) < A(U).

However this contradicts the inequality A (U) < 2A(K), and so K and x+ K cannot
be disjoint. Therefore, x € diff(K). Consequently the interval (—¢, €) is included in
diff(K), and thus in diff(A). O

We can use Proposition 1.4.10, plus a modification of the proof of Theorem 1.4.9,
to prove the following rather strong result (see the remark at the end of this section
and the one following the proof of Proposition 1.5.4).
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Proposition 1.4.11. There is a subset A of R such that each Lebesgue measurable
set that is included in A or in A€ has Lebesgue measure zero.

Proof. Define subsets G, Gy, and G| of R by
G = {x:x=r+nV2 forsome rin Q and n in Z},
Go={x:x=r+ 2nV/2 for some r in Q and 7 in Z}, and
Gy = {x:x=r+(2n+1)V2 for some r in Q and n in Z}.

It is easy to see that G and Gg are subgroups of R (under addition), that Gy and Gy
are disjoint, that G| = Gy + V/2, and that G = Gy U G;. Define a relation ~ on R
by letting x ~ y hold when x —y € G; the relation ~ is then an equivalence relation
on R. Use the axiom of choice to form a subset E of R that contains exactly one
representative of each equivalence class of ~. Let A = E + G (that is, let A consist
of the points that have the form e 4 go for some e in £ and some g¢ in Gy).

We now show that there does not exist a Lebesgue measurable subset B of A
such that A(B) > 0. For this let us assume that such a set exists; we will derive
a contradiction. Proposition 1.4.10 implies that there is an interval (—g, ) that is
included in diff(B) and hence in diff(A). Since G| is dense in R, it meets the interval
(—¢,¢€) and hence meets diff(A). This, however, is impossible, since each element
of diff(A) is of the form e; — ey + go (where e and e, belong to E and gy belongs
to Go) and so cannot belong to G (the relation e; — e + go = g1 would imply that
e1 = e and go = g1, contradicting the disjointness of Gy and Gy). This completes
our proof that every Lebesgue measurable subset of A must have Lebesgue measure
Zero.

It is easy to check that A° = E + G| and hence that A = A + V2. 1t follows that
each Lebesgue measurable subset of A€ is of the form B + /2 for some Lebesgue
measurable subset B of A. Since A has no Lebesgue measurable subsets of positive
measure, it follows that A° also has no such subsets, and with this the proof is
complete. a

Note that the set A of Proposition 1.4.11 is not Lebesgue measurable: if it were,
then both A and A€ would include (in fact, would be) Lebesgue measurable sets
of positive Lebesgue measure. Thus we could have presented Theorem 1.4.9 as a
corollary of Proposition 1.4.11. (Of course, the proof of Theorem 1.4.9 presented
earlier is simpler than the proofs of Propositions 1.4.10 and 1.4.11 taken together
and is in fact a classical and well-known argument; hence it was included.)

Exercises

1. Prove that under Lebesgue measure on R?
(a) every straight line has measure zero, and
(b) every circle has measure zero.
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2. Let A be a subset of R?. Show that the conditions

(i) A is Lebesgue measurable,
(ii) A is the union of an Fy and a set of Lebesgue measure zero, and
(iii) there is a set B that is an Fy and satisfies A*(AAB) =0

are equivalent.

3. Let T be a rotation of R? about the origin (or, more generally, a linear map from
R? to R? that preserves distances).

(a) Show that a subset A of R? (or of R¥) is Borel if and only if T(A) is Borel.
(Hint: See the remark following the statement of Proposition 1.4.5.)

(b) Show that each Borel subset A of R? (or of R?) satisfies A(A) = A(T(A)).
(Hint: Use Proposition 1.4.5.)

4. Show that for each number o that satisfies 0 < & < 1 there is a closed subset C of
[0,1] that satisfies A (C) = o and includes no nonempty open set. (Hint: Imitate
the construction of the Cantor set.)

5. Show that there is a Borel subset A of R such that 0 < A(INA) < A(/) holds
whenever [ is a bounded open subinterval of R.

6. Show that if B is a subset of R that satisfies 1*(B) > 0, then B includes a set that
is not Lebesgue measurable. (Hint: Use Proposition 1.4.11.)

7. Show that there exists a decreasing sequence {A,} of subsets of [0, 1] such that
A*(An) = 1 holds for each n, but for which N,A, = @. (Hint: Let B be a Hamel
basis® for R as a vector space over Q, and let {B,} be a strictly increasing
sequence of sets such that B = U,B,. For each n let V, be the subspace of R
spanned by B, and let A,, = [0, 1] N V,£. Use Proposition 1.4.10 to show that each
Borel subset of V,, has Lebesgue measure zero and hence that A*(A,) = 1.)

1.5 Completeness and Regularity

Let (X, <7, 1) be a measure space. The measure ( (or the measure space (X, </, 1))
is complete if the relations A € o7, 1(A) =0, and B C A together imply that B € <7
It is sometimes convenient to call a subset B of X u-negligible (or p-null) if there
is a subset A of X such that A € o/, B C A, and (A) = 0. Thus the measure  is
complete if and only if every p-negligible subset of X belongs to ..

It follows from Proposition 1.3.5 that if u* is an outer measure on the set X
and if .+ is the o-algebra of all 1*-measurable subsets of X, then the restriction
of u* to .#y+ is complete. In particular, Lebesgue measure on the c-algebra of

5This means that B spans R (i.e., that R is the smallest linear subspace of R that includes B) and
that no proper subset of B spans R. The axiom of choice implies that such a set B exists; see, for
example, Lang [80, Section 5 of Chapter II1].
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Lebesgue measurable subsets of R is complete. On the other hand, as we will soon
see, the restriction of Lebesgue measure to the o-algebra of Borel subsets of R is
not complete.

It is sometimes convenient to be able to deal with arbitrary subsets of sets of
measure zero, and at such times complete measures are desirable. In many such
situations the following construction proves useful.

Let (X, /) be a measurable space, and let it be a measure on 7. The completion
of &/ under U is the collection 7, of subsets A of X for which there are sets £ and
F in </ such that

ECACF (D
and
w(F—E)=0. )

A set that belongs to 7, is sometimes said to be u-measurable.

Suppose that A, E, and F are as in the preceding paragraph. It follows imme-
diately that u(E) = pu(F). Furthermore, if B is a subset of A that belongs to <7,
then

Hence
W(E) =sup{u(B):Bc o/ and BC A},

and so the common value of y(E) and u(F) depends only on the set A (and the
measure [), and not on the choice of sets E and F satisfying (1) and (2). Thus we
can define a function [1: o7, — [0,+oo| by letting [1(A) be the common value of
W(E) and u(F), where E and F belong to </ and satisfy (1) and (2). This function
I is called the completion of L.

Proposition 1.5.1. Let (X, o) be a measurable space, and let |L be a measure on
o/ . Then ), is a 6-algebra on X that includes </, and [I is a measure on <, that
is complete and whose restriction to o7 is |L.

Proof. It is clear that .2/, includes ./ (for A in & let the sets E and F in (1) and
(2) equal A), and in particular that X € 27,. Note that the relations E C A C F and
WU(F — E) = 0 imply the relations F© C A° C E€ and u(E® — F) = 0; thus &7, is
closed under complementation. Next suppose that {A, } is a sequence of sets in .27,.
For each n choose sets E,, and F}, in <7 such that E, C A, C F, and u(F, — E,) =0.
Then U,E, and U, F, belong to 7 and satisfy U,E, C U,A,, C U,F, and

W(UnFy — UnEn) < 1(Un(Fy — Ep)) < 3 1 (Fy — Ep) =0;

thus UA,, belongs to .27,. This completes the proof that .27, is a 6-algebra on X that
includes 7.

Now consider the function . It is an extension of u, since for A in &/ we can
again let £ and F equal A. It is clear that (f has nonnegative values and satisfies



32 1 Measures

(@) =0, and so we need only check its countable additivity. Let {A,} be a
sequence of disjoint sets in 7, and for each n again choose sets E, and F, in
of that satisfy E, C A, C F, and u(F, — E,) = 0. The disjointness of the sets A,
implies the disjointness of the sets E,, and so we can conclude that

H(UnAp) = u(UnEp) = Z.U(En) = Zﬁ(An)

Thus f is a measure. It is easy to check that If is complete. a
We turn to an example.

Proposition 1.5.2. Lebesgue measure on (R?, #).) is the completion of Lebesgue
measure on (R, (R%)).

We begin with the following lemma.

Lemma 1.5.3. Let A be a Lebesgue measurable subset of RY. Then there exist Borel
subsets E and F of R? such that E CA C F and A(F—E)=0.

Proof. First suppose that A is a Lebesgue measurable subset of R such that A (A) <
+oo. For each positive integer n, use Proposition 1.4.1 to choose a compact set K,
such that K, CA and A(A) — 1/n < A(K,) and an open set U, such that A C U, and
A(U,) < A(A)+1/n.Let E = U,K, and F = N,U,. Then E and F belong to Z(R¢)
and satisfy £ C A C F. The relation

A(F —E) < AUy —Ky) = A(Uy —A) + A(A—K,) < 2/n

holds for each n, and so A(F — E) = 0. Thus the lemma is proved in the case where
A(A) < Hoo.

If A is an arbitrary Lebesgue measurable subset of R?, then A is the union of a
sequence {A,} of Lebesgue measurable sets of finite Lebesgue measure. For each
n we can choose Borel sets E,, and F,, such that E, C A, C F, and A(F, —E,) = 0.
The sets E and F defined by E = U,E,, and F = U, F, then satisfy E CA C F and
A(F —E) =0 (note that F — E C Uy, (F, — Ep)). O

Proof of Proposition 1.5.2. Let A be Lebesgue measure on (RY, Z(R¢)), let A be
the completion of A, and let A,, be Lebesgue measure on (R?,.#, ). Lemma 1.5.3
implies that ./ - is included in the completion of (R?) under A and that A, is the
restriction of A to . 2.+- Thus we need only check that each set A that belongs to the
completion of Z(R?) under A is Lebesgue measurable. For such a set A there exist
Borel sets E and F such that E CAC F and A(F—E)=0.Since A—ECF—E
and A4,,(F —E) = A(F — E) = 0, the completeness of Lebesgue measure on .#)
implies that A — E € .#+. Thus A, since it is the union of A — E and E, must belong
to M) . O
We will see in Sect. 2.1 that

(a) there are Lebesgue measurable subsets of R that are not Borel sets, and
(b) the restriction of Lebesgue measure to %(IR) is not complete.
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It should be noted that although replacing a measure space (X,<7,u) with
its completion (X,.,,1I) enables one to avoid some difficulties, it introduces
others. Some difficulties arise because the completed c-algebra <7, is often more
complicated than the original o-algebra 7. Others are caused by the fact that for
measures (L and v defined on a common o-algebra <7, the completions 7/, and
a/, of o/ under u and v may not be equal (see Exercise 3). Because of these
complications it seems wise whenever possible to avoid arguments that depend on
completeness; it turns out that in the basic parts of measure theory this can almost
always be done.

Let (X, <) be a measurable space, let y be a measure on .27, and let A be an
arbitrary subset of X. Then u*(A), the outer measure of A, is defined by

u(A)=inf{u(B):ACBand B € &}, 3)
and (1. (A), the inner measure of A, is defined by
W (A) =sup{u(B):BCAand B € &/}.

It is easy to check that p,(A) < p*(A) holds for each subset A of X.

Proposition 1.5.4. Let (X,<7) be a measurable space, and let L be a measure
on (X,9). Then the function u*: P(X) — [0,+oo] defined by Eq. (3) is an outer
measure (as defined in Sect. 1.3) on X.

Proof. Certainly pu* satisfies 4*(2) = 0 and is monotone. We turn to its subadditiv-
ity. Let {A, } be a sequence of subsets of X. The inequality p*(U,A,) <X, u*(An)
is clear if ¥, 4*(A,) = —+o0. So suppose that 3, 1*(A,) < +oo. Let € be an arbitrary
positive number, and for each n choose a set B, that belongs to <7, includes A,,, and
satisfies U (B,) < u*(A,) + €/2". Then the set B defined by B = U,B, belongs to
&/, includes U,A,, and satisfies (B) <Y, u*(A,) + € (see Proposition 1.2.4); thus
w(UpA,) <3, u*(A,) + €. Since € is arbitrary, the proof is complete. O

Note that Proposition 1.4.11 can now be rephrased: there is a subset A of R such
that A, (A) = 0 and A, (A°) = 0.

Proposition 1.5.5. Let (X,47) be a measurable space, let 1 be a measure on <,
and let A be a subset of X such that 1*(A) < +eo. Then A belongs to <), if and only

if . (A) = 1 (A).

Proof. If A belongs to <7, then there are sets E and F that belong to &/ and satisfy
ECACFand u(F—E)=0. Then

K(E) < pe(A) < p*(A) < u(F),

and since p(E) = u(F), the relation p,(A) = pu*(A) follows.

One can obtain a proof that the relation p,(A) = u*(A) < +oo implies that A
belongs to 27, by modifying the first paragraph of the proof of Lemma 1.5.3; the
details are left to the reader (replace appeals to Proposition 1.4.1 with appeals to the
definitions of u, and (™). O
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In this section we have been dealing with one way of approximating sets from
above and from below by measurable sets. We turn to another such approximation.

Let o7 be a 5-algebra on R? that includes the o-algebra Z(R?) of Borel sets. A
measure i on (RY, .o7) is regular if

(a) each compact subset K of R satisfies tt(K) < oo,
(b) each set A in .« satisfies

1(A) =inf{u(U): U is open and A C U}, and
(c) each open subset U of R satisfies

w(U) = sup{u(K) : K is compactand K C U }.

Proposition 1.4.1 implies that Lebesgue measure, whether on (RY,.#).) or
on (R4, 2(R?)), is regular. Part (b) of that proposition appears to be stronger
than condition (c) in the definition of regularity; however, we will see in Chap.7
that every regular measure on (RY, Z(R¥)) satisfies the analogue of part (b) of
Proposition 1.4.1. In Chap.7 we will also see that on more general spaces, the
analogue of condition (c) above, rather than of part (b) of Proposition 1.4.1, is the
condition that should be used in the definition of regularity.

Proposition 1.5.6. Let u be a finite measure on (R, B(R%)). Then u is regular.
Moreover, each Borel subset A of R? satisfies

w(A) =sup{u(K) : K C A and K is compact}. “)

Let us first prove the following weakened form of Proposition 1.5.6.

Lemma 1.5.7. Let u be a finite measure on (R, B(R?)). Then each Borel subset
A of R? satisfies

u(A) =inf{u(U):A CU and U is open} and Q)
U(A) =sup{u(C) :C C A andC is closed}. (6)

Proof. Let % be the collection of those Borel subsets A of R? that satisfy (5) and
(6).

We begin by showing that % contains the open subsets of R9. Let V be an open
subset of R?. Of course V satisfies

w(V)=inf{u(U):V CU and U is open}.

According to Proposition 1.1.6, there is a sequence {C,} of closed subsets of R¢
such that V = U,C,. We can assume that the sequence {C,} is increasing (replace
C, with U?_, C; if necessary). Proposition 1.2.5 implies that (V') = lim,, 4 (C,), and
so V satisfies
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u(V)=sup{u(C):C CV and C is closed}.

With this we have proved that % contains all the open subsets of R¢.
It is easy to check (do so) that Z# consists of the Borel sets A that satisfy

for each positive € there exist an open set U and a closed set C
suchthat CCACU and u(U—-C) < e. @)

We now show that Z is a G-algebra. If contains R?, since R? is open. If A € , if
€ is a positive number, and if C and U are, respectively, closed and open and satisfy
CCACU and u(U —C) < g, then U¢ and C¢ are respectively closed and open
and satisfy U¢ C A C C¢ and u(C° — U*) < ¢; thus it follows (from (7)) that % is
closed under complementation. Now let {A;} be a sequence of sets in % and let €
be a positive number. For each k choose a closed set Cy and an open set Uy such that
Cy C Ay C U and pu(Uy — Cy) < /2%, Let U = U Uy and C = UyCy. Then U and C
satisfy the relations C C U;A; C U and

w(U—=C) < u(Ue(Up = Cr)) < DUk — ) < &. ®)
x

The set U is open, but the set C can fail to be closed. However, for each n the set
Up_,Cy is closed, and it follows from (8), together with the fact that (U —C) =
lim,, y (U — Uy_,Cy) that there is a positive integer n such that u(U — U}_,C;) < €.
Then U and U}_, C; are the sets required in (7), and Z is closed under the formation
of countable unions.

We have now shown that % is a o-algebra on R? that contains the open sets.
Since Z(R?) is the smallest o-algebra on R? that contains the open sets, it follows
that (RY) C Z. With this Lemma 1.5.7 is proved. O

Proof of Proposition 1.5.6. Condition (a) in the definition of regularity follows
from the finiteness of u, while condition (b) follows from Lemma 1.5.7. We
turn to condition (c) and Eq.(4). Let A be a Borel subset of R? and let € be a
positive number. Then according to Lemma 1.5.7 there is a closed subset C of A
such that u(C) > p(A) — e. Choose an increasing sequence {C,} of closed and
bounded (hence compact) sets whose union is C (these sets can, for example, be
constructed by letting C, = CN {x € R : ||x|| < n}). Proposition 1.2.5 implies that
w(C) = lim, u(C,), and so if n is large enough, then C, is a compact subset of A
such that u(C,) > u(A) — €. Equation (4) and condition (c) follow. O

Exercises

1. Let (X,.o7, i) be a measure space. Show that (<7, ) = 7, and T = M.
2. (a) Find the completion of Z(R) under the point mass concentrated at 0.
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10.

11.

12.
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(b) Let .27 be the o-algebra on R? that consists of all unions of (possibly empty)
collections of vertical lines. Find the completion of . under the point mass
concentrated at (0,0).

. Let u and v be finite measures on a measurable space (X,<).

(a) Show by example that 27, and %%, need not be equal.
(b) Prove or disprove: .7, = &/, if and only if 4 and v have exactly the same
sets of measure zero.

. Show that there is a Lebesgue measurable subset of R> whose projection on R

under the map (x,y) — x is not Lebesgue measurable.

. Let u be a measure on (X, o). Show that for each subset A of X there are sets Ag

and A; that belong to & and satisfy the conditions Ag CA C Ay, U(Ag) = U« (A),
and ((A;) = u*(A).

. Show by example that half of Proposition 1.5.5 can fail if the assumption that

W*(A) < +eo is omitted.

. Suppose that ¢ is a measure on (X, 7). Show that each subset A of X satisfies

W (A) + pa(A9) = p(X).

. Show that there is a subset A of the interval [0, 1] that satisfies A*(A) = 1 and

A«(A) = 0. (Hint: Use Proposition 1.4.11.)

. Let u be a o-finite measure on (X,.<7), and let u* be the outer measure defined

in formula (3). Show that .27, is equal to the o-algebra of u*-measurable sets

and that [I is the restriction of u* to ;.

Show that if A is a Lebesgue measurable subset of R, then { (x,y) € R? : x € A}

is a Lebesgue measurable subset of R.

Let (X, /) be a measurable space, and let C be a subset of X (it is not assumed

that C belongs to <7).

(a) Show that the collection of subsets of C that have the form A NC for some
A in o/ is a o-algebra on C. This o-algebra is sometimes called the frace
of o7 on C and is denoted by 7.

(b) Now suppose that u is a finite measure on (X,<”). Let C; be a set that
belongs to o7, includes C, and satisfies u(Cy) = u*(C) (see Exercise 5).
Show that if A} and A, belong to <7 and satisfy Aj NC = A; NC, then
U(A;NCy) = u(A2NCy). Thus we can use the formula uc(ANC) = u(AN
C)) to define a function uc: ¢ — [0,+o0).

(c) Show that uc(B) = p*(B) holds for each B in o/. Thus pi¢ does not depend
on the choice of the set C;.

(d) Show that ¢ is a measure on (C, </ ). The measure L¢ is sometimes called
the trace of  on C.

Let (X, .o/) be a measurable space, and let C be a subset of X.

(a) Show that the sets that belong to (.« U{C}) are exactly those that have
the form (A; NC) U (A, NC®) for some Aj and A in &7.

(b) Now suppose that p is a finite measure on (X,<?). Let Cy and C; be <7-
measurable subsets of C and C¢ that satisfy u(Cop) = t«(C) and u(Cy) =
W (C), and let pe and yee be the traces of 1 on C and C° (see Exercises 5
and 11). Show that the formulas
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Ho(A) = n(ANCo) + Hee(ANC)

and
Hi(A) = pc(ANC)+ n(ANCy)

define measures Lo and iy on o(«/ U{C}), that these measures agree with
U on ¢/, and that they satisfy py(C) = p.(C) and p; (C) = u*(C).

(c) Show that for each o between . (C) and p*(C) there is a measure v on
o(«/ U{C}) that agrees with  on &/ and satisfies v(C) = a. (Hint: Let
v =1+ (1 —1)u for a suitable 7.)

1.6 Dynkin Classes

This section is devoted to a technique that is often useful for verifying the equality of
measures and the measurability of functions (measurable functions will be defined
in Sect. 2.1). We begin with a basic definition.

Let X be a set. A collection Z of subsets of X is a d-system (or a Dynkin class)
on X if

(a) X € 9,
(b) A—B€ 2 wheneverA,B € 2 and A D B, and
(c) UpA, € 9 whenever {A, } is an increasing sequence of sets in 2.

A collection of subsets of X is a w-system on X if it is closed under the formation of
finite intersections.

Example 1.6.1. Suppose that X is a set and that ./ is a c-algebra on X. Then &/
is certainly a d-system. Furthermore, if g and v are finite measures on 2/ such
that 1t (X) = v(X), then the collection . of all sets A that belong to <7 and satisfy
1(A) = v(A) is a d-system; it is easy to show by example that .¥ is not necessarily
a o-algebra (see Exercise 3). The fact that such families . are d-systems forms the
basis for many of the applications of d-systems. O

Note that the intersection of a nonempty family of d-systems on a set X is a d-
system on X and that an arbitrary collection of subsets of X is included in some
d-system on X, namely the collection of all subsets of X. Hence if ¥ is an arbitrary
collection of subsets of X, then the intersection of all the d-systems on X that include
% is ad-system on X that includes %’; this intersection is the smallest such d-system
and is called the d-system generated by €. We will sometimes denote this d-system

by d(%).

Theorem 1.6.2. Let X be a set, and let € be a n-system on X. Then the G-algebra
generated by € coincides with the d-system generated by €.

Proof. Let 9 be the d-system generated by €, and, as usual, let (%) be the o-
algebra generated by €. Since every o-algebra is a d-system, the ¢-algebra o(%)
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is a d-system that includes %’; hence 2 C 6(%’). We can prove the reverse inclusion
by showing that & is a o-algebra, for then &, as a o-algebra that includes €, must
include the o-algebra generated by %, namely ¢ (%).

We begin the proof that & is a o-algebra by showing that & is closed under the
formation of finite intersections. Define a family 2; of subsets of X by letting

={A€2:ANCe€ P foreach Cin € }.
The fact that € C & implies that X € 2;; furthermore, the identities
(A—B)NC=(ANC)—(BNC)

and
(UnAn) NC = Up(4,NC),

together with the fact that & is a d-system, imply that 2; is closed under the
formation of proper differences and under the formation of unions of increasing
sequences of sets. Thus Z; is a d-system. Since € is closed under the formation of
finite intersections and is included in 2, it is included in &;. Thus 2 is a d-system
that includes ¢; hence it must include &. With this we have proved that we get a
set in & whenever we take the intersection of a set in 2 and a set in €.

Next define 2, by letting

P, ={B€ 2:ANBeE P foreach A in 2}.

The previous step of this proof shows that € C %, and a straightforward modifica-
tion of the argument in the previous step shows that %, is a d-system. It follows that
9 C 9,—in other words, that & is closed under the formation of finite intersections.

It is now easy to complete the proof. Parts (a) and (b) of the definition of a d-
system imply that X € & and that Z is closed under complementation. As we have
just seen, Z is also closed under the formation of finite intersections, and so it is
an algebra. Finally 2, as a d-system, is closed under the formation of unions of
increasing sequences of sets, and so by Proposition 1.1.7 it must be a ¢-algebra;
with that the proof is complete. O

We turn to some applications of Theorem 1.6.2.

Corollary 1.6.3. Ler (X, o7) be a measurable space, and let € be a m-system on X
such that & = o (€). If L and v are finite measures on < that satisfy u(X) = v(X)
and that satisfy U (C) = v(C) for each C in €, then 4 = v.

Proof. Let 9 = {A € & : u(A) = v(A)}. As we noted above, Z is a d-system.
Since % is a m-system and is included in &, it follows from Theorem 1.6.2 that
2 2 0(%) = . Thus u(A) = v(A) holds for each A in 7, and the proof is
complete. a



1.6 Dynkin Classes 39

Now suppose that y and v are finite Borel measures on R such that y(I) =
v(I) holds for each interval I of the form (—oe,b]. Note that R is the union of an
increasing sequence of intervals of the form (—oe,b] and hence that u(R) = v(R).
Since the collection of all intervals of the form (—ee,b] is a 7-system that generates
AB(R) (see Proposition 1.1.4), it follows from Corollary 1.6.3 that y = v. With this
we have another proof of the uniqueness assertion in Proposition 1.3.10.

The following result is essentially an extension of Corollary 1.6.3 to the case of
o-finite measures. Note that it implies that Lebesgue measure is the only measure
on %(R?) that assigns to each d-dimensional interval its volume, and so it provides
a second proof of part of Proposition 1.4.3.

Corollary 1.6.4. Let (X, o) be a measurable space, and let € be a m-system on X
such that & = o(%). If L and v are measures on (X, <) that agree on €, and if
there is an increasing sequence {C,} of sets that belong to €, have finite measure
under L and v, and satisfy U,C, = X, then Ll = V.

Proof. Choose an increasing sequence {C,} of sets that belong to €, have finite
measure under y and v, and satisfy U,C, = X. For each positive integer n
define measures , and v, on &7 by u,(A) = u(ANG,) and v,(A) = v(ANGC,).
Corollary 1.6.3 implies that for each n we have u, = v,,. Since

w(A) = lilzn,un(A) = lirrln vn(A) = Vv(A)

holds for each A in 7, the measures 1 and v must be equal. O
Exercises

1. Give at least six m-systems on R, each of which generates (R).

2. (b) Check that the rectangles of the form considered in part (c) of Proposi-

tion 1.1.5, together with the empty set, form a 7-system on R9.
(b) What is the smallest 7-system on R? that contains all the half-spaces of the
form considered in part (b) of Proposition 1.1.5?
3. Give a measurable space (X, <) and finite measures ( and Vv on it that satisfy
U(X) = v(X) but are such that

{Aed u(A)=v(A)}

is not a o-algebra. (Hint: Don’t work too hard; X can be a fairly small finite set.)
4. Show by example that Corollary 1.6.3 would be false if the hypothesis that u
and v are finite were replaced with the hypothesis that they are o-finite. (See,
however, Corollary 1.6.4.)
5. Use Theorem 1.6.2 to give another proof of Proposition 1.5.6. (Hint: Show that
the collection consisting of those Borel subsets of R? that can be approximated



40 1 Measures

from below with compact sets and from above with open sets is a d-system, and
that this d-system contains each rectangle of the form considered in part (c) of
Proposition 1.1.5.)

6. Let X be a set. A collection € of subsets of X is a monotone class on X if it is
closed under monotone limits, in the sense that

(i) if {A,} is an increasing sequence of sets that belong to €, then U,A,
belongs to %, and

(ii) if {A,} is a decreasing sequence of sets that belong to &, then N,A,
belongs to % .

(a) Show that if &7 is a collection of subsets of X, then there is a smallest
monotone class on X that includes .<7. This smallest monotone class is called
the monotone class generated by <7; let us denote it by m(.<7).

(b) Prove the monotone class theorem: if <7 is an algebra of subsets of X, then
m(</) = o(</). (Hint: Modify the proof of Theorem 1.6.2.)

Notes

Halmos [54] is a standard reference for the theory of measure and integration.
The books by Bartle [3], Berberian [7], Billingsley [8], Bruckner, Bruckner, and
Thomson [23], Dudley [40], Folland [45], Hewitt and Stromberg [59], Munroe [92],
Royden [102], Rudin [105], and Wheeden and Zygmund [127] are also well known
and useful. The reader should see Billingsley [8] and Dudley [40] for applications
to probability theory, Rudin [105] and Benedetto and Czaja [6] for a great variety
of applications to analysis, and Wheeden and Zygmund [127] for applications to
harmonic analysis. Gelbaum and Olmsted [48] contains an interesting collection
of counterexamples. Bogachev’s recent two-volume work [15] and Fremlin’s five-
volume work [46] are good references. Pap [95] is a collection of survey papers on
measure theory. Federer [44], Krantz and Parks [75], Morgan [89], and Rogers [100]
treat topics in measure theory that are not touched upon here.

Theorem 1.6.2 is due to Dynkin [43] (see also Blumenthal and Getoor [14]).

See Dudley [40] and Bogachev [15] for very thorough historical notes and
bibliographic citations.



Chapter 2
Functions and Integrals

This chapter is devoted to the definition and basic properties of the Lebesgue
integral. We first introduce measurable functions—the functions that are simple
enough that the integral can be defined for them if their values are not too
large (Sect.2.1). After a brief look in Sect.2.2 at properties that hold almost
everywhere (that is, that may fail on some set of measure zero, as long as they hold
everywhere else), we turn to the definition of the Lebesgue integral and to its basic
properties (Sects. 2.3 and 2.4). The chapter ends with a sketch of how the Lebesgue
integral relates to the Riemann integral (Sect. 2.5) and then with a few more details
about measurable functions (Sect. 2.6).

2.1 Measurable Functions

In this section we introduce measurable functions and study some of their basic
properties. We begin with the following elementary result.

Proposition 2.1.1. Let (X, /) be a measurable space, and let A be a subset of X
that belongs to <. For a function f: A — [—eo,+oo] the conditions

(a) for each real numbert the set {(x €A : f
(b) for each real number t the set {x €A : f
(¢) for each real numbert the set {(x €A : f
(d) for each real number t the set {x €A : f

x) <t} belongs to <,
x) <t} belongs to <,
x) >t} belongs to <, and
x) >t} belongs to </

—~ e~

are equivalent.

Proof. The identity

{xeA: fx) <t} =(J{x€A: f(x) <t—1/n}
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implies that each of the sets appearing in condition (b) is the union of a sequence of
sets appearing in condition (a); hence condition (a) implies condition (b). The sets
appearing in condition (c) can be expressed in terms of those appearing in condition
(b) by means of the identity

{xeA: f(x) >t} =A—{xe€A: f(x) <t}

thus condition (b) implies condition (c¢). Similar arguments, the details of which are
left to the reader, show that condition (c) implies condition (d) and that condition
(d) implies condition (a). O

Let (X,<7) be a measurable space, and let A be a subset of X that belongs to <7
A function f: A — [—eo,+oo] is measurable with respect to <f if it satisfies one,
and hence all, of the conditions of Proposition 2.1.1. A function that is measurable
with respect to .27 is sometimes called .27 -measurable or, if the G-algebra <7 is clear
from context, simply measurable. In case X = R?, a function that is measurable with
respect to Z(R?) is called Borel measurable or a Borel function, and a function that
is measurable with respect to .#) « is called Lebesgue measurable (recall that .4 «
is the o-algebra of Lebesgue measurable subsets of R?). Of course every Borel
measurable function on R¢ is Lebesgue measurable.

We turn to a few examples and then to some of the basic facts about measurable
functions.

Examples 2.1.2. (a) Let f: RY — R be continuous. Then for each real number
t the set {x € R?: f(x) <t} is open and so is a Borel set. Thus f is Borel
measurable.

(b) Let I be a subinterval of R, and let f: I — R be nondecreasing. Then for each
real number ¢ the set {x € I': f(x) <t} is a Borel set (it is either an interval, a
set consisting of only one point, or the empty set). Thus f is Borel measurable.

(c) Let (X,o) be a measurable space, and let B be a subset of X. Then yz, the
characteristic function of B, is 7 -measurable if and only if B € .«

(d) A function is called simple if it has only finitely many values. Let (X, <) be a

measurable space, let f: X — [—oo,+oo] be simple, and let ¢y, ..., o be the
values of f. Then f is o/-measurable if and only if {x € X : f(x) = 0;} € <« for
i=1,...,n. O

Proposition 2.1.3. Let (X,.o/) be a measurable space, let A be a subset of X that
belongs to of , and let f and g be [—oo, +o0]-valued measurable functions on A. Then

the sets {x € A: f(x) <g(x)}, {x€A: f(x) <g(x)}, and {x € A: f(x) = g(x)}
belong to <f .

Proof. Note that the inequality f(x) < g(x) holds if and only if there is a rational
number r such that f(x) < r < g(x). Thus

{xeA: fx)<glx)} = U({xeA:f(x) <rfn{xeA:r<gx)}),
reQ
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and so {x € A: f(x) < g(x)}, as the union of a countable collection of sets that
belong to 7, itself belongs to «7. The set {x € A : g(x) < f(x)} likewise belongs to
/. This and the identity

fred:flx) <g)}=A—{xeA:glx) <f(x)}

imply that {x € A : f(x) < g(x)} belongs to <7. Finally {x € A: f(x) = g(x)} is
the difference of {x € A : f(x) < g(x)} and {x € A: f(x) < g(x)} and so belongs
to .o O

Let f and g be [—oo,+oo]-valued functions having a common domain A. The
maximum and minimum of f and g, written fV g and f A g, are the functions from
A to [—eo, 40| defined by

(fV&)(x) = max(f(x),8(x))
and

(f Ag)(x) = min(f (x),g(x))-
Equivalently, we can define fV g by

flx) if f(x) > g(x) and,

g(x) otherwise,

(f\/g)(X)—{

with f A g getting a corresponding definition.
If {f,} is a sequence of [—eo,+oo]-valued functions on A, then sup,, f,: A —
[—o0,4-o0] is defined by

(sup£) () = Sup{fu(w) i =1,2,...}

and inf, f,, limsup, f,, liminf, f,;, and lim, f, are defined in analogous ways.
The domain of lim, f, consists of those points in A at which limsup, f, and
liminf, f, agree; the domain of each of the other four functions is A. Each of these
functions can have infinite values, even if all the f,’s have only finite values; in
particular, lim,, f,, (x) can be +oo or —oo.

Proposition 2.1.4. Let (X,.o/) be a measurable space, let A be a subset of X that
belongs to of , and let f and g be [—oo, +o0]-valued measurable functions on A. Then
fVgand f N g are measurable.

Proof. The measurability of fV g follows from the identity

{xeA:(fvgx)<t}={xeA: fx) <t}n{xeA:glx) <t}
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and the measurability of f A g follows from the identity

{xeAd: (fAg)x)<t}={x€A: f(x)<t}U{xe€A:g(x) <t} O

Proposition 2.1.5. Let (X,.o/) be a measurable space, let A be a subset of X that
belongs to <7, and let { f,} be a sequence of [—eo, +oo|-valued measurable functions
on A. Then

(a) the functions sup, f, and inf, f, are measurable,

(b) the functions limsup,, f, and liminf, f, are measurable, and

(¢) the function limy, f, (Whose domain is {x € A : limsup,, f,(x) = liminf, f,,(x)})
is measurable.

Proof. The measurability of sup, f, and inf, f,, follows from the identities
{xeA:supfu(x) <t} =[{x€A: fulx) <1}
n n

and

{reA:inff,(x) <1} = UlreA: fulx) <1}

For each positive integer k define functions g, and Ay by gy = sup,~, f» and ha; =
inf,,>¢ f,. Part (a) of the proposition implies first that each g is measurable and
that each Ay is measurable and then that inf g, and sup, i are measurable. Since
limsup,, f,;, and liminf, f, are equal to inf g, and supy, /i, they too are measurable.

Let Ag be the domain of lim, f,,. Then Ay is equal to {x € A : limsup, f,(x) =
liminf,, f, (x)}, which according to Proposition 2.1.3 belongs to <. Since

{x€Ap:limf,(x) <t} =ApN{x €A :limsup f,(x) <t},
n n

the measurability of lim,, f,, follows. O

In the following two propositions we deal with arithmetic operations on [0, +ec]-
valued measurable functions (see B.4) and on R-valued measurable functions.
Arithmetic operations on [—ee, 4-cc]-valued functions are trickier and are seldom
needed.

Proposition 2.1.6. Let (X, o) be a measurable space, let A be a subset of X that
belongs to <7, let f and g be [0,+o0]-valued measurable functions on A, and let o
be a nonnegative real number. Then o.f and f + g are measurable."

Proof. For the measurability of o f, note that if & = 0, then o f is identically 0 and
so measurable, while if o > 0, then for each ¢ the set {x € A: o.f(x) <t} is equal to
{x€A: f(x) <t/o} and so belongs to &7.

'Recall that 0- (+e0) = 0 and that if x # —co, then x + (+oc0) = (+0) +x = +oo. See Appendix B.
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We turn to f + g. It is easy to check that (f + g)(x) < ¢ holds if and only if there
is a rational number r such that f(x) < r and g(x) < ¢ —r. Thus

{xeA: (f+g)(x) <t}

= U({xeA:f(x)<r}ﬂ{x€A:g(x)<t—r}),
reQ

and so {x € A: (f +g)(x) < t}, as the union of a countable collection of sets that
belong to <7, itself belongs to 7. The measurability of f + g follows. a

Proposition 2.1.7. Let (X, /) be a measurable space, let A be a subset of X that
belongs to <, let f and g be measurable real-valued functions on A, and let o be
a real number. Then of, f+g, f—g fg and f/g (where the domain of f/g is
{x € A:g(x)#0}) are measurable.

Proof. The measurability of «f and f 4 g can be verified by modifying the proof
of Proposition 2.1.6, and so the details are omitted (note that if o0 < 0, then {x € A :
of(x) <t} ={x€A: f(x) >t/a}). The measurability of f — g follows from the
identity f —g=f+(—1)g.

We turn to the product of measurable functions and begin by showing that if
h: A — R is measurable, then 42 is measurable. For this note that if 7 < 0, then

(xeA:P(x) <t} =2,
while if t > 0, then
{xeA:P(x) <t} ={x€A: —Vi<h(x) <Vi};

the measurability of 42 follows. Hence if f and g are measurable, then 2, g2, and
(f + g)? are measurable, and the measurability of fg follows from the identity

fe=5((F+87 - ).

Let Ag = {x € A: g(x) # 0}, so that A is the domain of f/g. It is easy to check
(do so0) that Ap belongs to «7. Since for each ¢ the set {x € Ay : (f/g)(x) <t} is the
union of

{xeA:gx)>0}n{xeA: f(x) <rg(x)}
and
{xeA:glx) <0In{xeA: f(x) >1g(x)},
the measurability of f/g follows (see Proposition 2.1.3). a
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Let A be a set, and let f be an extended real-valued function” on A. The positive
part f+ and the negative part f~ of f are the extended real-valued functions
defined by

[ (x) = max (f(x),0)
and
F~(x) = —min (£(x),0).

Thus f* = fVv0and f~ = (—f) V0. Itis easy to check thatif (X, <) is a measurable
space and if f is a [—oo,4oo]-valued function defined on a subset of X, then f
is measurable if and only if ™ and f~ are both measurable. It follows from this
remark, together with Proposition 2.1.6, that the absolute value | f| of a measurable
function f is measurable (note that |f]| = f + 7).

Let (X,<7) be a measurable space, let A be a subset of X that belongs to <7,
and let f be a [—oco, 4-o0]-valued function on A. The following relationships between
the measurability of f and the measurability of restrictions of f to subsets of A are
sometimes useful:

(a) If f is o/-measurable and if B is a subset of A that belongs to <7, then the
restriction fp of f to B is .2/-measurable; this follows from the identity

{xeB: fpx)<t}=BN{xecA: f(x) <t}

(b) If {B,} is a sequence of sets that belong to <7, if A = U,B,, and if for each n
the restriction fp, of f to B, is </-measurable, then f is o7-measurable; this
follows from the identity

{reA: fx) <ty =|J{x€Bu: f3,(x) <1}.

We will repeatedly have need for the following basic result.

Proposition 2.1.8. Let (X, /) be a measurable space, let A be a subset of X that
belongs to </, and let f be a [0, +e0|-valued measurable function on A. Then there
is a sequence { fu} of simple [0,+ec)-valued measurable functions on A that satisfy

filx) < folx) <.l (h
and
flx) = li’Ilnf,,(x) (2)

at each x in A.

2 An extended real-valued function is, of course, a [—eo, +oo]-valued function.
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Proof. For each positive integer n and for k =1, 2, ..., n2" let A, = {x € A:
(k—1)/2" < f(x) < k/2"}. The measurability of f implies that each A,, ; belongs to
&/ . Define a sequence {f,} of functions from A to R by requiring f, to have value
(k—1)/2" at each point in A, ; (for k = 1,2, ..., n2") and to have value n at each
point in A — U;A, «. The functions so defined are simple and measurable, and it is
easy to check that they satisfy (1) and (2) at each x in A. O

Suppose that (X,.27) is a measurable space and that f is a [—oo, 4-co]-valued o7 -
measurable function defined on an .#'-measurable subset A of X. Then by applying
Proposition 2.1.8 to the positive and negative parts of f, we can construct a sequence
{fu} of simple o-measurable functions from A to R such that f(x) = lim, f,(x)
holds at each x in A.

The following proposition gives some additional ways of viewing measur-
able functions; part (d) suggests a way to deal with more general situations
(see Sect. 2.6).

Proposition 2.1.9. Let (X,.o/) be a measurable space, and let A be a subset of X
that belongs to 7. For a function f: A — R, the conditions

(a) f is measurable with respect to <7,

(b) for each open subset U of R the set f~1(U) belongs to <7,

(c) for each closed subset C of R the set f~1(C) belongs to 7, and
(d) for each Borel subset B of R the set f~'(B) belongs to </

are equivalent.

Proof. Let # = {BC R : f !(B) € o/}. Then the fact that f~'(R) = A and the
identities

fUB)=A-f'(B)

and
! (UB) = Lan”(Bn)

imply that .# is a o-algebra on R. To require that f be measurable is to require
that .% contain all the intervals of the form (—eo, b] or equivalently (since .7 is a -
algebra) to require that .% include the o-algebra on R generated by these intervals.
Since the o-algebra generated by these intervals is the o-algebra of Borel subsets of
R (Proposition 1.1.4), conditions (a) and (d) are equivalent. However the o-algebra
of Borel subsets of R is also generated by the collection of all open subsets of R
and by the collection of all closed subsets of R, and so conditions (b) and (c) are
equivalent to the others. a

We close this section by returning to one of the promises made in Sect. 1.3 and
proving that there are Lebesgue measurable subsets of R that are not Borel sets.
For this we will use the following example.
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Example 2.1.10. Recall the construction of the Cantor set given in Sect. 1.4. There
we let Ky be the interval [0,1], and for each positive integer n we constructed a
compact set K, by removing from K,,_ | the open middle third of each of the intervals
making up K,,—;. The Cantor set K is given by K = N, K,,.

The Cantor function (also known as the Cantor singular function) is the function
f:10,1] = [0,1] defined as follows (the concept of singularity will be defined and
studied in Chap.4). For each x in the interval (1/3,2/3) let f(x) = 1/2. Thus f is
now defined at each point removed from [0, 1] in the construction of K;. Next define
f at each point removed from K in the construction of K, by letting f(x) = 1/4 if
x€(1/9,2/9) and letting f(x) =3/4if x € (7/9,8/9). Continue in this way, letting
f(x) be 1/2",3/2",5/2", ... on the various intervals removed from K, in the
construction of K,. After all these steps, f is defined on the open set [0,1] — K, is
nondecreasing, and has values in [0, 1]. Extend it to all of [0, 1] by letting f(0) =0
and letting

f(x)=sup{f(t):1€[0,1]—K and ¢ < x}

if x € K and x # 0. This completes the definition of the Cantor function.

It is easy to check that f is nondecreasing and continuous, and it is clear that
f(0) =0 and f(1) = 1. The intermediate value theorem (Theorem C.13) thus
implies that for each y in [0, 1] there is at least one x in [0, 1] such that f(x) =y,
and so we can define a function g: [0,1] — [0,1] by

g(y) =inf{x € [0,1]: f(x) =y} 3)

The continuity of f implies that f(g(y)) = y holds for each y in [0, 1]; hence g is
injective. It is easy to check that all the values of g lie in the Cantor set. The fact
that f is nondecreasing implies that g is nondecreasing and hence that g is Borel
measurable (see Example 2.1.2(b)). O

Proposition 2.1.11. There is a Lebesgue measurable subset of R that is not a
Borel set.

Proof. Let g be the function constructed above, let A be a subset of [0, 1] that is
not Lebesgue measurable (see Theorem 1.4.9), and let B = g(A). Then B is a subset
of the Cantor set and so is Lebesgue measurable (recall that A(K) = 0 and that
Lebesgue measure on the o-algebra of Lebesgue measurable sets is complete). If B
were a Borel set, then g~!(B) would also be a Borel set (recall that g is Borel
measurable, and see Proposition 2.1.9). However the injectivity of g implies that
g~ '(B) is the set A, which is not Lebesgue measurable and hence is not a Borel set.
Consequently the Lebesgue measurable set B is not a Borel set. O

Example 2.1.12. The proof of Proposition 2.1.11 gives a Borel set of Lebesgue
measure 0 (the Cantor set) that has a subset that is not a Borel set. It follows that
Lebesgue measure on (R, Z(R)) is not complete. O
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Exercises

1. Let X be a set, let {A;} be a sequence of subsets of X, let B=U;"_, Ny, Ay, and
let C = Nj_, Uy_, Ag. Show that
(a) liminfy ya, = xp, and
(b) limsupy x4, = xc-

2. Show that the supremum of an uncountable family of [—eo, +oo]-valued Borel
measurable functions on R can fail to be Borel measurable.

3. Show that if f: R — R is differentiable everywhere on R, then its derivative f’
is Borel measurable.

4. Let (X,4/) be a measurable space, and let {f,} be a sequence of [—oco, +oo]-
valued measurable functions on X. Show that

{x € X : lim f, (x) exists and is finite}
n

belongs to 7.

5. Let (X, /) be a measurable space.

(a) Show directly (i.e., without using Proposition 2.1.6 or Proposition 2.1.7) that
if f,g: X — R are «/-measurable simple functions, then f + g and fg are
o/ -measurable.

(b) Now let f,g: X — R be arbitrary 7-measurable functions. Use Proposi-
tions 2.1.4, 2.1.5, and 2.1.8, together with part (a) of this exercise, to show
that f + g and fg are .o/-measurable.

6. Let (X,7) be a measurable space, and let f,g: X — R be measurable. Give still
another proof of the measurability of f + g, this time by checking that for each
real ¢ the function x — ¢ — f(x) is measurable and then using Proposition 2.1.3.
(Hint: Consider {x: g(x) <t— f(x)}.)

7. Let f be the Cantor function, and let u be the Borel measure on R associated
to f by Proposition 1.3.10 (actually, one should apply Proposition 1.3.10 to the
function from R to R that agrees with f on [0, 1], vanishes on (—e,0), and is
identically 1 on (1,4o0)). Show that
(a) each of the 2" intervals remaining after the nth step in the construction of the

Cantor set has measure 1/2" under U,

(b) the Cantor set has measure 1 under u, and

(c) each x in R satisfies u({x}) = 0.

Thus all the mass of u is concentrated on a set of Lebesgue measure zero (the

Cantor set), but u is not a sum of multiples of point masses.

8. Let g be the inverse of the Cantor function (that is, let g be defined by formula
(3)). Show that the points x that have the form x = g(y) for some y in [0, 1] are
exactly those that belong to the Cantor set and are not right-hand endpoints of
intervals removed from [0, 1] during the construction of the Cantor set.

9. Let (X, %) be a measurable space and let C be a subset of X that does not belong
to <. Show that a function f: X — R is o(«/ U{C})-measurable if and only if
there exist .7 -measurable functions f}, f>: X — R such that f = fixc + faxce-
(See part (a) of Exercise 1.5.12.)
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10. Let ¥ be the collection of all Borel measurable functions from R to R. Show
that % is the smallest of those collections ¥  of functions from R to R for
which

(i) 7 is a vector space over R,
(ii) ¥ contains each continuous function, and
(iii) if {f,} is an increasing sequence of nonnegative functions in ¥ and if
lim,, f, (x) is finite for each x in R, then lim, f, belongs to ¥'.

(Hint: Suppose that ¥ satisfies conditions (a), (b), and (c), and define S(¥)
by S(¥) ={A CR: x4 € ¥}. Show that S(¥') contains each interval of the
form (—ee,a), and then use Theorem 1.6.2 to show that S(¥") contains each
Borel set.)

2.2 Properties That Hold Almost Everywhere

Let (X, o7, 1) be a measure space. A property of points of X is said to hold p-almost
everywhere if the set of points in X at which it fails to hold is y-negligible. In other
words, a property holds p-almost everywhere if there is a set N that belongs to <7,
satisfies (1 (N) = 0, and contains every point at which the property fails to hold. More
generally, if E is a subset of X, then a property is said to hold u-almost everywhere
on E if the set of points in E at which it fails to hold is p-negligible. The expression
W-almost everywhere is often abbreviated to -a.e. or to a.e.[(t]. In cases where the
measure [ is clear from context, the expressions almost everywhere and a.e. are also
used.

Consider a property that holds almost everywhere, and let F' be the set of points in
X at which it fails. Then it is not necessary that F' belong to .7, it is only necessary
that there be a set N that belongs to <7, includes F, and satisfies u(N) = 0. Of
course, if u is complete, then F will belong to 7.

Examples 2.2.1. Suppose that f and g are functions on X. Then f = g almost
everywhere if the set of points x at which f(x) # g(x) is u-negligible, and f > g
almost everywhere if the set of points x at which f(x) < g(x) is u-negligible. Note
that the sets {x € X : f(x) # g(x)} and {x € X : f(x) < g(x)} belong to <« if f
and g are «7-measurable; otherwise these sets may fail to belong to <. If {f,} is a
sequence of functions on X and f is a function on X, then {f,, } converges to f almost
everywhere if the set of points x at which the relation f(x) = lim,, f, (x) fails to hold
is u-negligible. In this case one also says that f = lim,, f;, almost everywhere. O

Proposition 2.2.2. Let (X, <7,1) be a measure space, and let f and g be extended
real-valued functions on X that are equal almost everywhere. If U is complete and
if f is o/ -measurable, then g is o/ -measurable.

Proof. Let t be a real number and let N be a set that belongs to <7, satisfies
1(N) =0, and is such that f and g agree everywhere outside N. Then

{xeX glx)<t}=({xeX:flx) <t}NN)Y)U({xeX:gx) <t}NN). (1)
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The measurability of f and N implies that {x € X : f(x) < ¢} N N° belongs to <7,
while the completeness of (1 implies that {x € X : g(x) <} NN belongs to <. The
measurability of g follows. O

Corollary 2.2.3. Let (X, 1) be a measure space, let {f,} be a sequence of
extended real-valued functions on X, and let f be an extended real-valued function
on X such that { f,} converges to f almost everywhere. If |1 is complete and if each
fn is &/ -measurable, then f is o/ -measurable.

Proof. According to Proposition 2.1.5 the function liminf, f, is </-measurable.
Since f and liminf, f;, agree almost everywhere, Proposition 2.2.2 implies that f
is .o/ -measurable. O

Example 2.2.4. Suppose that (X,.o/, 1) is a measure space that is not complete,
and let N be a p-negligible subset of X that does not belong to /. Then the
characteristic function yy and the constant function 0 agree almost everywhere,
but O is .o/-measurable while yy is not. Thus Proposition 2.2.2 would fail if the
hypothesis of completeness were removed. Furthermore, the sequence each term of
which is 0 converges almost everywhere to yy; consequently Corollary 2.2.3 would
also fail if the hypothesis of completeness were removed. O

Proposition 2.2.5. Let (X, , |1) be a measure space, and let <7, be the completion
of o under u. Then a function f: X — [—oo,+oo| is 7 -measurable if and only if
there are of -measurable functions fy, fi: X — [—eo, 40| such that

fo < f < fi holds everywhere on X 2

and
fo = f1 holds p-almost everywhere on X. 3)

In the context of Proposition 2.2.5, it is natural to ask whether it is always
possible, given an 7/,-measurable function f with values in R, rather than in
[—o0,+oe], to find real-valued functions fy and f; that satisfy (2) and (3). It turns
out that the answer is no; see Exercise 8.3.3.

Proof. First suppose that there exist .27 -measurable functions fy and f; that satisfy
(2) and (3). Then fy is 7;-measurable and f = fy holds fi-almost everywhere,
and so Proposition 2.2.2, applied to the space (X,.<7,,II), implies that f is .o7,-
measurable.

Now suppose that f: X — [—eco,4oo] is 7/,-measurable. If f is simple and
[0,+e)-valued, say attaining values aj, ..., a; on the sets Ay, ..., A, then there
are sets By, ..., By and C, ..., C that belong to ./ and satisfy C; C A; C B; and
W(B; — C;) = 0 for each i. The functions fy and fi defined by fy = Yiaixc, and
f1 = Xiaixs, then satisfy (2) and (3).

We can deal with the case where f is simple and real-valued by applying the
preceding argument to the positive and negative parts of f.
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Finally, let f: X — [—eo,+o0] be an arbitrary &7, -measurable function, and
choose a sequence {g,} of simple .27,-measurable functions from X to R such
that f(x) = lim, g,(x) holds at each x in X (see the remark following the proof
of Proposition 2.1.8). If for each n we choose .7 -measurable functions go , and g1,
such that

80n < gn < 81,5, holds everywhere on X
and

80,n = &1,, holds p-almost everywhere on X,

then the required functions fy and f; can be constructed by letting f be lim, 80,1
and /1 be lim, g1 1. O

Exercises

1. Give Borel functions f,g: R — R that agree on some dense subset of R but are
such that f(x) # g(x) holds at A-almost every x in R.

2. Let {x,} be a sequence of real numbers, and define u on (R, 4(R)) by u =
>, Ox, (see Exercise 1.2.6). Show that functions f,g: R — R agree p-almost
everywhere if and only if f(x,) = g(x,) holds for each n.

3. Let f and g be continuous real-valued functions on R. Show that if f =g
A-almost everywhere, then f = g (i.e., f(x) = g(x) for every x in R).

4. Let u be the finite Borel measure on R that is associated to the Cantor function
by Proposition 1.3.10 (see Exercise 2.1.7). Show that continuous real-valued
functions on R agree p-almost everywhere if and only if they agree at every
point in the Cantor set.

5. Let (X,</,1t) be a measure space, and let f and fi, f3, ... be [—eco, +oo]-
valued «7-measurable functions on X. Show that if {f,} converges to f almost
everywhere, then there are ./-measurable functions g1, g2, ... that are equal to
f1, f2, ... almost everywhere and satisfy f = lim, g, everywhere.

6. Show that the function f: R — R defined by

0 if x is irrational,
fx) = L
1 if x is rational

is nowhere continuous and that the function g: R — R defined by

Lifx= g, where p and q are relatively prime and ¢ > 0

0 if x =0 or x is irrational,
g(x) =
q

is continuous A-almost everywhere.
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2.3 The Integral

In this section we construct the integral and study some of its basic properties.
The construction will take place in three stages.

We begin with the simple functions. Let (X, .<7) be a measurable space. We will
denote by . the collection of all simple real-valued .7 -measurable functions on X
and by .%; the collection of nonnegative functions in ..

Let u be a measure on (X, <7). If f belongs to .7, and is given by f =", aixa,,
where ay, ..., a, are nonnegative real numbers and Ay, ..., A, are disjoint subsets
of X that belong to &7, then [ fdu, the integral of f with respect to U, is defined
to be X7 ailt(A;) (note that this sum is either a nonnegative real number or +ee).
We need to check that [ fdu depends only on f andnotonay, ..., a, and Ay, ...,
A,,. So suppose that f is also given by 2;?:1 bjxs;, where by, ..., b, are nonnegative
real numbers and By, ..., B, are disjoint subsets of X that belong to /. We can
assume that U?" |A; = U?: 1B (Gf necessary eliminate those sets A; for which a; =0
and those sets B for which b; = 0). Then the additivity of u and the fact that a; = b;
if A;NB; # 0 imply that
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hence [ fdu does not depend on the representation of f used in its definition.
Before proceeding to the next stage of our construction, we verify a few
properties of the integral of a nonnegative simple function.

Proposition 2.3.1. Let (X,<7, 1) be a measure space, let f and g belong to .7,
and let o be a nonnegative real number. Then

(@ [afdu=a/fdu,
®) [(f+g)du= [fdu+ [gdu, and
(©) if f(x) < g(x) holds at each x in X, then [ fdu < [gdu.

Proof. Suppose that f =Y, a;xa,, where ay, ..., a,, are nonnegative real numbers
and Ay, ..., A, are disjoint subsets of X that belong to <7, and that g = 2;?:1 bjxs;
where by, ..., b, are nonnegative real numbers and By, ..., B, are disjoint subsets

of X that belong to /. We can again assume that U?" |A; = U;leBj. Then parts (a)
and (b) follow from the calculations

/afdu =Y aaill(A) = oY aip(A) = oc/fdu
i=1 i=1
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Next suppose that f(x) < g(x) holds at each x in X. Then g — f belongs to .%;,
and so part (c) follows from the calculation

[eau=[(r+—du= [ rau+ [c-pdu= [ran. o

Proposition 2.3.2. Let (X, .o/, 1) be a measure space, let f belong to %y, and let
{fu} be a nondecreasing sequence of functions in ., such that f(x) = lim,, f,(x)
holds at each x in X. Then [ fdu =1lim, [ f,du.

This proposition is a weak version of one of the fundamental properties of the
Lebesgue integral, the monotone convergence theorem (Theorem 2.4.1). We need
this weakened version now for use as a tool in completing the definition of the
integral.

Proof. 1t follows from Proposition 2.3.1 that

./fld“ S/‘fzdu < S/fdu;

hence lim,, [ f, du exists and satisfies lim,, [ f,du < [ fdu. We turn to the reverse
inequality. Let € be a number such that 0 < € < 1. We will construct a nondecreasing
sequence {g,} of functions in .%; such that g, < f, holds for each n and such
that lim, [ g,du = (1 —¢€) [ fdu. Since [g,du < [ f,du, this will imply that
(1—¢)[fdu <lim, [ f,du and, since € is arbitrary, that [ fdu < lim, [ f,du.
Consequently [ fdu =lim, [ f,du.

We turn to the construction of the sequence {g, }. Suppose that ay, ..., a; are the
nonzero values of f and that Ay, ..., A; are the sets on which these values occur.
Thus f = fo: 1aiXa;- For each n and i let

A(ni)={x€Ai: fu(x) > (1 —€)a;}.

Then each A(n,i) belongs to <7, and for each i the sequence {A(n,i)}; , is
nondecreasing and satisfies A; = U,A(n, i). If we let g, = ¥~ (1 —¢€)a @iYa(n,i)> then
gn belongs to .7, and satisfies g, < f;,, and we can use Proposition 1.2.5 to conclude
that
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lim / gndpt = 1imY (1 — £)ai(A(n, 1))

1

k
=

k
=

(1= ea(a) = (1 -e) [ fdu. 0
1

As our next step, we define the integral of an arbitrary [0,+-oco|-valued «7-
measurable function on X. For such a function f, let

'/fdu:sup{/gdu:gejﬁ andggf}.

It is easy to see that for functions f in .#, this agrees with the previous definition.

Let us check a few properties of the integral on the class of [0, +eo]-valued meas-
urable functions. The first of these properties is an extension of Proposition 2.3.2 and
will itself be generalized in Theorem 2.4.1 (the monotone convergence theorem).
It is included here so that it can be used in the proof of Proposition 2.3.4.

Proposition 2.3.3. Let (X, o/, 1) be a measure space, let f be a [0, +o<]-valued <7 -
measurable function on X, and let {f,} be a nondecreasing sequence of functions
in %y such that f(x) =lim, f,(x) holds at each x in X. Then [ fdu =lim, [ f,du.

Proof. Tt is clear that

/fldug/ﬁdliﬁ“'é/fdy;

hence lim,, [ f, du exists and satisfies lim,, [ f,dy < [ fdu. We turn to the reverse
inequality. Recall that [ fdu is the supremum of those elements of [0, +o<] of the
form [ gdu, where g ranges over the set of functions that belong to ., and satisfy
g < f. Thus to prove that [ fdu <lim, [ f,du, it is enough to check that if g is
a function in .%; that satisfies g < f, then [gdu <lim, [ f,du. Let g be such a
function. Then {g A f,} is a nondecreasing sequence of functions in ., for which
g =lim,(g A f,), and so Proposition 2.3.2 implies that [ gdu =lim, [(g A f,)du.
Since [(g A fu)du < [ fodu, it follows that [ gdu <lim, [ f,du, and the proof is
complete. O

Proposition 2.3.4. Let (X, o/, 1) be a measure space, let f and g be [0, +oo]-valued
of -measurable functions on X, and let o, be a nonnegative real number. Then

(@ [afdu=a/fdu,
®) [(f+g)du= [fdu+ [gdu, and
(©) if f(x) < g(x) holds at each x in X, then [ fdu < [gdu.

Proof. Choose nondecreasing sequences {f,} and {g,} of functions in . such
that f = lim, f, and g = lim, g, (see Proposition 2.1.8). Then {o.f, } and {f, + g}
are nondecreasing sequences of functions in . that satisfy af = lim, af, and
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f+g=1im,(f,+gn), and so we can use Proposition 2.3.3, together with the
homogeneity and additivity of the integral on .#;, to conclude that

/afdu:lim/afndu:lima/fndu:a/fdu
and

[+ @du=tim [+ g0 dn

—tim ([ fudu+ [ gnu) = [ rau+ [gan.

Thus parts (a) and (b) are proved. For part (c), note that if f < g, then the class of
functions & in ., that satisfy & < f is included in the class of functions % in .%;
that satisfy i < g; it follows that [ fdu < [gdu. O

Finally, let f be an arbitrary [—eo, +eo]-valued </-measurable function on X. If
[fTdu and [ f~ du are both finite, then f is called integrable (or [-integrable or
summable), and its integral [ fdu is defined by

[rau=[rtau- [ 5 an.

The integral of f is said to exist if at least one of [ f"du and [f~du is finite,
and again in this case, [ fdu is defined to be [ f*du — [ f~ du. In either case one
sometimes writes [ f(x) u(dx) or [ f(x)du(x) in place of [ fdu.

Suppose that f: X — [—eo,+eo| is &7/-measurable and that A € 7. Then f is
integrable over A if the function fy, is integrable, and in this case [, fdu, the
integral of f over A, is defined to be [ fyadu. Likewise, if A € o/ and if f is a
measurable function whose domain is A (rather than the entire space X), then the
integral of f over A is defined to be the integral (if it exists) of the function on X that
agrees with f on A and vanishes on A. In case 1 (A“) = 0, one often writes [ fdu
in place of [, fdu and calls f integrable, rather than integrable over A.

In case X = R and u = A, one often refers to Lebesgue integrability and the
Lebesgue integral. The Lebesgue integral of a function f on R is often written
J f(x)dx. In case we are integrating over the interval [a,b], we may write || : for

f: f(x)dx or, if we need to emphasize that we mean the Lebesgue integral, (L) ff f
or (L) [y f(x)dx.

We define 2! (X, o7, u,R) (or sometimes simply .Z!) to be the set of all real-
valued (rather than [—eo,+-oo]-valued) integrable functions on X. According to
Proposition 2.3.6 below, £ (X, o7, u,R) is a vector space and the integral is a linear
functional on .Z! (X,.o7, i, R).

Lemma 2.3.5. Ler (X,o/,11) be a measure space, and let fi, f», g1, and g be
nonnegative real-valued integrable functions on X such that fi — f> = g1 — g2. Then

Jfidu—[frdu=[gidu— [gdu.
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Proof. Since the functions fi, f», g1, and g, satisfy f| — fo» = g1 — g2, they also
satisfy fi + g2 = g1 + f> and so satisfy

[fran+ [edu=[grau+ [

(Proposition 2.3.4); since all the integrals involved are finite, this implies that

/‘fldﬂ—/fzd.uZ'/gldli—/gzdli- 0

Proposition 2.3.6. Ler (X, <7, 1) be a measure space, let f and g be real-valued
integrable functions on X, and let o be a real number. Then

(a) of and f + g are integrable,

b) [afdu=oa[fdu,

© [(f+g)du=[fdu+ [gdu, and

(d) if f(x) < g(x) holds at each x in X, then [ fdu < [ gdu.

Proof. The integrability of of and the relation [ofdu = o [ fdu are clear if
o = 0. If a is positive, then (o f)" = af " and (o.f)” = of ~; thus (cf)" and
(af)~, and hence ocf, are integrable, and

[aran=[(ar*au- [(an)du
:a/f+d,u—oc/f*du:a/fdu.
If o is negative, then (o.f)™ = —of ™ and (o f)” = —ouf ™, and we can modify the
preceding argument so as to show that ocf is integrable and that [ o f du = [ fdu.

Now consider the sum of f and g. Note that (f +g)" < f*+g7 and (f+g)” <
f~ + g ; thus (Proposition 2.3.4)

[(r+ertaus< [rrans [¢fdu<+e
and
'/(f+g)*du < /f*du+'/g*du < oo,
and so f + g is integrable. Since f + g is equal to (f+g)" — (f +¢g)~ and to
fr+g"—(f +g),it follows from Lemma 2.3.5 that
/(f+g)du = /(f+ +g*)du—/(f* +e& )du,

and hence that [ (f+g)du = [ fdu+ [ gdu.
If f(x) < g(x) holds at each x in X, then g — f is a nonnegative integrable

function; hence [(g— f)du >0,andso [gdu— [ fdu= [(g— f)du >0. O
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Examples 2.3.7.

(a) If u is a finite measure, then every bounded measurable function on (X,.«7, 1)
is integrable.

(b) In particular, every bounded Borel function, and hence every continuous
function, on [a,b] is Lebesgue integrable. (We’ll see in Sect.2.5 that the
Lebesgue integral of a continuous function on [a, b] can be found by calculating
its Riemann integral.)

(c) Suppose that <7 is the o-algebra on N containing all subsets of N and that
is counting measure on .27 It follows from Proposition 2.3.3 that a nonnegative
function f on N is p-integrable if and only if the infinite series Y, f(n) is
convergent, and that in that case the integral and the sum of the series agree.
Since a not necessarily nonnegative function f is integrable if and only if f*
and f~ are integrable, it follows that f is integrable if and only if the infinite
series Y, f(n) is absolutely convergent. Once again, the integral and the sum of
the series have the same value.

(d) Note that a simple measurable function that vanishes almost everywhere is
integrable, with integral 0. We can reach the same conclusion for arbitrary
measurable functions that vanish almost everywhere by first using Proposi-
tion 2.3.3 to deal with nonnegative functions and then using the decomposition
f=fT—f.Fora converse, see Corollary 2.3.12. a

We now consider a few elementary properties of the integral; the basic limit
theorems for the integral will be presented in the next section.

Proposition 2.3.8. Let (X, o/, 11) be a measure space, and let f be a [—oo, ool
valued <f -measurable function on X. Then f is integrable if and only if |f] is
integrable. If these functions are integrable, then | [ fdu| < [|f|du.

Proof. Recall that by definition f is integrable if and only if f* and f~ are
integrable. On the other hand, since |f| = f* + f~, part (b) of Proposition 2.3.4
implies that |f]| is integrable if and only if f* and f~ are integrable. Thus the
integrability of f is equivalent to the integrability of |f|. In case f and |f| are
integrable, the inequality | [ fdu| < [|f|du follows from the calculation

‘/fdu’— ‘/f*clu—/fdu‘ S'/f+d.u+/f7du:/|f|d‘u_ 0

The reader should note that there are functions that are not measurable, and hence
not integrable, but that have an integrable absolute value (see Exercise 3). Hence we
needed to include the measurability of f among the hypotheses of Proposition 2.3.8.

Proposition 2.3.9. Let (X, o, 1) be a measure space, and let f and g be [—oo, 4-oo]-
valued </ -measurable functions on X that agree almost everywhere. If either [ fdu
or [ gdu exists, then both exist, and [ fdu = [ gdu.

Proof. First consider the case where f and g are nonnegative. Let A = {x € X :
f(x) # g(x)}, and let & be the function defined by
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h(x) = +oo ifx €A,
0 ifx¢A.

Then [hdu = 0 (apply Proposition 2.3.3 to the sequence {h,} defined by h, =
nxa). In view of Proposition 2.3.4 and the inequality f < g+ h, this implies that
Jfdu<[gdu+ [hdu = [gdu. A similar argument shows that [gdu < [ fdu.

Thus [ fdu = [gdu.
The case where f and g are not necessarily nonnegative can be reduced to the
case just treated through the decompositions f = f© — f" andg=g" —g". a

Proposition 2.3.10. Let (X, o7, 1L) be a measure space, and let f be a [0,+oo]-
valued <of -measurable function on X. If t is a positive real number and if A, is
defined by Ay = {x € X : f(x) >}, then

uA) < %/Atfdu < [ rau.

Proof. Therelation 0 <ty,, < fxa, < f and part (c) of Proposition 2.3.4 imply that

i an < /Atfdu < [ ran.

Since [tya, du =t (A;), the proposition follows. O

Corollary 2.3.11. Ler (X, </ 1) be a measure space, and let f be a [—eo,+co]-
valued integrable function on X. Then {x € X : f(x) # 0} is o-finite under L.

Proof. Proposition 2.3.10, applied to the function |f]|, implies that the sets Aj, Ay,
... defined by

An—{xeX:|f<x>|zl}

n

have finite measure under p. Thus {x € X : f(x) # 0}, since it is equal to U,A,, is
o-finite under u. O

Corollary 2.3.12. Ler (X,47,11) be a measure space, and let [ be a [—oo,+oo|-
valued of -measurable function on X that satisfies [|f|du = 0. Then f vanishes
u-almost everywhere.

Proof. Proposition 2.3.10, applied to the function | f|, implies that

u({rexsirmiz 1)) <afisian=o
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holds for each positive integer n. Since
1
X: 0 X: > -
[reX: f(x) #0} = U{xe CEEY

the countable subadditivity of p implies that p({x € X : f(x) # 0}) = 0. Thus f
vanishes almost everywhere. O

Corollary 2.3.13. Ler (X,47,11) be a measure space, and let [ be a [—oo,+oo|-
valued integrable function on X such that [, fdu > 0 holds for all A in <f (or even
Jjust for all A in the smallest 6-algebra on X that makes f measurable). Then f >0
holds l-almost everywhere.

Proof. Let A={xe€X: f(x) <0}. Then [ fyadu = [, fdu =0 (since f <0 on
A, yet we are assuming that [, fdu > 0). It follows from Corollary 2.3.12 that f)a
vanishes almost everywhere and hence that f > 0 holds almost everywhere. O

Corollary 2.3.14. Ler (X,o7,11) be a measure space, and let [ be a [—oo,+oo|-
valued integrable function on X. Then |f(x)| < +eo holds at l-almost every x in X.

Proof. Proposition 2.3.10, applied to the function ||, implies that

pltre X 1@ 2 < o [ 1fldu

holds for each positive integer n. Thus

BxE X 1 0] = +oo}) < (v X f@| 2 < - [ I7law

holds for each n, and so pu({x € X : | f(x)| = +oo}) =0 O

Corollary 2.3.15. Let (X,</,11) be a measure space, and let [ be a [—oo,+oo|-
valued <of -measurable function on X. Then f is integrable if and only if there is a
function in £V (X, .o, u,R) that is equal to f almost everywhere.

In other words, a measurable [—co, 4-o0|-valued function f is integrable if and
only if there is an R-valued function that is integrable and equal to f p-almost
everywhere.

Proof. 1f there is a function in .Z' (X, .27, u, R) that is equal to f almost everywhere,
then the integrability of f follows from Proposition 2.3.9. Next suppose that f is
integrable, and let A = {x € X : |f(x)| = +eo}. Then A € <7, and Corollary 2.3.14
implies that (1(A) = 0. It follows that the function f defined by fo = fxac is < -
measurable and agrees with f almost everywhere. Proposition 2.3.9 now implies
that f; is integrable and hence a member of .2 (X, o7, u,R). O
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Exercises

1. Let (X,.o, 1) be a measure space, and let f and g belong to .2 (X,.«7, u,R).
Show that £V g and f A g belong to £ (X,.o7, u,R).

2. Give Borel functions f,g: R — R that are Lebesgue integrable but are such that
fg is not Lebesgue integrable.

3. Show that there is a function f: R — R that is not Lebesgue integrable, but is
such that |f] is Lebesgue integrable. (Hint: Let f = x4 — x5, where A and B are
suitable subsets of R.)

4. Let (X,4/, 1) be a measure space, let f,g: X — [—oo, 40| be integrable, and let
h: X — [—oo,+o0| be an &/ -measurable function that satisfies i (x) = f(x) + g(x)
at y-almost every x in X. Show that A is integrable and that [hdu = [ fdu +
Jgdu.

5. Let (X,«7,u1) be a measure space, and let f: X — [—oo,+o0] be an o7-
measurable function whose integral exists and is not equal to —ece. Show that
if g: X — [—o0,+o0] is an &/ -measurable function that satisfies f < g p-almost
everywhere, then the integral of g exists and satisfies [ fdu < [gdu.

6. Let (X,o7,1) be a measure space, let {f,} be a nondecreasing sequence of
[0,4o0]-valued «7-measurable functions on X, and let f be the function on X
that satisfies f(x) = lim, f,,(x) at each x in X.

(a) Show that if g belongs to ., and satisfies g < f, then for each € in the
interval (0, 1), there is a sequence {g,} in .%; such that g, < f, holds for
each n and such that lim,, [ g,du = (1 —¢) [ gdu. (Hint: See the proof of
Proposition 2.3.2).

(b) Use part (a) to prove that limy, [ f,du = [ fdu. Thus we have another proof
of Proposition 2.3.3 and, at the same time, of Theorem 2.4.1 below (see,
however, the last paragraph of the proof of Theorem 2.4.1).

2.4 Limit Theorems

In this section we prove the basic limit theorems of integration theory. These results
are extremely important and account for much of the power of the Lebesgue integral.
We will use them often in the rest of the book.

Theorem 2.4.1 (The Monotone Convergence Theorem). Let (X, 1) be a
measure space, and let f and fi, f, ... be [0,+o|-valued of -measurable functions
on X. Suppose that

fx) < folx) <l (1)

and
£(3) = tim () @
hold at p-almost every x in X. Then [ fdu =lim, [ f,du.
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In this theorem the functions f and fi, f>, ... are only assumed to be nonnegative
and measurable; there are no assumptions about whether they are integrable.

Proof. First suppose that relations (1) and (2) hold at each x in X. The monotonicity
of the integral (part (c) of Proposition 2.3.4) implies that

/fldHS/fzdyg...S/fdu;

hence the sequence { [ f,du} converges (perhaps to +e), and its limit satisfies
lim, [ f,du < [ fdu. We turn to the reverse inequality. For each n choose a
nondecreasing sequence {g, x}_, of simple [0, 4cc)-valued measurable functions
such that f,, = limy g,, x (Proposition 2.1.8). For each n define a function £, by

hn = max (gl,ng,m- . 7gn,n)'

Then {h,} is a nondecreasing sequence of simple [0,+ec)-valued measurable
functions that satisfy h, < f, and f = lim,h,. It follows from these remarks,
Proposition 2.3.3, and the monotonicity of the integral that

/fdu zlim/h,,du glim/f,,du.

Hence [ fdu =lim, [ f,du.

Now suppose that we only require that relations (1) and (2) hold for almost every
xin X. Let N be a set that belongs to .7, has measure zero under (, and contains
all points at which one or more of these relations fails. The function fyyc and the
sequence { f,xnc} satisfy the hypotheses made in the first part of the proof, and so

/foc du = lig,n/ Jnxnedpt. 3)

Since f,xnc agrees with f, almost everywhere and fyyc agrees with f almost
everywhere, Eq. (3) and Proposition 2.3.9 imply that

[ rau=iim [ f,ap. g

Corollary 2.4.2 (Beppo Levi’s Theorem). Let (X,.<7, L) be a measure space, and
let Y7 | fx be an infinite series whose terms are [0,+oo|-valued <7 -measurable
functions on X. Then

/gﬂW—;/mm

Proof. Use the linearity of the integral, and apply Theorem 2.4.1 to the sequence
{241 fi}y, of partial sums of the series Y;°_; fi. O
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Example 2.4.3. Corollary 2.4.2 can be applied as follows to construct a large class
of measures. Suppose that (X, .o/, 1) is a measure space and that f: X — [0, +eo]
is «/-measurable. Define a function v: &/ — [0,4e0] by V(A) = [, fdu. Then
v(@) =0, and Corollary 2.4.2, applied to the series Y, fxa, . implies that if {A,} is
a sequence of disjoint sets in .27, then v(U,A,) =, V(A,). Thus v is a measure on
(X, ). Moreover Vv is a finite measure if and only if f is y-integrable. O

The next result is often used to show that a function is integrable or to provide an
upper bound for the value of an integral.

Theorem 2.4.4 (Fatou’s Lemma). Let (X, .o, 11) be a measure space, and let { f,, }
be a sequence of [0, 4o|-valued o/ -measurable functions on X. Then

ﬁ@ﬂ@é@#ﬂ@-

Proof. For each positive integer n let g, = infy>, f;. Each g, is &/-measurable
(Proposition 2.1.5), and the relations

gi1(x) <g(x) <.
and
li—mf”(x) = li’rlngn(x>

hold at each x in X. It follows from the monotone convergence theorem
(Theorem 2.4.1) and the inequality g, < f,, that

J1imf,an = [timg,du =tim [ g,du <1im [ f,ap. .

Theorem 2.4.5 (Lebesgue’s Dominated Convergence Theorem). Ler (X, o7, 1)
be a measure space, let g be a [0,~+e<]-valued integrable function on X, and let f
and f1, fa, ... be [—eo,+oo]-valued of -measurable functions on X such that

£(x) = Tim f, (x) 4)
and

Ifa@)] <glx)n=12,... (5)

hold at [-almost every x in X. Then f and f, f>, ... are integrable, and [ fdu =
lim, [ f,du.

Proof. The integrability of f and fi, f», ... follows from that of g; see Proposi-
tion 2.3.8, Proposition 2.3.9, and part (c) of Proposition 2.3.4.
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Let us begin our proof that [ f du = lim, [ f,du by supposing that relations (4),
(5), and
8(x) <Aoo (6)

hold at every x in X. Then {g+ f,} is a sequence of nonnegative <7 -measurable
functions such that (g + f)(x) = lim, (g + f»)(x) holds at each x in X, and so Fatou’s
lemma (Theorem 2.4.4) implies that

[+ fau<iim [(g+ ) du
and hence that
[ ran <tim [ fydu.
n
A similar argument, applied to the sequence {g — f,, }, shows that
[~ an <tim [ (¢~ f,)du
and hence that
tim [ fodp < [ fau.

Consequently [ fdu =lim, [ f,du.

Next suppose that we only require that relations (4), (5), and (6) hold at almost
every x in X (note that, according to Corollary 2.3.14, the hypothesis [ gdu < +oo
implies that relation (6) holds at almost every x in X). We can reduce the present
case to the one we have just dealt with by using a modified version of the final part
of the proof of Theorem 2.4.1; the details are left to the reader. O

Example 2.4.6. Let us note how Theorem 2.4.5 can be used to justify “differentia-
tion under the integral sign.” Let (X, o7, 1) be a measure space, let g: X — [0, 4]
be an integrable function, let / be an open subinterval of R, and let f: X xI — R be
such that

(a) foreachr in I the function x — f(x,#) is integrable,
(b) for each x in X the function 7 — f(x,t) is differentiable on I, and
(c) the inequality

‘JM <) )

t—1

holds for all ¢, fp in I and all x in X.

Define g: I — R by g(r) = [y f(x,7) u(dx). Let us use the dominated conver-
gence theorem to show that g is differentiable on I, with g’ given by g'(r) =
Jx fi(x,1) u(dx) at each r in I (here f; (x,r) denotes the partial derivative with respect
to 1). Suppose that {z,} is a sequence of elements of /, all different from 7, such that
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lim, #, = . Then, in view of inequality (7), the dominated convergence theorem
implies that x — f; (x,%o) is integrable and that

lim@:/xﬁ(x,to)u(dx).

n iy

Combining this with item C.7 in Appendix C finishes the argument. a

Exercises

1. Give sequences {f,}, {g.}, and {h,} of functions in .Z'(R,%(R),A,R) that
converge to zero almost everywhere, but satisfy
(a) lim, [fn dA = oo,

(b) lim, [g,dA =1, and
(c) limsup,, [ h,dA =1 and liminf, [ h,dA = —1.

2. Prove that the monotone convergence theorem still holds if the assumption that
the functions fi, f>, ... are nonnegative is dropped, and the assumption that f;
is integrable is added (note that in this case the integrals of the functions f and
f2, f3, ... exist, but may be +oo).

3. Let (X,«7,1) be a measure space. Use Exercise 2 to show that if {f,} is
a decreasing sequence of measurable functions and if f; is integrable, then
Jlim, fydu = lim, [ f,du (as in Exercise 2 the integrals involved exist, but
may be infinite).

4. Let f, g, and f1, f2, ... be as in the dominated convergence theorem, and define
sequences {p, } and {g,} by p, = infi>, fi and g, = sup;-,, f. Use Exercises 2
and 3, together with the inequality p, < f, < gy, to give another proof of the
dominated convergence theorem.

5. Use Exercise 3, applied to the sequence {h,} defined by h,, = supy~, | fx — f],
to give still another proof of the dominated convergence theorem. (Of course
the functions f and f, f», ... can be modified so that they are real valued and
hence so that f; — f makes sense.)

6. Let (X, <7, U) be a measure space, and let f: X — [0, +oo] be .7 -measurable.

(a) Show that if each value of f is a nonnegative integer or 4o, then [ fdu =
S m({x: £(x) = n).
(b) Now suppose that the values of f are arbitrary elements of [0,+oo] and that
U is finite. Show that the integrability of f is equivalent to the convergence
of the series X u({x: f(x) > n}).
7. Let (X, <) and (Y, %) be measurable spaces. A function K: X X B — [0, +e0]
is called a kernel from (X, /) to (Y, A) if

(i) for each x in X the function B — K(x,B) is a measure on (¥, %), and
(i) for each B in 4 the function x — K (x,B) is &7-measurable.
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10.

11.
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Suppose that K is a kernel from (X,./) to (Y,%), that u is a measure on

(X,47), and that f is a [0, 4-co]-valued Z-measurable function on Y. Show that

(a) B— [K(x,B) u(dx) is a measure on (Y, %),

(b) x+— [ f(y)K(x,dy) is an o7 -measurable function on X, and

(c) if v is the measure on (Y,98) defined in part (a), then [ f(y)v(dy) =
J(f f(y)K(x,dy)) n(dx). (Hint: Begin with the case where f is a character-
istic function.)

. (Continuation.) Now suppose that 1 is finite, that sup{K (x,Y) : x € X } is finite,

and that the measurable function f is bounded but not necessarily nonnegative.
Show that
(@) x— [ f(y)K(x,dy) is a bounded <7 -measurable function on X, and

®) [fy)v(dy) = [([f(y)K(x,dy))u(dx). (Here again v is the measure
defined in part (a) of Exercise 7.)

. Let (X, o7, 1) be a measure space, let g be a [0, +oo]-valued integrable function

on X, and let f and f; (for ¢ in [0, +o)) be real-valued .7 -measurable functions
on X such that

and
|fi(x)] < g(x) for 7 in [0, +-o)

hold at almost every x in X. Show that [ fdu = lim;_, ;. [ f; du. (Hint: Give a
simplified version of the argument in Example 2.4.6.)

Let 7 be an open subinterval of R, and let f: R — R be a Borel measurable
function such that x — ¢ f(x) is Lebesgue integrable for each ¢ in I. Define
h: I — R by h(t) = [ge™f(x)A(dx). Show that h is differentiable, with
derivative given by /'(t) = [pxe™ f(x)A(dx), at each ¢ in 1. Of course, it is
part of your task to show that x — xe™ f(x) is integrable for each ¢ in . (Hint:
Use the Maclaurin expansion of e to show that |e¢* — 1| < |ule!*| holds for each
u in R, and use the argument from Example 2.4.6.)

Let (X, </, 1) be a measure space, and let f and fi, f>, ... be nonnegative
functions that belong to .Z! (X, o7, u,R) and satisfy

(i) {fn} converges to f almost everywhere, and
(i) [fdu =1lim, [ fydu.
Show that lim,, [ |f, — f|du = 0.

2.5 The Riemann Integral

This section contains the standard facts that relate the Lebesgue integral to the
Riemann integral. We begin by recalling Darboux’s definition of the Riemann
integral, as given in the Introduction (we use it as our basic definition), and then
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we give a number of details that we omitted earlier. We also give the standard
characterization of the Riemann integrable functions on a closed bounded interval
as the bounded functions on that interval that are almost everywhere continuous.

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence
{a;}*_, of real numbers such that

a=ayg<a; <---<a=bh.

We will generally denote a partition by a symbol such as & or &,.

If {a;}*_, and {b;}]_, are partitions of [a,b] and if each term of {a;}*_ appears
among the terms of {b;}!_, then {b;}/_, is a refinement of or is finer than {a;}*_,,.

Let f be a bounded real-valued function on [a,b]. If & is the partition {a;}%_,
of [a,b] and if m; = inf{f(x) : x € [a;_1,a;]} and M; = sup{f(x) : x € [a;_1,a;]} for
i=1,...,k, then the lower sum I(f, ) corresponding to f and &7 is defined to be
Zﬁ‘:l mj(a; —a;_), and the upper sum u(f, &) corresponding to f and & is defined
to be Z{'(:l M,'(a,' — a,;l).

It is easy to check that if &2 is an arbitrary partition of [a, b], then

I(f,2) <u(f,2)

and that if 42| and &2, are partitions of [a,b] such that &7, is a refinement of &,
then

l(fﬂ@l)gl(fvyl)

and
u(fv'@2) Su(fagzl>

(first consider the case where &7, contains exactly one more point than &7, and
then use induction on the difference between the number of points in &, and the
number of points in &?1). It follows that if &7| and &7, are arbitrary partitions of
[a,b], then

I(f,21) <u(f, )
(let &5 be a partition of [a, ] that is a refinement of both &) and &, and note that

l(fvyl)Sl(fv'@3)Su(fv'@3)§u(fagzz)>

Hence the set of all lower sums for f is bounded above by each of the upper sums for
f- The supremum of this set of lower sums is the lower integral of f over |a,b] and
is denoted by iz f- The lower integral satisfies iz f <u(f, ) for each upper sum
u(f, <) and so is a lower bound for the set of all upper sums for f. The infimum of
this set of upper sums is the upper integral of f over |a,b] and is denoted by TZ f-

It follows immediately that J” £ < Jo f.1f [*f = [, . then f is Riemann integrable
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on [a,b], and the common value of iz f and TZ f is called the Riemann integral of f
over [a,b] and is denoted by | ab for f: f(x)dx (we’ll occasionally write (R) ff for
(R) ff f(x)dx when we need to make clear which integral we mean).

The following reformulation of the definition of Riemann integrability is often
useful.

Lemma 2.5.1. A bounded function f: [a,b] — R is Riemann integrable if and only
if for every positive € there is a partition & of [a,b] such thatu(f, 2)—1(f, P) < €.

Proof. This is an immediate consequence of the fact that f is Riemann integrable if
and only if

sup I(f, &) =infu(f, ),
together with the fact that if &2 and &7, are partitions such that
u(fvyl)_l(fvﬁ@2) <§g,

then taking a common refinement & of &| and &, gives a partition & such that

u(f, 2)—I(f,P) < e. 0

Example 2.5.2. Suppose that f is a continuous, and hence bounded, function on
[a,b]. Then f is uniformly continuous (Theorem C.12), and so for each positive
number € there is a positive number 6 such that if x and y are elements of [a, b] that
satisfy |x —y| < 6, then |f(x) — f(y)| < €. If € and § are related in this way and if
& is a partition of [a,b] into intervals each of which has length less than 8, then
u(f,2)—1(f,2) < e(b—a). It follows that every continuous function on [a, b] is
Riemann integrable. O

Example 2.5.3. Let f: [0,1] — R be the characteristic function of the set of rational
numbers in [0, 1]. Then f is Lebesgue integrable, and [, ;; fdA = 0. However, as
we noted in the Introduction, every lower sum of f is equal to O and every upper
sum of f is equal to 1; thus f is not Riemann integrable. O

Theorem 2.5.4. Let [a,b] be a closed bounded interval, and let [ be a bounded
real-valued function on |a,b]. Then

(a) f is Riemann integrable if and only if it is continuous at almost every point of
[a,b), and

(b) if f is Riemann integrable, then f is Lebesgue integrable and the Riemann and
Lebesgue integrals of f coincide.

Proof. Suppose that f is Riemann integrable. Then for each positive integer n
we can choose a partition %, of [a,b] such that u(f, %) —I(f, P,) < 1/n. By
replacing the &,’s with finer partitions if necessary, we can assume that for each
n the partition &2, is a refinement of the partition &2,. Define sequences {g,}
and {h,} of functions on [a,b] by letting g, and h, agree with f at the point a and
letting them be constant on each interval of the form (a;_;,a;] determined by &2,
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there having the values inf{f(x) : a;-1 < x < a;} and sup{f(x) : ;-1 < x < a;},
respectively. Then {g,} is an increasing sequence of simple Borel functions that
satisfy g» < f and [, ,ygndA = I(f, ) for each n, and {h,} is a decreasing
sequence of simple Borel functions that satisfy /i, > f and [, ,jindA = u(f, &)
for each n. Since f is bounded, the sequences {g, } and {%,} are bounded. Define
functions g and i by g =lim, g, and h = lim, h,,. Then g and / are Borel measurable,
and the dominated convergence theorem (Theorem 2.4.5) implies that g and h
are Lebesgue integrable, with f[a’b]gdl and f[a?b] hdA equal to lim,[(f, 2?,) and
lim, u(f, 2?,), respectively, and so to the Riemann integral of f. Thus f[a’b] (h—
g)dA = 0. Since in addition A — g > 0, Corollary 2.3.12 implies that

g(x) = h(x) for almost every x in [a, b]. (D)

This relation has two consequences. For the first, note that if g(x) = h(x) and if
x is a point in [a,b] that is not a division point in any of the partitions 42, then
f is continuous at x. Thus (1) implies that f is continuous almost everywhere,
and so half of part (a) is proved. Note also that g < f < h, and so (1) implies
that f is equal to g almost everywhere. It follows that f is Lebesgue measurable
and Lebesgue integrable (Propositions 2.2.2 and 2.3.9) and that the Riemann and
Lebesgue integrals of f are the same; thus part (b) is proved.

We turn to the remaining half of part (a). For this suppose that f is continuous
almost everywhere. For each n let &, be the partition of [a,b] that divides [a,b]
into 2" subintervals of equal length. Use these partitions &7, to construct functions
gn and hy, as in the first part of this proof. The relations f(x) = lim,g,(x) and
f(x) = lim, hy(x) clearly hold at each x at which f is continuous and so at
almost every x in [a,b]. Thus lim, (h, — g,) = 0 holds almost everywhere, and so,
since [, gndA =1(f, Py) and [,y hndA = u(f, P,), the dominated convergence
theorem implies that

lim(u(f. ) = 1(F. 7)) = 0.

Thus for each ¢ there is a partition & of [a, b] such that u(f, &) —I(f, &) < €, and
the Riemann integrability of f follows. O

Example 2.5.5. Since the characteristic function of the set of rational numbers in
[0,1] is not continuous anywhere in [0, 1], part (a) of Theorem 2.5.4 gives another
proof that this characteristic function is not Riemann integrable. O

Example 2.5.6. We saw in the Introduction that the pointwise limit of a bounded
sequence of Riemann integrable functions may fail to be Riemann integrable. Thus
a simple rewriting of the dominated convergence theorem so as to apply to the
Riemann integral will fail. However, in view of Theorem 2.5.4 and the dominated
convergence theorem for the Lebesgue integral, we can repair this difficulty by
adding the hypothesis that the limit function be Riemann integrable. The repaired
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assertion is still not as powerful as the dominated convergence theorem for the
Lebesgue integral, since it can only be applied when we can prove the Riemann
integrability of the limit function. O

It is sometimes useful to view Riemann integrals as the limits of what are called
Riemann sums. For this we need a couple of definitions. A tagged partition of an
interval [a,b] is a partition {a;}X_, of [a,b], together with a sequence {x;}¥_ | of
numbers (called tags) such thata; ;| <x; <a; holdsfori=1, ..., k. (In other words,
each tag x; must belong to the corresponding interval [a;_1,a;].) As with partitions,
we will often denote a tagged partition by a symbol such as &.

The mesh or norm ||Z2|| of a partition (or a tagged partition) & is defined
by || 2| = max;(a; — a;—1), where {a;} is the sequence of division points for &.
In other words, the mesh of a partition is the length of the longest of its subintervals.

The Riemann sum Z(f,Z?) corresponding to the function f and the tagged
partition & is defined by

k

R(f,P) =Y fx)(ai—ai1).

i=1

Since for each i the value f(x;) lies between the infimum m; and the supremum M;
of the values of f on the interval [a;_1,a;], we have

I(f,2) <%(f,2) <ulf, )

for each tagged partition &.

Proposition 2.5.7. A function f: [a,b] — R is Riemann integrable if and only if
there is a real number L such that

lim#(f, ) = L, )

where the limit is taken as the mesh of the tagged partition & approaches 0. If this
limit exists, then it is equal to the Riemann integral [} f.

We can make this more precise if we note that saying limgp Z(f, &) = L
is the same as saying that for every positive € there is a positive & such that
|%Z(f, %) — L| < € holds whenever & is a tagged partition whose mesh is less
than &.

Proof. Suppose there exists a number L such that limg Z(f, &) = L. Let € be a
positive number, choose a corresponding 8, and then choose a partition &y whose
mesh is less than 8. Consider the collection of all tagged partitions & that have the
same division points as &. Each of these tagged partitions has mesh less than &
and so satisfies |2Z(f, &) — L| < €. By choosing the tags appropriately, we can find
tagged partitions &) and %, in this collection that make Z(f, %) and Z(f, %)
arbitrarily close to I(f, %) and u(f, ), which gives us |I(f, Py) — L| < € and
lu(f, Py) — L| < €. It then follows from Lemma 2.5.1 that f is Riemann integrable.
It is easy to check that L= [” f (note that [” f lies between I(f, Z) and u(f, 2)).
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Now suppose that f is Riemann integrable. Let € be a positive number, and
choose a partition &) such that u(f, %y) — I(f, Po) < € (see Lemma 2.5.1). Let N
be the number of subintervals in &2;. We will produce a positive number § such
that each tagged partition & with mesh less than 0 satisfies | Z(f, #) — jab fl < 2e.
We begin by assuming that § is smaller than the mesh of Z; we will presently see
how much smaller we should make it. So let & be a tagged partition with mesh less
than 6. If it happens that & is a refinement of % (i.e., every subinterval of &2 is a
subset of some subinterval of &), then Z(f, &) satisfies

l(fvg())g%(fvg)éu(fvy())

and so belongs to the interval [I(f, Zy),u(f, P)]. Since [ f also belongs to this
interval, it follows that

b
w0 2)= [ s <utr. ) - 15,20 <e.

We turn to the general case, where &7 might not be a refinement of &,. Some of the
intervals [a;_1,a;] in &7 might contain a division point of & as an interior point.
Since there are only N subintervals in &, at most N — 1 subintervals of &2 can
have a division point of &% as an interior point. Build a new tagged partition &’
of [a,b] by taking the subintervals and tags from & but splitting each subinterval
whose interior contains a division point into two subintervals (dividing it at the
corresponding division point) and choosing arbitrary tags in the new intervals. The
differences between Z(f, 2') and Z(f, ) arise only from the split intervals, and
it is easy to check that |Z(f, ) — Z(f, P')| < 2M(N —1)8, where M is an upper
bound for the values of |f]. If we require that 6 be so small that 2M(N —1)6 < €
and note that |Z(f, 2') — [ f| < € (since &' is a refinement of P), then we have

ar2)- [ o< a2 -au.)

b
+'%’(fﬁ’>— / f‘
<2M(N—-1)6+¢€ < 2¢,

and the proof is complete. O

Note that although in the Riemann theory integrals over all of R are defined as
improper integrals, in the Lebesgue theory they can be? defined directly. If f is a
Lebesgue integrable function on R, then the relation

3There are also cases of functions defined on R that are not Lebesgue integrable over R but for
which the corresponding improper integral exists. For instance, define f: R — R by f(x) =0 if
x<land f(x) =(=1)"/nifn<x<n+1,wheren=1,2,....
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a

holds, but as a consequence of the dominated convergence theorem (see Exercise 5),
and not as a definition.

Exercises

1. Suppose thata < b < ¢ and that f is a real-valued function on [a, c|. Show directly
(i.e., without using Theorem 2.5.4) that f is Riemann integrable on [a, c] if and
only if it is Riemann integrable on [a,b] and [b, ¢]. Also show that

c b c
IRV Y
a a b
if f is Riemann integrable on these intervals.
2. Let %) be the set of all Riemann integrable functions on the interval [a,b)].

Show directly (i.e., without using Theorem 2.5.4) that
(@) Hqp) 1s a vector space over R, and

®) f—[ ab f is a linear functional on %, ).

3. Show that a Riemann integrable function is not necessarily Borel measurable.
(Hint: Consider yp, where B is the set constructed in the proof of Proposi-
tion 2.1.11.)

4. Show that there is an increasing sequence { f,} of continuous functions on [0, 1]
such that

(1) 0 < fu(x) < 1 holds for each n and x, and
(i) lim, f;, is not Riemann integrable.

(Hint: Let C be one of the closed sets constructed in Exercise 1.4.4, let U =
[0,1] — C, and choose { f,} so that lim,, f,, = yv.)
5. Show thatif f € XI(R,%’(R),X,R), then

/fdl— hm fdl

a

(Hint: Use the dominated convergence theorem and a modification of the hint
given for Exercise 2.4.9.)
6.(a) Show thatif f: [a,b] — R is Riemann integrable and if m < f(z) < M holds
for all ¢ in the subinterval [c,d] of |a, D], then

d
m(d—c) S/c f(@)dt <M(d—c).
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(b) Prove the fundamental theorem of calculus, in the form given in the Introduc-
tion to this book. (Hint: Use part (a) to estimate %fo(“m).)

7.(a) Suppose that f and g are bounded functions on the interval [a,b] and that €
is positive. Show that if | f(x) — g(x)| < € holds for all x in [a, ], then |£Zf -

8| <e(b—a)and [[of - Togl < e(b—a).

(b) Suppose that {f,} is a sequence of Riemann integrable functions on the
interval [a, b] and that { f,, } converges uniformly to a function f. Show that f is
Riemann integrable and that || : f(x)dx =lim, [: fn(x)dx. (Hint: Use part (a).)

8. Show that as n approaches infinity, the mean of the n values n/(n+1), n/(n+
2), ..., n/(n+n) approaches In(2). (Hint: Write the mean of those values as a
Riemann sum for the integral fol ﬁ dx.)

2.6 Measurable Functions Again, Complex-Valued
Functions, and Image Measures

In this section we give a general definition of measurable functions, and then we
discuss some related concepts and some examples.

Let (X,/) and (Y,%) be measurable spaces. A function f: X — Y is meas-
urable with respect to o/ and 2 if for each B in % the set f~'(B) belongs to
/. Instead of saying that f is measurable with respect to o/ and %, we will
sometimes say that f is a measurable function from (X, <) to (Y, %) or simply
that f: (X, o) — (Y, %) is measurable. Likewise, if A belongs to <7, a function
f: A —Y is measurable if f~'(B) € o/ holds whenever B belongs to 4.

Proposition 2.6.1. Let (X, /), (Y,B), and (Z,€) be measurable spaces, and let
[ (Y, B)—= (Z2,¢)and g: (X, ) — (Y,B) be measurable. Then fog: (X, o) —
(Z,%) is measurable.

Proof. Suppose that C € €. Then f~!(C) € %, and so g~ !(f1(C)) € «. Since
(fog) '(C) =g '(f(C)), the measurability of f o g follows. O

See Exercises 1 and 2 for some applications of the preceding proposition.
The following result is often useful for verifying the measurability of a function.

Proposition 2.6.2. Let (X, <) and (Y,P) be measurable spaces, and let B be
a collection of subsets of Y such that 6(%y) = AB. Then a function f: X — Y is
measurable with respect to </ and % if and only if f~'(B) € o/ holds for each B
in 33().

Proof. Of course, every function f that is measurable with respect to 7 and %
satisfies f~!(B) € o for each B in %). We turn to the converse, and assume that
f~Y(B) € o holds for each B in %,. Let .7 be the collection of all subsets B of
Y such that f~!(B) € <. The identities f~!(Y) = X, f~1(B) = (f ' (B)), and
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f~Y(U.B,) = U,f~1(B,) imply that .Z is a c-algebra on Y. Since .% includes %,
it must include the o-algebra generated by %y, namely Z. Thus f is measurable
with respect to .o/ and A. O

Example 2.6.3. Suppose that (X,<7) is a measurable space and that f is a real-
valued function on X. Proposition 2.1.9 implies that f is .o/-measurable (in the
sense of Sect.2.1) if and only if it is measurable with respect to ./ and #(R).
This conclusion can also be derived from Proposition 2.6.2 (let the collection % in
Proposition 2.6.2 consist of all intervals of the form (—eo,7]; see Proposition 1.1.4).

O

Next we consider extended real-valued functions. Let % (R) be the collection of
all subsets of R of the form BUC, where B € #(R) and C C {—co, +-eo}. It is easy
to check that Z(R) is a o-algebra on R.

Proposition 2.6.4. Let (X, o) be a measurable space, and let f be an extended
real-valued function on X. Then f is szf-measurabl_e (in the sense of Sect. 2.1) if and
only if it is measurable with respect to </ and B(R).

Proof. Tf f is measurable with respect to .7 and %(R), then for each ¢ in R the set
{xeX: f(x) <t}, as the inverse image under f of the set { —eo} U (—oo,?], belongs
to .o7; hence f must be .<7-measurable.

Now assume that f is .o7-measurable. Then f~!({+co}) and f~!({—co}) are
equalto N {xe X : f(x) >n}and N, {x € X : f(x) < —n}, respectively, and so
the inverse image under f of each subset of {—eo, 40} belongs to .«7. In addition
{x € X : —oo < f(x) < +oo} belongs to &7, and Proposition 2.1.9 (applied to the
restriction of f to {x € X : —eo < f(x) < +oo}) implies that f~!(B) belongs to
o/ whenever B is a Borel subset of R. Thus f~'(BUC) € & if B € #(R) and
C C {—oo,+oo}, and so f is measurable with respect to .«7 and ZB(R). O

See Exercise 4 for another proof of Proposition 2.6.4.

Example 2.6.5. Let (X,.<7) be a measurable space, and let f be an R¢-valued
function on X. Let fi, ..., f; be the components of f, i.e., the real-valued
functions on X that satisfy f(x) = (fi(x),f2(x),...,fa(x)) at each x in X. Then
Proposition 2.6.2 and part (b) of Proposition 1.1.5 imply that f is measurable with
respect to <7 and %’(Rd )ifand only if fi, ..., f are «7-measurable. It follows from
this remark and Propositions 2.1.5 and 2.1.7 that the class of measurable functions
from (X,.7) to (R4, (R?)) is closed under the formation of sums, scalar multiples,
and limits. O

Example 2.6.6. Now consider the space R?, and identify it with the set C of
complex numbers. The remarks just above imply that a complex-valued function
on (X, /) is measurable with respect to </ and Z(C), that is, with respect to &7
and %(IR?), if and only if its real and imaginary parts are .«7-measurable, and that
the collection of measurable functions from (X, <) to (C,%(C)) is closed under
the formation of sums and limits and under multiplication by real constants. Similar
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arguments show that the product of two measurable complex-valued functions on X
is measurable; in particular, the product of a complex number and a complex-valued
measurable function is measurable. O

Let (X,%7,u1) be a measure space. A complex-valued function f on X is
integrable if its real and imaginary parts R(f) and 3(f) are integrable; if f is
integrable, then its integral is defined by

[ rau=[S(pdu-+i[3(ndu.

It is easy to check that if f and g are integrable complex-valued functions on X and
if ¢ is a complex number, then

(a) f+gand of are integrable,
(b) [(f+g)du=[fdu+ [gdu,and
© J(of)du=affdu.

The dominated convergence theorem (Theorem 2.4.5) is valid if the functions f and
f1, f>, ... appearing in it are complex-valued (consider the real and imaginary parts
of these functions separately).

Proposition 2.6.7. Let (X, o/, 1) be a measure space, and let f be a complex-
valued function on X that is measurable with respect to </ and 9(C). Then f is
integrable if and only if |f| is integrable. If these functions are integrable, then

|[fau| < [|fldu.

Proof. The measurability of |f| is easy to check (see Exercise 2). Let R(f) and
3(f) be the real and imaginary parts of f. If f is integrable, then the integrability of
| f] follows from the inequality | f| < |R(f)|+|3(f)|, while if | f| is integrable, then
the integrability of f follows from the inequalities |R(f)| < |f] and |S(f)| < |f]
(see Proposition 2.3.8). Now suppose that f is integrable. Write the complex number
J fdu in its polar form, letting w be a complex number of absolute value 1 such that

franesf .

If we divide by w and use that fact that [w~!| = 1, we find

’/‘f"“‘ :W”'/fdu = /(w”f)du = /‘ﬁ(w’lf)du < / \Fldu,

and the proof is complete. O

Let (X,7,1) be a measure space, let (Y, %) be a measurable space, and let
f: (X,) — (Y, %) be measurable. Define a [0, +oo]-valued function pf~! on %
by letting wf~'(B) = u(f~'(B)) for each B in %. Clearly uf~'(@) = 0. Note
that if {B,} is a sequence of disjoint sets that belong to %, then {f~'(B,)} is a
sequence of disjoint sets that belong to ./ and satisfy f~'(U,B,) = Unf ' (B,);
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it follows that pf~'(U,B,) = ¥, uf~'(B,) and hence that yf~! is a measure on
(Y,9B). The measure* uf~! is sometimes called the image of u under f.

Proposition 2.6.8. Let (X, .o/, 1) be a measure space, let (Y, %) be a measurable
space, andlet f: (X, %) — (Y,9B) be measurable. Let g be an extended real-valued
B-measurable function on Y. Then g is uf~'-integrable if and only if go f is U-
integrable. If these functions are integrable, then

[ sdur )= [ (g0 rdu.

Proof. The measurability of go f follows from Propositions 2.6.1 and 2.6.4. We turn
to the integrability of g and g o f. First suppose that g is the characteristic function
of aset Bin 2. Then go f is the characteristic function of f~!(B), and [, gd(uf~")
and [y (go f)du are both equal to p(f~!(B)). Thus the identity

[ edur™) = [ (g0 ndu

holds for characteristic functions. The additivity and homogeneity of the integral
(Proposition 2.3.4) imply that this identity holds for nonnegative simple %-
measurable functions, and an approximation argument (use Proposition 2.1.8 and
Theorem 2.4.1) shows that it holds for all [0, 4-oo]-valued Z-measurable functions.
Since an arbitrary Z-measurable function can be separated into its positive and
negative parts, the proposition follows. a

We derive two elementary consequences of Proposition 2.6.8. First suppose that
f: R — Ris defined by f(x) = —x. Then A f~! = A, and so a Borel function g on R
is Lebesgue integrable if and only if the function x — g(—x) is Lebesgue integrable.
If these functions are integrable, then

a0 = [ g(-2)A@x).
A similar argument shows that if y € R, then a Borel function g is Lebesgue

integrable if and only if the function x — g(x+y) is Lebesgue integrable. If these
functions are integrable, then

Je@awn) = [stx+y)a(av.

4 Another notation for pf~'is o f~1.
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Exercises

1. Let (X, /) be a measurable space. Use Proposition 2.6.1 and Example 2.1.2(a)
to give another proof that if f,g: X — R are measurable, then f+ g and fg
are measurable. (Hint: Consider the function H: X — R? defined by H(x) =
(F(x).8(x)).)

2. Show that if f is a measurable complex-valued function on (X,.«/), then |f]| is
also measurable.

3. Let (X, <) be a measurable space, and let f,g: X — C be measurable. Show
that if g does not vanish, then f/g is measurable.

4. (a) Show that Z(R) is the o-algebra on R generated by the intervals of the form

[—oo,1].
(b) Use part (a) of this exercise, together with Proposition 2.6.2, to give another
proof of Proposition 2.6.4.

5. Let X and Y be sets, and let f be a function from X to Y. Show that
(a) if & is a o-algebraon X, then {BC Y : f!(B) € &/} is a o-algebraon Y,
(b) if Zis a o-algebraon Y, then {f~'(B) : B € 4} is a o-algebra on X, and
(c) if € is a collection of subsets of Y, then

o({f 1(C):ceey)={f"'(B):Bca(?)}.

6. Let u be a nonzero finite Borel measure on R, and let F: R — R be the
function defined by F(x) = p((—oo,x]). Define a function g on the interval
(0,limy_ 1 F(x)) by

glx)=inf{reR:F(t) > x}.

(a) Show that g is nondecreasing, finite valued, and Borel measurable.
(b) Show that & = Ag~'. (Hint: Start by showing that u(B) = A(g~'(B)) when
B has the form (—eo,b].)
7. Show that a convex subset of R? need not be a Borel set. (Hint: Consider an open
ball, together with part of its boundary.)

Notes

See the notes for Chap. 1 for some alternative expositions of basic integration theory.
At some point the reader should work through the constructions of the integral given
in some of those references. The construction given by Halmos [54] is useful for the
study of vector-valued functions (see also Appendix E).

There is an approach to integration theory, due to Daniell [32] and Stone [114],
in which the integral is developed before measures are introduced. For an outline of
this approach, see Sect. 7.7, and see the notes at the end of Chap. 7.



Chapter 3
Convergence

In this chapter we look in some detail at the convergence of sequences of functions.
In Sect.3.1 we define convergence in measure and convergence in mean, and
we compare those modes of convergence with pointwise and almost everywhere
convergence. In Sect. 3.2 we recall the definitions of norms and seminorms on vector
spaces, and in Sects. 3.3 and 3.4 we apply these concepts to the study of the L
spaces and to the convergence of functions in certain (semi-)norms, the p-norms.
Finally, in Sect. 3.5 we begin to look at dual spaces (the spaces of continuous linear
functionals on normed vector spaces). We will continue the study of dual spaces
in Sects. 4.5, 7.3, and 7.5, by which time we will have developed enough tools to
analyze and characterize a number of standard dual spaces.

3.1 Modes of Convergence

In this section we define and study a few modes of convergence for sequences of
measurable functions. For simplicity we will discuss only real-valued functions.
It is easy to check that everything can be extended so as to apply to complex-valued
functions and to [—oco, +oo]-valued functions that are finite almost everywhere.!

Let (X,47, 1) be a measure space, and let f and fi, f2, ... be real-valued <7 -
measurable functions on X. The sequence {f, } converges to f in measure if

limp({x € X2 [fulx) = f(x)| > €}) =0

'"We can verify our results in the case of [—oo,~oo]-valued functions that are finite almost
everywhere by choosing a p-null set N such that the functions f and fj, f>, ... are all finite outside
N and then replacing f and fi, f2, ... with the functions g and g1, g2, ... defined by g = f ync and
&n = fuxne. This enables us to avoid the complications caused by expressions like f,(x) — f(x)
when f;(x) or f(x) is infinite.

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 79
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 3,
© Springer Science+Business Media, LLC 2013
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holds for each positive €. As we noted in Sect. 2.2, the sequence {f,,} converges to
f almost everywhere if f(x) = lim, f,(x) holds at y-almost every point x in X.

Examples 3.1.1. We should note that in general convergence in measure neither
implies nor is implied by convergence almost everywhere.

(a) To see that convergence almost everywhere does not imply convergence in
measure, consider the space (R, Z(R),A) and the sequence whose nth term
is the characteristic function of the interval [n,+ec). This sequence clearly
converges to the zero function almost everywhere (in fact, everywhere) but not
in measure.

(b) Next consider the interval [0, 1), together with the c-algebra of Borel subsets
of [0,1) and Lebesgue measure. Let {f,} be the sequence whose first term is
the characteristic function of [0, 1), whose next two terms are the characteristic
functions of [0,1/2) and [1/2,1), whose next four terms are the characteristic
functions of [0,1/4), [1/4,1/2),[1/2,3/4), and [3/4,1), and so on. Then {f;, }
converges to the zero function in measure, but for each x in [0, 1) the sequence
{fu(x)} contains infinitely many ones and infinitely many zeros and so is not
convergent. O

Nevertheless there are some useful relations, given by the following two propo-
sitions, between convergence in measure and convergence almost everywhere (see
also Exercise 6).

Proposition 3.1.2. Let (X, o, 1) be a measure space, and let [ and fi, f, ... be
real-valued </ -measurable functions on X. If W is finite and if { f,,} converges to f
almost everywhere, then { f,} converges to f in measure.

Proof. We must show that
limp({x € X < |fu(x) — f(x)] > €}) =0
holds for each positive €. So let € be a positive number, and define sets Ay, Ay, ...
and Bl, Bz, Cee by
Ap={xeX:|fulx) - f(x)| > €}

and B, = Uy, Ai. The sequence {B,} is decreasing, and its intersection is in-
cluded in

{x € X : {fu(x)} does not converge to f(x)}.

Thus u(N,B,) = 0, and so (Proposition 1.2.5) lim, u(B,) = 0. Since A, C B, it
follows that

limpt({x € X ¢ |fu(x) — £()] > £}) = limp(4,) = 0.

Thus {f,} converges to f in measure. O
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Proposition 3.1.3. Let (X, <7, 1L) be a measure space, and let f and fi, f>, ... be
real-valued o -measurable functions on X. If { fn} converges to f in measure, then
there is a subsequence of {f,,} that converges to f almost everywhere.

Proof. The hypothesis that {f,,} converges to f in measure means that
limp({x € X £ |fu(x) — ()] > €}) =0

holds for each positive €. We use this relation to construct a sequence {n;} of
positive integers, choosing n; so that

1

H{x e X ] fo () = () > 1}) < 5,

and then choosing the remaining terms of {n;} inductively so that the relations
ny > ni_1 and

1 1
i({rexiimm-ror> ) < x
hold for k=2, 3, .... Define sets A, k=1,2, ..., by

A= {r e X ) 10> )

Ifx¢ N7 U Ay, then there is a positive integer j such that x ¢ Uy jAk and hence
such that | f,, (x) — f(x)| < 1/k holds for k = j, j+1,.... Thus {f, } converges to
Jf ateachx outside N7, U ; Ay. Since

1 1

.u<kLJjAk> SZ}H(A,() <Y =g

k=j
holds for each j, it follows that /,L(ﬁjf’zl Ui Ay) =0, and the proof is complete. O

Proposition 3.1.4 (Egoroff’s Theorem). Ler (X, , 1) be a measure space, and
let f and fi, f5, ... be real-valued of -measurable functions on X. If | is finite and
if {fu} converges to f almost everywhere, then for each positive number € there is a
subset B of X that belongs to <, satisfies |L(B) < &, and is such that { f,,} converges
to f uniformly on B.

Proof. Let € be a positive number, and for each n let g, = sup -, |fi — f]- It is easy
to check that each g, is finite almost everywhere. The sequence {g,} converges to
0 almost everywhere, and so in measure (see Proposition 3.1.2 and the footnote at
the beginning of this section). Hence for each positive integer k we can choose a
positive integer n; such that

u({xGX:gnk(x) > %}) < %
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Define sets By, By, ... by By = {x € X : g (x) < 1/k}, and let B = M;By. The set B
satisfies

C C € _
—N(LkJBk) Szk“U(Bk) <§§—8

If § is a positive number and if & is a positive integer such that 1/k < §, then, since
B C By,

|ﬁ@%¢@ﬂ§&4ﬂ§%<5

holds for all x in B and all positive integers n such that n > ny; thus {f,} converges
to f uniformly on B. a

Egoroff’s theorem provides motivation for the following definition. Let
(X, 47, 1) be a measure space, and let f and fj, f>, ... be real-valued o/ -measurable
functions on X. Then {f,} converges to f almost uniformly if for each positive
number ¢ there is a subset B of X that belongs to <7, satisfies i(B¢) < €, and is
such that {f,,} converges to f uniformly on B. It is clear that if {f,} converges to f
almost uniformly, then { f,, } converges to f almost everywhere. It follows from this
remark and Egoroff’s theorem that on a finite measure space almost everywhere
convergence is equivalent to almost uniform convergence.

Suppose that (X, o7, 1) is a measure space and that f and fj, f, ... belong to
LY(X, o, u,R). Then {f,} converges to f in mean if

tim [ 1f, — fldu =0.

Proposition 3.1.5. Let (X,o7,11) be a measure space, and let f and fi, fa, ...
belong to L' (X, o ,u,R). If {f,} converges to f in mean, then {f,} converges
to f in measure.

Proof. This is an immediate consequence of the inequality

R e X @) = F@] > D) < ¢ [ 1 —ldu

(see Proposition 2.3.10). O

Convergence in mean does not, however, imply convergence almost everywhere
(see the example given above of a sequence that converges in measure but not
almost everywhere). On the other hand, if {f,} converges to f in mean, then {f;}
does have a subsequence that converges to f almost everywhere; this follows from
Propositions 3.1.3 and 3.1.5 (or, alternatively, from Exercise 4).

Neither convergence almost everywhere nor convergence in measure implies
convergence in mean. To see this, consider the space (R, Z(R),A), and define
a sequence {f,} by letting f, have value n on the interval [0,1/n] and value
0 elsewhere. Then {f,} converges to 0 almost everywhere and in measure, but
not in mean (note that [|f, — 0|dA = 1). There are, however, supplementary
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hypotheses under which convergence almost everywhere or in measure does imply
convergence in mean; such hypotheses are given in the following proposition and in
Exercise 4.2.16.

Proposition 3.1.6. Let (X,o7,11) be a measure space, and let f and fi, fa, ...
belong to L1 (X, .o, i, R). If { f} converges to f almost everywhere or in measure,
and if there is a nonnegative extended real-valued integrable function g such that

|fol<g (forn=1,2,...)and |f| < g @)
hold almost everywhere, then { f,} converges to f in mean.

Proof. First suppose that {f,} converges to f almost everywhere and hence that
{|f» — f]} converges to 0 almost everywhere. Relation (1) implies that

[fn = f1 < 1 fal + /1 < 28

holds almost everywhere. Thus we can use the dominated convergence theorem
(Theorem 2.4.5) to conclude that lim,, [ | f, — f|du = 0.

Now suppose that {f,} converges to f in measure and satisfies condition (1).
Then every subsequence of {f,} has a subsequence that converges to f almost
everywhere (Proposition 3.1.3), and so by what we have just proved, in mean. If
the original sequence {f,} did not converge to f in mean, then there would be a
positive number € and a subsequence {fy, } of {f,} such that [|f,, — fldu > ¢
holds for each k. Since this subsequence could have no subsequence converging to
f in mean, we have a contradiction. Thus { f,, } must converge to f in mean. a

Exercises

1. Let (X, <, u) be a measure space, and let A and Ay, Ay, ... belong to <. Show
that
(a) {xa,} converges to 0 in measure if and only if lim, (A,) =0,

(b) {xa,} converges to 0 almost everywhere if and only if p (N, Uy, Ax) =0,
and

(©) {xa,} converges to y4 almost everywhere if and only if the three sets
A, N U, Ak, and U7 Ny Ay differ only by u-null sets. (Hint: See
Exercise 2.1.1.)

2. Let u be counting measure on the o-algebra of all subsets of N, and let f and fi,
f2, ... be real-valued functions on N. Show that { f,,} converges to f in measure
if and only if it converges uniformly to f.

3. Let (X,<7,u) be a measure space, let f and fi, f», ... be real-valued «7-
measurable functions on X, and let g: R — R be Borel measurable. Show that if
{f} converges to f almost everywhere and if g is continuous at f(x) for almost
every x, then {go f,,} converges to g o f almost everywhere.
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4. Suppose that (X, ./, 1) is a measure space and that f and fj, f2, ... belong to
LY (X, o/, 1, R). Show that if {f,} converges to f in mean so fast that

2/|fn—f|du<+oo,

then {f, } converges to f almost everywhere.

5. Let u be a measure on (X, %/), and let f, fi, f>, ... and g, g1, g2, ... be real-
valued 7 -measurable functions on X.

(a) Show that if u is finite, if {f,} converges to f in measure, and if {g,}
converges to g in measure, then { f,,g,} converges to fg in measure.

(b) Can the assumption that u is finite be omitted in part (a)?

6. Let i be a finite measure on (X,<7) and f and fi, f>, ... be real-valued < -
measurable functions on X. Show that {f,} converges to f in measure if and
only if each subsequence of {f,} has a subsequence that converges to f almost
everywhere.

7. Egoroff’s theorem applies to sequences of measurable functions on a finite
measure space. One can ask about the situation where one has a family { f; };er
on a finite measure space (X,<7,u), where T is a subinterval of R of the form
[fo,+<°). (The following results are due to Walter [125].)

(a) Foreach nin N define g, by g,(x) = sup{|f;(x) — f(x)| : # € [n,+o0)}. Show
that if each g, is measurable, then the conclusion of Egoroff’s theorem holds
for the family {f; };er.

(b) Let {A,} be a sequence of disjoint subsets of [0, 1] that are not Lebesgue
measurable and are such that all the A,’s have the same (strictly positive)
Lebesgue outer measure. (See the discussion of nonmeasurable sets in
Sect. 1.4.) Define a subset B of [0, 1] X [1,+<0) by

B={(x,t) :x € A, and t = x + n for some n},

and for each ¢ let f; be the characteristic function of the set {x € [0,1] :
(x,t) € B}. Show that each f; is Borel measurable but that the conclusion
of Egoroff’s theorem fails for the family {f; };[1 1)

3.2 Normed Spaces

Let V be a vector space over R (or over C). A normon'V is a function || - ||: V = R
that satisfies

@ |v|| >0,

(b) ||v|| =0if and only if v =0,
(©) [lav]| = |ol|[v], and

(@) [utv[| < [luf + (]l
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for each u and v in V and each o in R (or in C). Condition (c) says that || - ||
is homogeneous, and condition (d) says that it satisfies the triangle inequality.
If in condition (b) the words “if and only if” are replaced with the word “if,” but
conditions (a), (c), and (d) remain unchanged, then || - || is called a seminorm. Thus
anorm is a seminorm for which 0 is the only vector that satisfies ||v|| = 0. A normed
vector space (or a normed linear space) is a vector space together with a norm.

Examples 3.2.1. Let us consider a few examples.

(a) The function that assigns to each number its absolute value is a norm on R (or
on C). This is the norm that will be assumed whenever we deal with R or C as
a normed space.

(b) The formula ||(x1,...,x4)|l2 = (XL, |xi|?)!/? defines a norm on R? and on C¢
(the triangle inequality follows from Exercise 9 or from Minkowski’s inequality
(Proposition 3.3.3)).

(c) Let (X,.o7, 1) be a measure space and let ! (X, .o, 1, R) be the set of all real-
valued integrable functions on X. Then .Z' (X, o7, u,R) is a vector space over
R, and the formula

11 = [ 171du

defines a seminorm on .#!(X,.7,u,R). If f is an .&/-measurable function on
X such that f = 0 holds almost everywhere but not everywhere, then f satisfies
[I7]l1 =0 but not f = 0. Thus for many choices of (X, .o, 1t) the seminorm || - ||
is not a norm.

(d) Let [a,b] be a closed bounded interval, and let C[a,b] be the vector space of
all continuous real-valued functions on [a,b]. The function || - ||;: Cla,b] = R
defined by

b
7= [ Is1an

is a norm (note that a continuous function on [a,b] that vanishes almost
everywhere must vanish everywhere).
(e) The function || - || C[a,b] — R defined by the formula

(£l = sup{[f(x)| : x € [a, b]}

is a norm (the continuity of f and the compactness of [a,b] imply that || /|-
is finite; see Theorem C.12). It is called the uniform norm or the sup (for
supremum) norm on Cla, b].

(f) More generally, let X be an arbitrary nonempty set, and let V be a vector space
of bounded real-valued (or complex-valued) functions on X. Then the formula

[[fllee = sup{|f(x)] : x € X}

defines anormon V. O
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Recall that a metric on a set S is a function d: S x S — R that satisfies

(@) d(s,

t) >0,

(b) d(s,t) =0
t
t

ifand only if s =1,
d(t,s), and

(c) d(s,t) =
<d(r,s)+d(s,t)

(d) d(r,

for all r, s, and ¢ in S. Condition (d) says that d satisfies the triangle inequality.
If in condition (b) the words “if and only if” are replaced with the word “if,” but
conditions (a), (c), and (d) remain unchanged, then d is called a semimetric. A metric
space is a set S together with a metric on S.

It is easy to check that if V' is a vector space and if || - || is a norm (or a seminorm)
on V, then the formula

d(u,v) = ||lu—v]|

defines a metric (or a semimetric) on V.

Recall that if S is a metric space and if s and s1, 53, ... are elements of S, then the
sequence {s,} converges to s if lim, d(s,,s) = 0; the point s is then called the limit
of {s,} and is denoted by lim, s, (see Exercise 1). In particular, if V is a normed
linear space and if v and vy, v, ... are elements of V, then the sequence {v,}
converges to v (with respect to the metric induced by the norm on V) if and only
if limy, [|v, — v|| = 0.

Examples 3.2.2. Let us return to some of the examples above. The metric induced
on R? by the norm defined in Example 3.2.1(b) is the usual one, stemming from
the Pythagorean theorem. If (X,.<7, ) is a measure space and if f and fi, f2, ...
belong to Z! (X, .o/, u,R), then {f,} converges to f with respect to the seminorm?
defined in Example 3.2.1(c) if and only if it converges to f in mean (see Sect.3.1).

Finally, if f and fi, f>, ... are continuous functions on [a,b], then {f,} converges
to f with respect to the norm defined in Example 3.2.1(e) if and only if it converges
uniformly to f. a

Let d be a metric (or a semimetric) on a set S. Then a subset A of S is dense in S if
for each s in S and each positive € there is an element a of A that satisfies d(s,a) < €.
It is clear that A is dense in § if and only if for each s in § there is a sequence
{an} of elements of A such that lim, d(ay,s) = 0. A metric (or semimetric) space is
separable if it has a countable dense subset. For example, the rational numbers form
a countable dense subset of R, and so R is separable.

Now let S be an arbitrary metric space. A sequence {s,} of elements of S is a
Cauchy sequence if for each positive number € there is a positive integer N such
that d(sy,,s,) < € holds whenever m > N and n > N. Of course, every convergent
sequence is a Cauchy sequence (let s be the limit of {s, }, and note that d(sy,,s,) <

2Convergence with respect to a semimetric or a seminorm is defined in the same way as
convergence with respect to a metric or a norm. Note, however, that a sequence that is convergent
with respect to a semimetric or a seminorm might have several limits.
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d(Sm,s)+d(s,s,)). On the other hand, if every Cauchy sequence in S converges to
a pointin S, then S is called complete. A normed linear space that is complete (with
respect to the metric induced by its norm) is called a Banach space.

It is a basic consequence of the axioms for the real number system that R is
complete under the metric defined by (x,y) + |x — y|.> The proofs of completeness
that we give for other spaces will depend ultimately on this fact.

Example 3.2.3. Let us show that Cla,b] is complete under the uniform norm.
Let {f,} be a Cauchy sequence in C[a,b]. For each x in [a,b] the sequence {f,(x)}
satisfies | fi (x) — fu ()| < || fm — full and so is a Cauchy sequence of real numbers;
thus it is convergent. Define a function f: [a,b] — R by letting f(x) = lim, f;,(x)
hold at each x in [a,b]. We need to show that {f,} converges uniformly to f and
that f is continuous. Let us begin by showing that the convergence of {f,,} to f is
uniform. Let € be a positive number, and use the fact that { f, } is a Cauchy sequence
to choose a positive integer N such that || f;y — fu|| < € holds whenever m and n
satisfy m > N and n > N. Then

[fin(x) = fa(x)| < &

holds for all x in [a,b] and all m and n satisfying m > N and n > N, and so (take
limits as m approaches infinity)

[f(x) = falx)[ <€

holds for all x in [a,b] and all n satisfying n > N. Thus || f, — f||- < € holds* when
n > N. Since € was arbitrary, we have shown that {f,} converges uniformly to f.

We turn to the continuity of f. Let xo belong to [a,b], and let € be an arbitrary
positive number. Choose a positive integer N such that ||f, — f|l. < €/3 holds
whenever n satisfies n > N, and then use the continuity of fy to choose a positive
number 6 such that |fy(x) — fiv(x0)| < €/3 holds if x belongs to [a,b] and satisfies
|x —xo| < O. It follows that if x € [a,b] and |x — xo| < &, then

[f () = f (o) | < 1 (x) = v ()| + S (%) = S (x0) | + | (x0) — f (x0)

£ € ¢
<ztztz=E&

3 3 3
Since € and xg were arbitrary, the continuity of f follows. This finishes our proof of
the completeness of Cla,b] under || - |- O

3See, for instance, Gleason [49], Hoffman [60], Rudin [104], or Thomson, Bruckner, and Bruckner
[117].

4Actually, the norm here and in the following paragraph is the norm from Example 3.2.1(f). We
can’t say that it is the norm from C|a, b] until we show that f is continuous.
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Example 3.2.4. Let us also note an example of a normed linear space that is not
complete. Consider the space C[—1, 1], together with the norm defined by || f|; =
fil | f|dA. For each n define a function f,: [—1,1] — R by

0 if—-1<x<0,
fa(x) =< nx if0<x§%,
1ifl<x<l.

It is easy to check that {f,} is a Cauchy sequence in C[—1, 1], but that there is no
continuous function f such that lim, || f, — f||1 = 0. Hence C[a, b] is not complete
under || - ||;. O

We close this section with a sometimes useful criterion for the completeness
of a normed linear space. Let V be a normed linear space, and let X;”_, v be an
infinite series with terms in V. The series Y. v is convergent if lim,, Y| vy exists,
and is absolutely convergent if the series Y;_; ||v|| of real numbers is convergent.
Recall that every absolutely convergent series of real numbers is convergent; for
more general normed linear spaces we have the following result.

Proposition 3.2.5. Let V be a normed linear space. Then V is complete if and only
if every absolutely convergent series with terms in'V is convergent.

Proof. First suppose that V is complete, and let 37 ; v be an absolutely convergent
series in V. Let {s,} be the sequence of partial sums of the series >° ; vk, and let
{t,} be the sequence of partial sums of the series Y;°_; ||v||; thus s, = Y}_, v and
tn = Y}_; ||lvk||- Note that if m < n, then

n

POV

k=m+1

n

< Y vl =t =t (1)

k=m+1

ll$n = smll =

The convergence of Y,° ||vk|| implies that {#,} is a Cauchy sequence and, in view
of (1), that {s,,} is a Cauchy sequence. Since V is complete, the sequence {s, }, and
hence the series Y;” | vk, must converge.

Next suppose that every absolutely convergent series in V is convergent, and let
{un} be a Cauchy sequence in V. Since {u,} is a Cauchy sequence, we can choose
(how?) a subsequence {u, } of {u,} such that [|uy,, , — up, || < 1/25" holds for each
k. Define a series Y;__; v by letting vi = u,, and letting vy = u,, —u,,_, if k > 1;
thus {uy, } is the sequence of partial sums of the series ¥, vk. Since ||vi| < 1/2*
holds if k > 1, the series Y, vk is absolutely convergent and hence convergent.
Thus the sequence {u,, } converges, say to u. The inequality

oo = wtn| < e =t || + [t — an|

implies that ||u — u,|| can be made small by making n (and k) large, and so the
original sequence {u, } also converges to u. The completeness of V follows. O
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Exercises

1. Let S be a metric space, and let {s,} be a sequence of elements of S. Show that
{sn} converges to at most one point in S. (Thus the expression “lim,, s,,”” makes
sense.)

2. Let C'[0, 1] consist of those functions f: [0,1] — R such that f’ is defined and
continuous at each point in [0, 1] (of course f/(0) and f’(1) are to be interpreted
as one-sided derivatives). Show that
(a) the formula ||f| = fy |//(x)|dx defines a seminorm, but not a norm, on

C'[0,1], and
(b) the formula || f]| = |£(0)| + [01 |/ (x)|dx defines a norm on C'[0, 1].

3. Let ¢~ be the set of all bounded sequences of real numbers (of course ¢~ is
a vector space over R.) Show that ¢~ is complete under the norm defined in
Example 3.2.1(f).

4. Let ¢ be the set of all sequences {x,} of real numbers for which lim, x,, = 0.
Show that ¢ is a closed linear subspace of ¢~ (see Exercise 3) and hence that ¢
is complete under the norm || - || defined by ||{x,}||ec = sup,, |%x|.

5. Let u be a finite measure on (X,.<7). Show that
(a) the formula

_ [_If—sl

defines a semimetric on the collection of all real-valued .o7-measurable
functions on X, and
(b) lim,d(f,,f) =0 holds if and only if {f,} converges to f in measure.
6. Now let us consider an analogous result for the space (R, Z(R),1). Suppose that
h: R — R is defined by A(t) = 1/(1 4 ¢%). Show that
(a) the formula

If —sgl
d(f,g) |1 |f—g|hdl
defines a semimetric on the collection of all real-valued Borel measurable
functions on R, and
(b) lim,d(f,,f) = 0holds if and only if {f,} converges to f in measure on each
bounded subinterval of R.
7. Let V be a vector space over R. A function (+,-): V x V — R is an inner product
onV if

(i) (x,x) =0,

(ii) (x,x) =0if and only if x =0,
(iii) (x,y) = (y,x), and
(iv) (ox+By.z) = afx,z) +B(y.2)
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hold for all x, y, zin V and all ¢, B in R.5 An inner product space is a vector
space, together with an inner product on it. The norm || - || associated to the inner
product (-,-) is defined by ||x|| = 1/ (x,x).
(a) Prove that an inner product satisfies the Cauchy—Schwarz inequality: if
x,y € V, then |(x,y)] < |x|l|llyl]. (Hint: Define a function p: R — R by
p(t) = ||x||* +2¢(x,y) +£2|y||?, and note that p(¢) = ||lx+y||> > 0 holds for
each real #; then recall that a quadratic polynomial at” + bt -+ ¢ is nonnegative
for each ¢ only if b> —4ac < 0.)
(b) Verify that the norm associated to (-,-) is indeed a norm. (Hint: Use the
Cauchy—Schwarz inequality when checking the triangle inequality.)
8. Let (+,-) be an inner product on the real vector space V, and let || - || be the
associated norm. Show that
(@) [Px+yl[> + [lx = y[> = 2[|x][* +2]|y||* and
®) [x+y[* = [lx =yl = 4(x,y)
hold for all x,y in V. (The identity in part (a) is called the parallelogram law.)
9. (a) Check that the formula (x,y) = Zflzlxiyi defines an inner product on R?
(here, x and y are the vectors (x1,...,x7) and (y1,...,yq))-
(b) Conclude that the function | - ||: R? — R defined by ||x|2 = (3¢, x?)/? is
indeed a norm. (See part (b) of Exercise 7.)
10. Let £2 be the set of all infinite sequences {x, } of real numbers for which ¥, x2 <
+oo.

(a) Show that £? is a vector space over R. (Hint: Note that (x+y)? < 2x% +2y?
holds for all real x and y.)

(b) Show that the formula ({x,},{y»}) = 3,, %,y defines an inner product on £2
and hence (see part (b) of Exercise 7) that the formula ||{x, }|| = (2, x2)"/?
defines a norm on ¢2. (The issue is the convergence of ¥, x,V,..)

(c) Show that ¢? is complete under the norm defined in part (b) of this exercise.

11. A Hilbert space is an inner product space that is complete under the norm
defined by ||x|| = \/(x,x). Show that if H is a Hilbert space and if C is a
nonempty closed convex subset of H, then there is a unique point y in C that
satisfies

[yl = inf{[lz]| : z € C}.

(Hint: Let d = inf{]|z : z € C}, and choose a sequence {z,} in C such that
lim,, ||z4|| = d. Note that the convexity of C implies that §(z, +2,) € C and
hence that ||3(zm + 24)|| > d. Use this inequality, together with part (a) of
Exercise 8, to show that {z,} is a Cauchy sequence. Check that lim,, z, is the
required point y. To check the uniqueness of y, suppose that y’ and y” belong
to C and satisfy ||y'|| = ||| = d, and apply the preceding argument to the
sequence ¥, y", ¥, y",....)

3 An inner product on a complex vector space V is a complex-valued function (-,-) on V x V that
satisfies (i), (ii), (iv), and (x,y) = (y,x) for all x, y, zin V and all o, B in C. In this book we will
deal with inner products only on real vector spaces.
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12. Let H be a Hilbert space, and let Hy be a closed linear subspace of H.

13.

(a) Show that if x € H, then there is a unique point y in Hy such that
[[x—y|l =inf{[lx—z[| : 2 € Ho}.

(Hint: Apply Exercise 11 to the set {x—z:z € Hp}.)

(b) Show that if x and y are related as in part (a), then x —y is orthogonal to Hy,
in the sense that (x —y,z) = 0 holds for each z in Hy. (Hint: Let f(¢) = ||x—
y—17]|? = ||x—y||* = 2¢(x — y,2) +*||z||*. Then £(¢) is a quadratic polyno-
mial in ¢, which, by our choice of y, is minimized when ¢ = 0. Conclude that
(X - Z) = O)

Let V be a Banach space, and let v and vy, v, ... belong to V. The series
Ye1 Vk 18 said to converge unconditionally to v if for each positive € there is a
finite subset F; of N such that || Y;cr vk — v|| < € holds whenever F is a finite
subset of N that includes Fg.

(a) Show thatif 3,7 v converges absolutely, then it converges unconditionally
to some pointin V.

(b) Show that the converse of part (a) holds if V =R.

(c) Show that the converse of part (a) is not true in general. (Hint: Let V be o,
02, or £=))

14. Let V be the vector space of all real-valued Borel measurable functions on [0, 1].

15.

Show that convergence in measure (with respect to Lebesgue measure) is not
given by a seminorm on V. That is, show that there is no seminorm || - || on V
such that elements f, f1, f>, ... of V satisfy lim,, || f, — f|| = 0 if and only if { f,,}
converges to f in measure. (Hint: Show that if such a seminorm exists, then for
each positive ¢ there are functions g1, ..., g, in V such that ||g;|| < € holds for
each i but %2?11 gi is equal to the constant function 1. Derive a contradiction.)
Again, let V be the vector space of all real-valued Borel measurable functions
on [0, 1]. Show that convergence almost everywhere (with respect to Lebesgue
measure) is not given by a semimetric on V. (Hint: Use Proposition 3.1.3 to
show that if such a semimetric existed, then convergence in measure would
imply convergence almost everywhere.)

3.3 Definition of .#? and I?

Let (X, </, 1) be a measure space, and let p satisfy 1 < p < +eo (p need not be an
integer). Then .£?(X, o/, 1, R) is the set of all o/-measurable functions f: X — R
such that |f|? is integrable, and .Z7(X,«7,u,C) is the set of all 27-measurable
functions f: X — C such that | f|” is integrable (see Exercise 2.6.2).
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Note that if a € R and f € (X, o ,u,R), then of € LP(X,o,u,R), and
thatifa€ Cand f € XP(X,o/,u,C), then af € £P(X, o/, uu,C). Furthermore, if
f and g belong to £?(X, o/, u,R) or to £P(X, </, u,C), then

f)+ )" < (If )] +18())? < (2max{|f(x)],|g(x)]})”
<2717 +2|g ()

holds for each x in X, and so f + g belongs to Z7(X,o/,u,R) or to
ZLP (X, ,u,C). Thus £P(X, o/, u,R) is a vector space over R, and L7 (X, </, 1,
C) is a vector space over C.

We turn to the definition of £7(X,o/,u,R) and £P(X,o/,u,C) in the
case where p = 4oo. Let Z°(X,/,u,R) be the set of all bounded real-
valued 47-measurable functions on X, and let £~ (X, o/, 1u,C) be the set of all
bounded® complex-valued .7-measurable functions on X. It is easy to see that
ZL2(X, o ,u,R) and £*=(X, o/, u,C) are vector spaces.

In discussions that are valid for both real- and complex-valued functions we will
often use £P(X, o/, 1) to represent either L7 (X, o/, u,R) or L7 (X, o/ ,u,C).

Let us define, for each p, a function (in fact, a seminorm) || - ||, on Z7(X, o7, u).
If 1 < p < 4oo, we define || - ||, by

11 = ([ 1517 ).

For the case where p = 4 we need a few preliminaries. A subset N of X is
locally p-null (or simply locally null) if for each set A that belongs to .27 and satisfies
1(A) < +oo the set ANN is p-null. A property of points of X is said to hold locally
almost everywhere if the set of points at which it fails to hold is locally null. It is
easy to check that

(a) every u-null subset of X is locally p-null,
(b) if (X, 47, ) is o-finite, then every locally p-null subset of X is p-null, and
(c) the union of a sequence of locally u-null sets is locally y-null.

See Exercises 5 and 6 for some examples of locally ti-null sets that are not t-null.
We can define || - ||, in the case where p = 4o by letting || f||-. be the infimum
of those nonnegative numbers M such that {x € X : |f(x)| > M} is locally y-null.”
Note that if f € Z<(X, o/, 1), then {x € X : |f(x)| > || f|l~} is locally p-null, for
if {M, } is a nonincreasing sequence of real numbers such that || f||. = lim, M, and

5Some authors define £~ (X,.o7,u,R) and £~ (X, .o/, u,C) to consist of functions f that are
essentially bounded, which means that there is a nonnegative number M such that {x € X :
|f(x)| > M} is locally p-null (locally null sets are defined a bit later in this section). For most
purposes, it does not matter which definition of £ one uses. However, for the study of liftings
(see Appendix F), the definition given here is the more convenient one.

7We use locally null sets, rather than null sets, here and in the construction of the L™ spaces given
below in order to make Proposition 3.5.5, Theorem 7.5.4, and Theorem 9.4.8 true.



3.3 Definition of .£” and I 93

such that for each n the set {x € X : |f(x)| > M,} is locally u-null, then the set
{xeX :|f(x)] > ||fll~} is the union of the sets {x € X : |f(x)| > M,} and so is
locally p-null. Thus || ||« is not only the infimum of the set of numbers M such that
{xe X :|f(x)| > M} is locally u-null but is itself one of those numbers.

We need to derive some standard and important inequalities in order to prove
that the functions || - ||, are seminorms. Let us begin by introducing some notation.
Suppose that p satisfies 1 < p < 4. Then 0 < 1/p < 1, and so there is a real
number ¢ that satisfies 1/p+1/g = 1; g satisfies 1 < 1/g < +ec. The numbers
p and g are sometimes called conjugate exponents (see the remarks following the
proof of Proposition 3.5.5). The relation 1/p+ 1/g = 1 still holds if when p =1
we let ¢ = +oo, and if when p = +oo we let ¢ = 1; thus we can deal with all p that
satisfy 1 < p < 4-o0. Note that the relation 1/p + 1/g =1 implies that p+ g = pq,
and for finite p and g implies that p =g(p—1) and g = p(g—1).

We turn to the necessary inequalities.

Lemma 3.3.1. Let p satisfy 1 < p < +oo, let q be definedby 1/p+1/q=1, and let
x and y be nonnegative real numbers. Then

Proof. Since it is clear that the required inequality holds if either x =0 or y = 0, we
can assume that both x and y are positive. It is enough to prove that

ulirpt/a < Y
P 9
holds for all positive u and v (let u = x” and v = y?), and for this it is enough to
prove that

[1/ p < L + l

P q
holds for all positive ¢ (let 1 = u/v, and then multiply by v). However, this last
inequality is easy, since according to elementary calculus the function defined for

positive ¢ by
t 1
fs —4——1'/P

has a minimum value of 0. O

Proposition 3.3.2 (Holder’s Inequality). Ler (X, o/, 1) be a measure space, and
letpand gsatisfy 1 <p<+eo, 1 <g<+oo,and1/p+1/q=1.1f f € LP(X, o/, 1)
and g € L9(X, o ,10), then fg belongs to (X, </, 1) and satisfies [|fg|du <
1£1lpllgllg-

Proof. First suppose that p = 1 and ¢ = 4. If f and g belong to £ (X, o7, 1)
and £~ (X, o/, 1), respectively, then the set {x € X : f(x) # 0} is o-finite under
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i (see Corollary 2.3.11) and the set {x € X : |g(x)| > [|g]|} is locally p-null.
The intersection of these two sets in thus a p-null set, and so the inequality

If(X)g(x)] < [lglleo|f (x)]
holds at almost every x in X. It follows that fg € .Z!(X,.o7,u) and that

[1relan < [ lgl-lfidn = gl A1

A similar argument applies in case p = +ocand g = 1.
Now suppose that 1 < p < 40 and hence that 1 < g < +oo. Let f belong to
ZLP(X,o/, 1) and g belong to £7(X, <7, 1t). Lemma 3.3.1 implies that

If(x)glx)| < I%If(X)I”ﬂL élg(X)lq

holds for each x in X; hence if ||f]|, = 1 and ||g||; = 1, then fg belongs to
ZV(X,o/, 1) and satisfies

1

1 r 1 1
[1rsldu < [1fraus [igtan ==+ =1,
' P q. P q

In case neither || ||, nor ||g||4 is 0, we can use this inequality, with f and g replaced
by f/[|f]lp and g/]|g||¢. to conclude that

1 /
e | eldu <1
171151181l
and hence that
[176lan =171l (1)
Since inequality (1) is clear if ||f]|, = 0 or ||g]|; = O (for then fg vanishes almost
everywhere), the proof is complete. a

Proposition 3.3.3 (Minkowski’s Inequality). Let (X,o/, 1) be a measure space,
and let p satisfy 1 < p < oo If f and g belong to LP (X, </ ,|L), then [+ g belongs
to LP(X, o 1) and ||f+gllp, <[ fllp+ lIgllp-

Proof. First suppose that p = +e. Define Ny and N, by Ny = {x € X :
[fx)] > [Ifll«} and N2 = {x € X : |g(x)| > ||g|l}- Then N; and N, are locally
u-null, and the inequality

If () + g < 1F )]+ 1) < [Ifll+ Nl ]l

holds at each x outside the locally p-null set Ny UN,. Thus f+g € Z°(X, o, 1)
and [| £+ gl < [|flle= + [l lee-
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Next suppose that p = 1. Then the inequality | f(x) +g(x)| < |f(x)|+ |g(x)| holds
ateachxin X, andso f+g € £ (X, o/, u) and

I +8li= [ 1 +glan< [1fldu+ [ leldu=1fl+ gl

Now consider the case where 1 < p < 4-o0. We checked that f+g € £P(X, o/, 1)
earlier in this section. Define g by 1/p+ 1/g = 1. Since p 4+ g = pg, it follows
that (|f +g|P~ )9 = |f + g|? and hence that |f +g|"~! € £9(X, </, u). Thus if we
use the fact that |f +g|” < (|f] +|g|)|f +g|”~! and then apply Hélder’s inequality
(Proposition 3.3.2) to the functions f and |f + g|[P~! and to the functions g and
|f+g|P~!, we can conclude that

Jir+ardu< [0+ leDls+ g7 au

= [17117 +gI7 du+ [ lgl1f -+l du

< 17+ 817 g + g1+ 217
. 1/q
=Wl + el 17+ epan)

If [|f+g|P du # 0, we can divide the terms of this inequality by ([ | f +g|?du)"/4,
obtaining

If +&llp <1171+ llgllp- 2
Since inequality (2) is clear if [|f+ g|?du = 0, the proof is complete. O

Corollary 3.3.4. Let (X, o/, 1L) be a measure space, and let p satisfy 1 < p < oo,
Then £P(X, </, 1) is a vector space, and || - ||, is a seminorm on LP(X, o/, |0).

Proof. We have already verified that £7(X, <7, 1) is a vector space. The triangle
inequality for || - ||, is the only other nontrivial thing to check, and it is given by
Proposition 3.3.3. a

Example 3.3.5. Suppose that 1 < p; < pp < 4oo. Then each sequence {a,} that
satisfies Y, |a,|P! < 4o also satisfies X, |a,|P? < +eo. Thus if u is counting measure
on the o-algebra o of all subsets of N, then .Z71 (N, o7, 1) C .£P2(N, o/, 1u). The
inclusion is reversed for finite measures: if y is a finite measure on a measurable
space (X, ), then £P2(X, o/ ,u) C .LP1(X, o/, 10). See Exercise 9. O

Note that if there are nonempty subsets A of X that belong to 2/ and satisfy
1 (A) =0, then there are nonzero functions f that belong to £? (X, .7, i) and satisfy
|| fll, = 0. Thus for many common measure spaces, the seminorms | - ||, are not
norms. Since norms and metrics are often easier to deal with than are seminorms
and semimetrics, the following construction of normed spaces LP(X,.o/, i) from
the spaces £?(X, .o/, 1) proves useful.
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Let (X,o/,1) be a measure space, and let A4P(X,o/, 1) be the subset of
ZLP(X, 4, 1) that consists of those functions f that belong to £7(X, .o/, 1) and
satisfy || f|l, = 0. Thus if 1 < p < 4o, then AP(X, o7, u) consists of the .o7-
measurable functions on X that satisfy [|f|?du = 0 (that is, that vanish almost
everywhere), and if p = 4o, then A 7(X, o/, 1) consists of the bounded .-
measurable functions on X that vanish locally almost everywhere. It is clear that
AP(X, 9 ,10) is a linear subspace of the vector space .£P(X, o/, 1). The space
LP(X,47,u) is defined to be the quotient ZP(X, o7, 1)/ NP (X, o/, ). Recall
that this means that L”(X, 7, ) is the collection of cosets of AP(X,7,u) in
LP(X,,11); these cosets® are by definition the equivalence classes induced by
the equivalence relation ~, where f ~ g holds if and only if f — g belongs to
NP(X, 4, 1u). Note that if 1 < p < 4o, then f ~ g holds if and only if f and g are
equal almost everywhere, and so LP(X,./, i) is formed by identifying functions in
ZLP(X, o/, 1) that agree almost everywhere. Likewise, L= (X, .o/, 1) is formed by
identifying functions in £~ (X, o7, 1) that agree locally almost everywhere.

For fin ZP (X, , 1) let (f) be the coset of A#P(X,47, 1) to which f belongs.
It is easy to check that the formulas (f) + (g) = (f +g) and o(f) = (o.f) define
operations that make L” (X, .o/, 1) into a vector space. Furthermore, if f and g are
functions that belong to .Z7(X, </, i) and satisfy f ~ g, then || f]|, = ||gl|, (check
this). Thus we can define a function, again called || - || ,, on L? (X, <7, 1) by means of
the formula ||(f)||, = | f|| - It is easy to check that || - ||, is a norm on L?(X, </, i)
(see Corollary 3.3.4).

We will, of course, write L” (X, %7, u,R) or LP(X,%/,u,C) when the real and
complex cases must be distinguished from one another.

It is often convenient to act as though the elements of LP(X,</,u) were
functions, rather than equivalence classes of functions. In fact, some authors use
the same symbol for £P(X,/,u) and LP(X,/,1t). We will try to avoid this
identification of functions and classes of functions, since it can lead to confusion
(especially in the study of stochastic processes). However to simplify notation
we will often deal with £?(X,.«/, ) when proving theorems about L” (X, <7, ).
For example, in the next section we will prove that LP(X,<7, 1) is complete by
showing that if Y f¢ is a series in Z7(X,.o/, 1) such that Y || fx||, < 4-oe, then
there is a function f in ZP(X,o/, 1) such that lim, || f — X7_, fill, = O (recall
Proposition 3.2.5). This will imply the completeness of L”(X, <7, 1) and yet avoid
the cumbersome notation associated with equivalence classes.

We close this section with a definition. Let (X,.o/, 1) be a measure space, let
p satisfy 1 < p < +oo, and let f and fi, f5, ... belong to £? (X, ). Then
{fu} converges to f in pth mean (or in LP-norm) if lim, [ |f, — f|Pdu = 0,
or, equivalently, if lim, || f, — f||, = 0. There are a number of results relating

8Equivalently, for each fin 7 (X, .o/, i) the coset to which f belongs is the set f+.4P(X, .o/ , 1)
and hence the set {f +g:g€ N/ P(X, o, 1)}



3.3 Definition of .£” and I 97

convergence in pth mean to convergence in measure and convergence almost
everywhere; the reader would do well to formulate and prove some of them, using
the corresponding results in Sect. 3.1 as models (see also Exercise 9).

Exercises

1. Use the inequality (x —y)? > 0 to give an alternate proof of Lemma 3.3.1 in the
case where p =g = 2.

2. Give an alternate proof of Lemma 3.3.1 by noting that x” / p and y? /g are the areas
of the shaded regions in Fig. 3.1. (The curve in Fig. 3.1 represents the graph of
the equation # = s”~!, or, equivalently, of the equation s = t9~!)

3. Let (X, 47, ) be a measure space. Check that the formula

(- (&)) = [ Fed

defines an inner product on L2 (X, <, 1, R) and that the norm associated with this
inner product is the usual norm on L*(X,.«7, i, R).

4. Let £ be the c-algebra of Borel subsets of [0,1] and let A be the restriction
of Lebesgue measure to %. Show that if 1 < p <2 or 2 < p < +eo then
there is no inner product on L?([0,1],%,4,R) that induces the usual norm on
LP(]0,1],4,A,R). (Hint: A norm that comes from an inner product must satisfy
the identity in part (a) of Exercise 3.2.8.)

Fig. 3.1 Region used in Exercise 2 for proof of Lemma 3.3.1
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5. Let X be a nonempty set, let & = {&, X}, and let 4 : &/ — [0,+oo] be defined by

0 ifA=go,
p(A) = .
+oo ifA=X.

Show that X is locally p-null but not y-null.

6. Suppose that for each subset A of R? and each real number x we denote the set
{y €R: (x,y) € A} by A,. Let &/ consist of those subsets A of R? that satisfy
Ay € B(R) for each x in R, and define t: &7 — [0, +o0] by

u(A) = Y. A(Ay) if A, # & for only countably many x,
o0 otherwise.

(a) Show that o7 is a G-algebra on R? and that u is a measure on (R?,.<7).
(b) Show that {(x,y) € R?:y =0} is locally p-null but not g-null.

7. Let (X, 2/, 1) be a finite measure space, and let f be an 7-measurable real- or
complex-valued function on X.

(a) Show that f belongs to £~ (X, </, ) if and only if

(i) f belongsto . £P(X, s, 1) for each p in [1,4-e), and
(i) sup{||fll,:1 < p < oo} is finite.

(b) Show that if these conditions hold, then || f||o = lim, 4o || || p-

8. (Jensen’s inequality.) Let (X, <7) be a measurable space, and let it be a measure
on (X,4/) such that u(X) = 1. Suppose that ¢: R — R is convex, in the sense
that @(rx+ (1 —1)y) <t@(x)+ (1 —1)@(y) holds for all x, yin R and all 7 in [0, 1].
(a) Show that ¢ is continuous, and hence Borel measurable.

(b) Show that if f belongs to ! (X, .o/, u,R), then

o( [rau) < [ooran.

In particular, the integral of @ o f exists, either as a real number or as +oo.
(Hint: Show that for each xy in R there is a straight line (say given by the
equation y = ax + b) that passes through the point (xg, ¢(xo)) and never goes
above the graph of y = ¢(x). Then note that for a suitable such line we have
o([ fdu)=[(af+b)du < [@o fdu.)
9. Let (X, /) be a measurable space, and let 1 be a measure on (X,.27) such that
w(X) =1.Suppose that 1 < p; < py < oo

(a) Show that if f belongs to .£P2(X, o 1), then f belongs to L7 (X, 7, 1)
and satisfies ||f]|,, < ||f|/p,- (Hint: Use Holder’s inequality or Jensen’s
inequality.)

(b) Show thatif f and fi, f>, ... belong to £P2(X, <7, ) and if {f, } converges
to f in poth mean, then {f,} converges to f in p;th mean.
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3.4 Properties of .£” and [

This section is devoted to some basic properties of the L” spaces.

Theorem 3.4.1. Let (X, o/, L) be a measure space, and let p satisfy 1 < p < oo,
Then LP (X, o/, 1t) is complete under the norm || - || .

Proof. According to Proposition 3.2.5, we need only show that each absolutely
convergent series in L? (X, .o/, 1) is convergent. We do this by considering functions
(not equivalence classes) in £”(X,.o7, 1), as outlined near the end of Sect. 3.3.

First suppose that p = +oo and that {f;} is a sequence of functions that belong
to £=(X, </, 1) and satisfy Y || fi]|l < +e. For each positive integer k let Ny =
{xeX :|fi(x)] > || fk|l~}. Then the series X fi(x) converges at each x outside Uy Vg,
and the function f defined by

Fx) = {Zkfk(x) %fx ¢ U Ve
0 ifx e Uka

is bounded and .7 -measurable. Since Uy N is locally null, the inequality

oo

< X Il

o k=n+1

‘f—ka
k=1

holds for each n, and so

=

<lim Y fille=0.
oo " k=nt1

n;pr— > fi
k=1

Thus L= (X, </, 1) is complete.
Now suppose that 1 < p < 4 and that {f;} is a sequence of functions that
belong to .Z7 (X, o7, 1) and satisfy ¥ || fi||, < +oo. Define g: X — [0, +oo] by

<) = (§|fk<x>|)p

(of course (4-o)P = 4-o0). Minkowski’s inequality (Proposition 3.3.3), applied to the
functions | f|, implies that

(/ (kil |fk|>pdli> " = kil | fel

holds for each n, and so it follows from the monotone convergence theorem that

. n 14 Lnd p
/gd[,L :11,131/ (2 |fk|) du < (Z ||fk||P> ;
. k=1 k=1

n
< D Il
P k=1
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thus g is integrable. Consequently g(x) is finite for almost every x (Corollary 2.3.14),
and the series Y fi(x) is absolutely convergent, and hence convergent, for almost
every x. Define a function f on X by

£ = {Zf—lfkoc) i 2(x) < Lon

0 otherwise.

Then f is measurable and satisfies |f|? < g, and so it belongs to £P(X, </, ).
Since lim, | ¥}_; fi(x) — f(x)| =0and | X}_, fi(x) — f(x)|? < g(x) hold for almost
every x, the dominated convergence theorem implies that lim,, || ¥}_, fx — f|, = 0.
The completeness of L” (X, .7, i) follows. O

Let (X,47, 1) be a measure space. We will say that a function f in £?(X, 7, 1)
determines the equivalence class (f) in L (X, <7, ) to which it belongs. Likewise,
if S is a subset of ZP(X, <7, ) and if T is a subset of LP(X, ./, 1), then we will
say that S determines T if T consists of the equivalence classes in LP(X,.o/, 1)
determined by the elements of S. This terminology will allow us to avoid a fair
amount of pedantic notation. (See also the next-to-the-last paragraph in Sect. 3.3.)

Proposition 3.4.2. Let (X, </, L) be a measure space, and let p satisfy 1 < p < oo,
Then the simple functions in £P (X, ,|L) form a dense subspace of £P(X, o/, 1)
and so determine a dense subspace of L (X, <7, 1L).

Proof. We will consider only real-valued functions. The corresponding results for
LP(X, o/, u,C) can be proved by separating a complex-valued function into its real
and imaginary parts.

Let us first consider the case where 1 < p < +oo. Let f belong to
ZLP(X, 4, u,R). Choose nondecreasing sequences {gi} and {/;} of nonnegative
simple &/-measurable functions such that f© = limyg; and f~ = limghy
(Proposition 2.1.8), and define a sequence {f;} by fx = gk — hx. Then each
fx is a simple «f-measurable function that satisfies |fi| < |f| and so belongs
to £LP(X,e/,u,R). Since these functions satisfy |fi(x) — f(x)] < |f(x)| and
limg | fx (x) — f(x)| = 0 at each x in X, the dominated convergence theorem, applied
to the pth powers of the functions |f; — f|, implies that limy || fx — f||, = 0. With
this the proof is complete in the case where 1 < p < oo,

Now suppose that p = 4oo. Let f belong to .£~(X, o/, 1,R), and let € be a
positive number. Choose real numbers ag, ay, ..., a, such that

apg<ar <...<ay

and such that the intervals (a;_1,a;] cover the interval [—||f||w, || f]l] and have
lengths at most €. Let A; = f~!((a;_1,a;]) fori=1, ..., n, and let f; = S aiXa;
Then f; is a simple <7-measurable function that satisfies ||f — fz|| < €. Since f
and € are arbitrary, the proof is complete. a



3.4 Properties of £? and [ 101

We now turn to some results concerning Lebesgue measure on R. Let [a,b] be
a closed bounded interval. A real- or complex-valued function f on [a,b] is a step
function if there are real numbers ay, ..., a, such that

(@) a=ap<a;<...<a,=b,and
(b) f is constant on each interval (a;_1,a;).

We will use £?([a,b]) and L?([a,b]) as abbreviations for £?([a,b], %B([a,b]), )
and L?”([a,b],#([a,b]), ), where HB([a,b]) is the c-algebra of Borel subsets of
[a,b] and A is the restriction of Lebesgue measure to <7.

The following two propositions are often useful, since step functions and
continuous functions are usually easier to deal with than are more general functions.

Proposition 3.4.3. Suppose that [a,b] is a closed bounded interval and that p
satisfies 1 < p < 4oo. Then the subspace of L’(|a,b]) determined by the step
functions on |a,b) is dense in LP([a,b]).

Proof. Of course, each step function on [a, b] belongs to .Z”([a, b]). Since the Borel
measurable simple functions on [a,b] determine a dense subspace of LP([a,b])
(Proposition 3.4.2), it is enough to show that if f is a Borel measurable simple
function and if € is a positive number, then there is a step function g such that
|lf —gll, < &, and for this it is enough to check that if y4 is the characteristic
function of a Borel subset A of [a,b], then there are step functions g that make
lxa — gl| » arbitrarily small. So let A be a Borel subset of @, b] and let 6 be a positive
number. Use the construction of Lebesgue outer measure (or Proposition C.4 and the
regularity of Lebesgue measure) to choose a sequence {(a,,b,)} of open intervals
such that A C Uy, (an,b,) and Y, (b, —a,) < A(A)+ 6, and then choose a
positive integer N such that ¥° v ., (b, —a,) < 8. Let g be the characteristic
function of [a,b] N (UY (ay,b,)) and let h be the characteristic function of [a,b] N
(UT(an,bn)). Then g is a step function, and

lxa = 8llp < llxa = hllp+ R =gl

(i) " (o )

1 N+

< 8P4 8P =28'/r,

Since § is arbitrary, the proof is complete. a

Proposition 3.4.4. Suppose that [a,b] is a closed bounded interval and that p
satisfies 1 < p < oo, Then the subspace of L?([a,b]) determined by the continuous
functions on [a,b) is dense in LP([a,b]).

Proof. Of course, each continuous function on [a,b] belongs to Z7([a,b]).
Since the step functions on [a,b] determine a dense subspace of LP([a,b])
(Proposition 3.4.3), it is enough to prove that for each step function f and each
positive number € there is a continuous function g that satisfies || f — g/, < €. So
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let f be a step function on [a,b], let M = sup{|f(x)| : x € [a,D]}, and let & be a
positive number. It is easy to construct a continuous function g on [a,b] such that
sup{|g(x)| : x € [a,b]} <M and A({x € [a,b] : f(x) # g(x)}) < & (take a suitable
piecewise linear function). Then

[ gl an < QMPA(Gx: 109 £ 8(0)) < (2M)"5,

and so || f —g||, <2M8'/7. Since § is arbitrary and M depends only on f, the proof
is complete. O

The reader should note that Propositions 3.4.3 and 3.4.4 would fail if p were
allowed to be infinite (see Exercises 3 and 4).

Let us call a function on R a step function if for each interval [a, b] its restriction
to [a,b] is a step function. Analogues of Propositions 3.4.3 and 3.4.4 hold for
L’ (R, B(R), ) if we replace the set of step functions on [a,b] with the set of step
functions on R that vanish outside some bounded interval and if we replace the
set of continuous functions on [a, b] with the set of continuous functions on R that
vanish outside some bounded interval. The details are left to the reader. (See also
Proposition 7.4.3.)

Let o7 be a o-algebra on the set X. Then &7 is countably generated if there is
a countable subfamily & of ./ such that &7 = 6(%’). For example, the o-algebra
A(R) of Borel subsets of R is countably generated (see Exercise 1.1.2).

Proposition 3.4.5. Let (X, o, 1) be a measure space, and let p satisfy 1 < p < oo,
If U is o-finite and < is countably generated, then LP (X, 7 | |1) is separable.

The proof will depend on the following two lemmas.

Lemma 3.4.6. Let (X, o7, 1) be a finite measure space, and let <y be an algebra
of subsets of X such that of = 6 (). Then < is dense in <7, in the sense that for
each A in &/ and each positive number € there is a set Ay that belongs to <7y and
satisfies L(A A\ Ag) < €.

Proof. Let .# be the collection consisting of those sets A in .2/ such that for each
positive € there is a set Ay that belongs to <7 and satisfies ((A AAg) < €. Of course
oy C F,and so X € .. The identity A AAj = A A Ag implies that if A € .7, then
A€ € F; hence .Z is closed under complementation. Now let {A4,} be an infinite
sequence of sets in %, let A = U,A,, and let € be a positive number. Choose a
positive integer N such that (A — UYA,) < €/2 (see Proposition 1.2.5), and for
n=1,2,..., N choose a set B, that belongs to % and satisfies (A, AB,) < &/2N.
The set B defined by B = UIIV By, then belongs to o7 and satisfies
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Since we can produce such a set B for each positive €, it follows that A € Z.
Consequently .% is closed under the formation of countable unions and so is a -
algebra. Since in addition @ C .% C & = o(%), % must be equal to <. Thus
every set in 27 can be approximated with sets in .. O

Lemma 3.4.7. Let (X, 47, 11) be a measure space. Suppose that <7 is an algebra of
subsets of X such that

(a) o(H) =, and
(b) X is the union of a sequence of sets that belong to <fy and have finite measure

under L.

Then for each positive € and each set A that belongs to <f and satisfies [L(A) < oo
there is a set Ay that belongs to <f and satisfies [L(A N Ap) < €.

Proof. Choose a sequence {B,,} of sets that belong to <%, have finite measure under
U, and satisfy X = U,B,. By replacing B, with Uj_,By, we can assume that the
sequence {B,} is increasing.

Let A belong to & and satisfy ft(A) < +oe. Proposition 1.2.5, applied to the
sequence {A N B,}, implies that there is a positive integer N such that u(ANBy) >
1(A) — &/2. Since the measure C — p(C N By) is finite, we can use Lemma 3.4.6
to obtain a set Ay that belongs to <% and satisfies u((A AAg) NBy) < €/2. Then
Ap N By belongs to o) and satisfies

(AL (Ao By)) < H(A A (ANBN)) + (AN By) A (Ao N By))

=u(A—(ANBy))+ u((AAA)NBy)
e ¢

<-+-=¢,
2+2

and the proof of the lemma is complete. a

Proof of Proposition 3.4.5. We can choose a countable subfamily € of <7 that
generates </ and contains sets B,,n =1, 2, ..., that have finite measure under y and
satisfy X = U, B,,. Let ¢ consist of the sets in ¢, together with their complements,
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and let .27 be the algebra (not the o-algebra) generated by %. Then 2 is the set of
finite unions of sets that have the form

CiNnGN---NCy

for some choice of N and some choice of sets Cy, ..., Cy in €. Clearly = is
countable and satisfies the hypotheses of Lemma 3.4.7.
Let .# be the collection of all finite sums

ZdeDja
J

where each d; is arational number” and each D belongs to <7 and satisfies it(D;) <
+oo. The set . is countable and is included in Z7 (X, %7, 1t); we will show that it
determines a dense subset of LP(X,.<7, ).

Let f belong to £P(X,/,1u), and let € be a positive number. Then there
is a simple function g that belongs to .£7(X, </, 1) and satisfies || f — g, < €
(Proposition 3.4.2). Suppose that the simple function g has the form 3’ ;a; x4, where
each A; belongs to &7 and satisfies t1(A;) < 4. We can choose rational numbers
d; such that

Sajxa;— 2 dixa;|| < Dlaj—djlllxa;lly, <e,

J J rJ

and then we can produce sets D in o7 such that || X;djxa; — X;d;xp; |l < € (use
Lemma 3.4.7). Since f and € are arbitrary, and since ¥;d;xp, belongs to . and
satisfies

Hf—zdﬂa), <|f—zllp+ Hg—Zdij,-
J 14 J

p

+ < 3e,

P

djxa; — 2. dixo,
J J

the proof is complete. a

Exercises

1. Use Proposition 3.4.3 to show that if 1 < p < +eo, then L”([a, b]) is separable.
2. Show that L™([a,b]) is not separable. (Hint: Consider the elements of L ([a,b])
determined by the characteristic functions of the sets [a, c|, where a < ¢ < b.)

9When dealing with the complex L” spaces, let each d i be a complex number whose real and
imaginary parts are rational.
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3. Show that Proposition 3.4.3 would be false if p were allowed to be infinite. (Hint:
Construct a Borel subset A of [a,b] such that || x4 — f]|~ > 1/2 holds whenever
f is a step function.)

4. Show that Proposition 3.4.4 would be false if p were allowed to be infinite. (Hint:
Let A = [a,c], where a < ¢ < b. How small can || x4 — f|| be if f is continuous?)

5. Suppose that for each function f: R —+ R and each x in R we define a
function fy: R — R by fi(t) = f(r —x). (A similar definition applies to
complex-valued functions on R.) Show that if 1 < p < 4o and if f belongs
to LP(R,#A(R), 1), then

lim (1= il =0

holds for each x in R. (Hint: First, consider the case where f is a step function
that vanishes outside some bounded interval. Then use Proposition 3.4.3 (see the
remarks following the proof of Proposition 3.4.4).)

6. Show that the hypothesis of ¢-finiteness cannot be omitted in Proposition 3.4.5.
(Hint: Consider counting measure on (R, Z(R)).)

7. Show that in Lemma 3.4.7 condition (b) cannot be replaced with the assumption
that u is o-finite. (Hint: Let 2% be the algebra on R defined in Example 1.1.1(g),
let {r,} be an enumeration of Q, and let u be the Borel measure on R defined by

u = zn 5rn‘)

3.5 Dual Spaces

Recall that if V) and V; are vector spaces over R (or over C), then a function7: V} —
V, is a linear operator (or linear transformation) if for each v and w in V| and each
o in R (or in C) it satisfies T(v+w) = T(v) + T(w) and T (orv) = oT (v). Recall
also that if S| and S, are metric spaces, say with metrics d; and d,, then a function
f1 81— S, is continuous if for each point a in S| and each positive number € there
is a positive number & such that d>(f(s), f(a)) < € holds whenever s belongs to
S| and satisfies d(s,a) < 6. Thus if V| and V; are normed linear spaces, say with
norms || - ||; and || - ||2, then a function f: V| — V5 is continuous if and only if for
each a in V| and each positive number € there is a positive number 6 such that
Il f(v) = f(a)|l2 < € holds whenever v belongs to V; and satisfies ||v —al|; < .

When dealing with several normed spaces, we will often use the symbol || - || to
denote each of the norms involved. This will of course be done only when there
seems to be little chance of confusion.

Proposition 3.5.1. Let V| and V, be normed linear spaces, and let T : Vi — V, be
a linear operator. Then T is continuous if and only if there is a nonnegative number
M such that

ITW)II <My (D
holds for each v in V.
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Proof. First suppose that there is a nonnegative number M such that inequality (1)
holds for each v in Vj. Then for each v and a in V| we have

ITW)=T(@ =TV -a)l| <M|v—a;

hence if € is a positive number and if we define 6 by 6 = £/M (let § be an arbitrary
positive number if M = 0), then ||7(v) — T'(a)|| < € holds whenever ||v —al| < &.
Thus T is continuous.

Now suppose that T is continuous, and choose a positive number § such that
IT()|| = IT(v)=T(0)|| < 1if ||v|]| = |[v—0]] < 8. Note that (1) holds if v =0,
whatever value we use for M. Now suppose that v # 0 and let w = v/||v]|. It follows
that if 0 < ¢ < 8, then we have |[tw|| < 6 and #||T(w)|| < 1, from which we get

1
IT)IE< vl

Since ¢ can be chosen arbitrarily close to 1/6, it follows that || T(v)|| < %Hv” Thus
inequality (1) holds, with M equal to 1/6. O

Let Vi and V, be normed linear spaces, and let 7: Vi — V, be linear. A
nonnegative number A such that | 7(v)|| < Al|v|| holds for each v in V; is called a
bound for T, and the operator T is called bounded if there is a bound for it (see also
Exercises 3 and 4). Thus Proposition 3.5.1 says that a linear operator is continuous
if and only if it is bounded. It is easy to check that if the operator T is bounded, then
the infimum of the set of bounds for T is a bound for 7. This smallest bound for T
is called the norm of T and is written ||T'||. It is not hard to check that || - || is a norm
on the vector space of all bounded linear operators from V; to V.

We turn to a few special cases. Suppose that V| and V, are normed linear spaces
and that 7: V| — V; is linear. Then 7 is an isometry if | T (v)|| = ||v|| holds for each
vin V}. Note that if 7 is an isometry and if v and w belong to Vi, then

IT)=TW)[ =T =w)l=v-wl,

and so T preserves distances. The linear operator T is an isometric isomorphism if
it is an isometry that is surjective (note that an isometry is necessarily injective and
so is bijective if and only if it is surjective). Thus an isometric isomorphism is a
bijection that preserves both linear and metric structure.

Let V be a normed linear space. Recall that a linear functional on V is a linear
operator on V whose values lie in R (if V is a vector space over R) or in C (if V is
a vector space over C). We will be particularly concerned with the bounded, that is,
continuous, linear functionals on V. It is easy to check that the set of all continuous
linear functionals on V is a subspace of the vector space of all linear functionals on
V; this subspace is called the dual space (or conjugate space) of V and is denoted
by V*. The space V* is sometimes called the topological dual space of V in order to
distinguish it from the space of all linear functionals on V (which is then called the
algebraic dual space of V).
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Note that the function || - ||: V* — R that assigns to each functional in V* its
norm (as defined above) is in fact a norm on the vector space V*; for instance, the
calculation

(F+G)W) < [FMI+IGO) < IV +[IGIHIvI= (IFI+IGIDIv]

shows that ||F| + ||G|| is a bound for F + G and so implies that ||F + G|| <
I+ 1G]l

Example 3.5.2. Let [a,b] be a closed bounded subinterval of R, and let y be a finite
Borel measure on [a,b]. Define F: C[a,b] — R by letting

F(f) = [ fau ®)

hold for each f in C[a, b]. It is clear that F is a linear functional and that F is positive,
in the sense that each nonnegative'® f in C|a, b] satisfies F(f) > 0. We will see that
every positive linear functional on Cla, b] arises in this way (Theorem 7.2.8). O

Example 3.5.3. Now suppose that C[a, b] is given the norm || - ||.. defined by

[1f]leo = sup{|f (x)] : x € [a, ]}
(see Example 3.2.1(e) above). Then the functional F defined by (2) satisfies

P =| [ rau] < [111an < Wr1en(ao).

and so is bounded and hence continuous. Likewise, if u; and p, are finite Borel
measures on [a, b], then the linear functional G defined by

G(f) = [ fam ~ [ e

is continuous. We will see that every continuous linear functional on Cla,b] arises
in this way (Theorem 7.3.6). These facts and their generalizations form the basis for
many of the applications of measure theory.!! 0

Example 3.5.4. Suppose that (X,<7,u) is an arbitrary measure space, that p
satisfies 1 < p < +eoo, and that ¢ is defined by 1/p+ 1/g = 1. Let g belong

10The function f is called nonnegative if f(x) > 0 holds at each x in [a, ].
'The usefulness of these results seems to be attributable to two facts:

(a) If a linear functional on a space of functions can be represented as an integral, then the limit
theorems of Sect. 2.4 are applicable.

(b) The methods available for decomposing and analyzing measures are often easier to visualize
than those that apply directly to linear functionals.
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to Z9(X,e/,u). Then fg is integrable whenever f belongs to £ (X, o/, 1)
(Proposition 3.3.2), and so the formula

() = [ fedu

defines a linear functional T, on .Z7(X o7, ). It is clear that if f; and f, belong to
ZP(X, o/, 1) and agree almost everywhere, then T, (f1) = T,(f2); thus we can use
the formula T, ((f)) = T,(f) to define a functional, also called T, on L7 (X7, 11).
Holder’s inequality (Proposition 3.3.2) implies that |T,(f)| < ||g||4|lf]l, holds for
each f in £P(X, o/, ). Thus T, is continuous on L” (X, o/, i), and || T, || < ||gll4-
We’ll see in the following proposition that || T, || = ||g||4- O

We will denote by T the map from .Z9(X,.o/, 1) to (LP(X,o/,1u))* that takes
the function g to the functional 7, defined above.

Proposition 3.5.5. Let (X, o/, 1) be a measure space, let p satisfy 1 < p < +e, and
let g be definedby 1 /p+1/q=1.Thenthemap T : L1(X, o, 1) — (LP (X, o/, 1))*
defined above induces an isometry of LY(X , o/ , 1) into (LP (X, </, 1))

Note that Proposition 3.5.5 says that T is an isometry info (LP(X, o/, 1u))*; it
does not say that T is surjective. Example 4.5.2 in the next chapter gives a case in
which T is not surjective. Later we will see that the map T is a surjection, and hence
an isometric isomorphism, if

(@) 1< p<+ooand (X, 1) is arbitrary,
(b) p=1 and u is o-finite, or
(¢c) p=1and (X, ,u) arises through certain topological constructions

(see Theorems 4.5.1, 7.5.4, and 9.4.8). It is because of this relationship between
LY(X, o/, 1) and (LP (X, </, 1t))* that numbers p and g satisfying 1 /p+1/g=1 are
called conjugate exponents.

We need a bit of notation for the proof of Proposition 3.5.5. Recall that if z is a
complex number, say z = x + iy, then Z (the complex conjugate of z) and sgn(z) are
defined by Z = x — iy and

P
0 ifz=0.
Itis easy to check that zZ = |z|* and zsgn(z) = |z| hold for each z and that | sgn(z)| = 1
holds for each nonzero z. If f is a complex-valued function on a set S, then f and
sgn(f) are the functions whose values at the point s are f(s) and sgn(f(s)).
In the following proof we will assume that the functions involved are complex-
valued. The details are essentially the same for real-valued functions (then Z = z and

sgn(z) is 1,0, or —1).

Proof of Proposition 3.5.5. It is clear that if g and g, are equal almost everywhere
(or, in case g = +oo, locally almost everywhere), then Ty, = Tg,. Thus 7, depends
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on g only through the equivalence class (g) to which g belongs, and we can define a
map, again called T, from L9(X, <7, ) to (LP(X, <7, 1t))* by means of the formula
Tiq = T;. It is clear that T is linear. Since we have already seen that || T[] < [|gl|,
holds for each g in .£%(X,.<7, i), we need only verify the reverse inequality. Let us
consider two cases.

First suppose that p = 1 and hence that ¢ = 4. Let g be an element of
ZL=(X, 4, 1) such that ||g]| # 0, and let € be a positive number. Since {x € X:
lg(x)| > ||g|l- — €} is not locally u-null,'? there is a set A that belongs to <7, has
finite measure under u, and is such that the set B defined by

B=An{xeX:|g(x)| > g|-—e}

has nonzero measure. Let f = sgn(g)xs. Then f € Z'(X, o/, 1),

7l = [ lsen(eizsldu < [ zsdn = n(B),
and
1,(f) = [ gsen(exnd = [ lelzndit > (Igll-— ()

It is clear that | T, (f)| = T,(f), and so the preceding calculations, together with the
inequality |T,(f)] < |Tg|||| f]1, imply that ||g||. — & < ||Tg||. Since € can be made
arbitrarily close to 0, it follows that ||g||. < ||T;||. Thus || T;|| = |/g]|e-

Now suppose that 1 < p < 40 and hence that 1 < g < 4oo. Let g belong
to £9(X, </, 1), and define a function f by f = sgn(g)|g|?"!. The relation g =
p(g — 1) implies that |f|” = |g|?; thus f belongs to .£7(X, o/, 1) and satisfies
£l = (/ lgl?dp)"/7. Furthermore

() = [ sen(e)lel* "gdu = [ lgl7du.

Consequently it follows from the relation |7, (f)| < || T,|||| f||» that

[leltan <IT ([ 1el7an) G

and hence that ||g||4 < ||T,|| (this is clear if ||g||; = O; otherwise divide both sides
of (3) by ([ |g|?du)"/? and recall that 1 — 1/p = 1/q.) Thus || T, = ||g||, and the
proof is complete. O

12We are here assuming that the space X is not locally null. If X is locally null, then L' (X,.27, i)
and L= (X, <7, ) contain only 0, and the proposition is true (but uninteresting).
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Exercises

1. Let V}, V,, and V3 be normed linear spaces, and let S: V; =V, and T: V, —
V3 be bounded linear operators. Show that 7 o S: V| — V3 is bounded and that
(T o S|l < [IT|]S]-

2. Suppose that V| and V, are normed linear spaces and that T: V| — V, is an
invertible linear operator such that 7 and 7! are both bounded.

(a) Show that 1 < ||T||||T~"||. (Hint: See Exercise 1.)
(b) Show by example that equality need not hold in part (a).

3. Let V| and V; be normed linear spaces, and let 7: V; — V, be a linear operator.
Show that the subset 7'(V}) of V; is bounded if and only if T is the zero operator.
Thus to say that a linear operator is bounded is not to say that its values form a
bounded set.

4. Let V| and V, be normed linear spaces, and let 7: V; — V, be a linear operator.
(a) Show that T is bounded if and only if the set

{IT M) veViand |v] <1}

is bounded above.
(b) Show that if 7" is bounded, then

IT]| = sup{[|T(v)[| : v € V1 and [|v]| < 1}.

5. Suppose that V| and V, are normed linear spaces and that 7: V| — V; is a linear
operator. Show that if 7' is bounded, then T is uniformly continuous.

6. Let V be a normed linear space. Show that the dual V* of V is complete under the
norm || - || defined above. (Hint: Let {F,, } be a Cauchy sequence in V*. Show that
for each v in V the sequence {F;(v)} is a Cauchy sequence in R (or in C) and so
is convergent. Then show that the formula F(v) = lim, F;,(v) defines a bounded
linear functional on V and that lim,, ||[F,, — F|| = 0.)

7. Let V be an inner product space, and for each y in V define Fy,: V — R by F;(x) =
(x,y).

(a) Show that F, belongs to V* and satisfies ||F;|| = ||y||. (Hint: Use the Cauchy—
Schwarz inequality; see Exercise 3.2.7. To check that ||F;|| is equal to (rather
than less than) ||y||, consider F;(y).)

(b) Show that if y # y', then F, # Fy.

(c) Show that if the inner product space V is a Hilbert space and if F' belongs
to V*, then there is an element y of V such that F = F,. (Hint: Let y = 0 if
F = 0. Otherwise choose a nonzero element v of V such that (u,v) = 0 holds
whenever F(u) = 0 (see Exercise 3.2.12), and check that a suitable multiple
of v works.)

8. (This exercise depends on the Hahn—Banach theorem, which is stated without
proof in Appendix E.) Let V be the subspace of ¢~ consisting of those sequences
{x,} for which lim,x, exists, and let F: V — R be defined by Fy({x,}) =
lim,, x,,.
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(a) Show that Fp is a bounded linear functional on V and that | Fp|| = 1.

(b) Let F be a bounded linear functional on ¢ that satisfies ||F|| = 1 and agrees
with Fy on V (see Theorem E.7). Show that if {x,} is a nonnegative element
of ¢~ (that is, if {x,} belongs to £~ and satisfies x, > 0 for each n), then
F ({xx}) > 0. (Hint: Consider the sequence {x}, } defined by x/, = x,, — ¢, where
c is a suitably chosen constant.)

(c) For each subset A of N let { )(Ay,,}‘;’: | be the sequence defined by

P
70 ifng A

Show that the function p: & (N) — R defined by p(A) = F({xa.}) is a
finitely additive measure, but is not countably additive.

Notes

Kolmogorov and Fomin [73] and Simmons [109] are useful elementary sources of
information on metric spaces and normed linear spaces. The basic properties of the
LP-spaces can be found in virtually every book on integration theory.



Chapter 4
Signed and Complex Measures

In this chapter we study signed and complex measures, which are defined to
be the countably additive functions from a c-algebra to [—eo,+oo] or to C that
have value 0 on the empty set. We begin in Sect.4.1 with some basic definitions
and facts. Section 4.2 is devoted to the main result of this chapter, the Radon—
Nikodym theorem. Let u be a o-finite positive measure on a measurable space
(X, 7). The Radon—-Nikodym theorem characterizes those finite positive, signed,
or complex measures v whose values can be computed by integrating some -
integrable function—in other words, it characterizes those v for which there is a
p-integrable f such that v(A) = [, fdu holds for all A in o7. The last part of the
chapter is devoted to the relation of the material in the early parts of the chapter to
the classical concepts of bounded variation and absolute continuity (Sect. 4.4) and
to the use of the Radon—-Nikodym theorem to compute the dual spaces of a number
of the L spaces (Sect.4.5).

4.1 Signed and Complex Measures

Let (X, ) be a measurable space, and let u be a function on .7 with values in
[—eo,4-o0]. The function u is finitely additive if the identity

u <£J1Ai> = ii#(Ai)

holds for each finite sequence {A;}}_, of disjoint sets in &7 and is countably additive
if the identity

u <QAi> = 2#(1‘11‘)

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 113
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 _4,
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holds for each infinite sequence {A;} of disjoint sets in .27 If i is countably additive
and satisfies u(@) = 0, then it is a signed measure. Thus signed measures are the
functions that result if in the definition of measures the requirement of nonnegativity
is removed. This section is devoted to signed measures and complex measures (to be
defined below) and to their relationship to measures. '

A signed measure is finite if neither +oo nor —ee occurs among its values.

Suppose that u is a signed measure on the measurable space (X, 7). Then for
each A in o/ the sum p(A)+ 1 (A°) must be defined (that is, must not be of the form
(+00) 4 (—o0) or (—o0) + (+o0)) and must equal 1 (X). Hence if there is a set A in
</ for which p1(A) = +oe, then p(X) = oo, and if there is a set A in ./ for which
W(A) = —oo, then p(X) = —eo. Consequently a signed measure can attain at most
one of the values 40 and —eo. A similar argument shows that if B is a set in .7 for
which p(B) is finite, then pt(A) is finite for each <7-measurable subset A of B.

Examples 4.1.1.

(a) Let (X,.27, 1) be a measure space, let f belong to .Z!(X,.o7, u,R), and define
a function v on < by v(A) = [, fdu. Then the linearity of the integral and the
dominated convergence theorem imply that v is a signed measure on (X, .<7).
Note that such a signed measure is the difference of the positive measures v;
and v, defined by v;(A) = [, fTdp and vo(A) = [, f~ dpu.

(b) More generally, if v and v, are positive measures on the measurable space
(X, o) and if at least one of them is finite, then v; — v, is a signed measure on
(X, <7). We will soon see that every signed measure arises in this way. a

Lemma 4.1.2. Let (X,47) be a measurable space, and let L be a signed measure
on (X,o). If {A} is an increasing sequence of sets in <, then

u(kQAk) —limu(Ay),

and if {Ay} is a decreasing sequence of sets in </ such that LL(A,) is finite for some
n, then

u(ﬁAk) = lim 1 (Ay).

k=1

Lemma 4.1.3. Suppose that (X,</) is a measurable space and that | is an
extended real-valued function on < that is finitely additive and satisfies u (@) = 0.

IWe will try not to abbreviate the phrases “signed measure” and “complex measure” with the
word “measure”; thus the word “measure” by itself will continue to mean a nonnegative countably
additive function whose value at @ is 0. However, for clarity and emphasis, we will sometimes
refer to a measure as a positive measure.
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If u(Ug_ Ax) = limy . (Ay) holds for each increasing sequence {Ay} of sets in o/ or
if limy W (Ag) = 0 holds for each decreasing sequence {Ay} of sets in < for which
Ne_ | Ak = D, then L is a signed measure.

The proofs of these lemmas are very similar to those of Propositions 1.2.5
and 1.2.6 and so are omitted.

Let i be a signed measure on the measurable space (X,.27). A subset A of X is a
positive set for |1 if A € o7 and each o7 -measurable subset E of A satisfies u(E) > 0.
Likewise A is a negative set for it if A € o/ and each </-measurable subset E of A
satisfies (E) < 0.

The role of positive and negative sets is explained by Theorem 4.1.5 and
Corollary 4.1.6 below. For the proofs of these results, we will need the following
construction.

Lemma 4.1.4. Let i be a signed measure on the measurable space (X, <), and let
A be a subset of X that belongs to &/ and satisfies —eo < [1(A) < 0. Then there is a
negative set B that is included in A and satisfies

w(B) < u(A). )

Proof. We will remove a suitable sequence of subsets from A and then let B consist
of the points of A that remain. To begin, let

01 =sup{U(E):E € o/ and E C A}, ()
and choose an .o/ -measurable subset A; of A that satisfies?

1(A;) > min (%31,1) .

Then &, and 1 (A;) are nonnegative (note that (2) implies that §; > (=) = 0). We
proceed by induction, constructing sequences {8, } and {A, } by letting

O = sup{u(E) E€ o/ and E C (A—HUIAi)},
i=1

and then choosing an .«7-measurable subset A, of A — J/_ A; that satisfies

1(A) 2min<%5n,1).

Now define A and B by A = U;_A, and B =A — A...

2We require that {1(A1) be at least min(§; /2, 1), rather than at least §; /2, because we have not yet
proved that &, is finite (see Exercise 4).
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Let us check that B has the required properties. Since the sets A, are disjoint and
satisfy ((A,) > 0, it follows that 1(A) > 0 and hence that

1(A) = t(As) + p(B) = u(B).

Thus B satisfies (1).

We turn to the negativity of B. The finiteness of ((A) implies the finiteness of
U (As) and so, since U (Aw) =Y, (A,), implies that lim, 1 (A,) = 0. Consequently
lim, §, = 0. Since an arbitrary ./ -measurable subset E of B satisfies (t(E) < J, for
each n and so satisfies (t(E) < 0, B must be a negative set for L. a

The following theorem and its corollary give the standard decomposition of
signed measures.

Theorem 4.1.5 (Hahn Decomposition Theorem). Let (X,o/) be a measurable
space, and let [l be a signed measure on (X, o). Then there are disjoint subsets
P and N of X such that P is a positive set for I, N is a negative set for |, and
X =PUN.

Proof. Since the signed measure p cannot include both 4o and —eo among its
values, we can for definiteness assume that —eo is not included. Let

L=inf{u(A): Ais anegative set for u} 3)

(the set on the right side of (3) is nonempty, since & is a negative set for ). Choose a
sequence {A, } of negative sets for u for which L =lim, i1(A,), and let N =U>"_|A,.
It is easy to check that N is a negative set for u (each .o/-measurable subset of
N is the union of a sequence of disjoint .2/-measurable sets, each of which is
included in some A,). Hence L < p(N) < u(A,) holds for each n, and so L = 1(N).
Furthermore, since (t does not attain the value —oo, 1 (N) must be finite.

Let P = N¢. Our only remaining task is to check that P is a positive set for u.
If P included an </-measurable set A such that 1(A) < 0, then it would include a
negative set B such that 1 (B) < 0 (Lemma 4.1.4), and N U B would be a negative set
such that

H(NUB) = u(N)+p(B) <pu(N)=L

(recall that (N) is finite). However this contradicts (3), and so P must be a positive
set for u. O

A Hahn decomposition of a signed measure [l is a pair (P, N) of disjoint subsets
of X such that P is a positive set for u, N is a negative set for t, and X = PUN.
Note that a signed measure can have several Hahn decompositions. For example,
if X is the interval [—1,1], if &7 is the c-algebra of Borel subsets of [—1,1], and
if u is defined by pu(A) = [,xA(dx), then ([0,1],[—1,0)) and ((0,1],[—1,0]) are
both Hahn decompositions of . On the other hand, if y is an arbitrary signed
measure on a measurable space (X, ) and if (P;,N;) and (P5,N,) are Hahn
decompositions of u, then Py NN, is both a positive set and a negative set for U,
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and so each ./ -measurable subset of P NN, has measure zero under u. Likewise,
each «/-measurable subset of P, N N; has measure zero under p. Thus the Hahn
decomposition of U is essentially unique.

Corollary 4.1.6 (Jordan Decomposition Theorem). Every signed measure is the
difference of two positive measures, at least one of which is finite.

Proof. Let 1 be a signed measure on (X, 7). Choose a Hahn decomposition (P,N)
for i (see Theorem 4.1.5), and then define functions 4™ and y1~ on .27 by

pr(A)=pAnP)
and
T (4) = —(ANN).

It is clear that 4" and ™ are positive measures such that it = u™ — ™. Since +oo
and —eo cannot both occur among the values of i, at least one of the values (L (P)
and i (N), and hence at least one of the measures 4 and (™, must be finite. a

Let (P,N) be a Hahn decomposition of the signed measure u, let 4 and u~ be
the measures constructed from (P,N) in the proof of Corollary 4.1.6, and suppose
that A belongs to .o/ Then each o7 -measurable subset B of A satisfies

p(B)=u"(B)—u~(B) <u"(B) <u*(A).
Since in addition u* (A) = u(ANP), it follows that
Ut (A) =sup{u(B):B€ o and BC A}.
Likewise the measure (t~ satisfies
1 (A)=sup{—p(B):B€ </ and BC A}.

Thus 1+ and u~ do not depend on the particular Hahn decomposition used in their
construction. The measures y " and u~ are called the positive part and the negative
part of W, and the representation yt = u+ — ™ is called the Jordan decomposition
of u.

The variation of the signed measure U is the positive measure || defined by
|| = T+ p~. Ttis easy to check that

()] < [ul(4)

holds for each A in .7 and in fact that || is the smallest of those positive measures
v that satisfy |£(A)| < v(A) for each A in o (see Exercise 5). The total variation
|l || of the signed measure y is defined by ||u|| = |u|(X).
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Let (X, o/) be a measurable space. A complex measure on (X, /) is a function
u from o7 to C that satisfies (&) = 0 and is countably additive, in the sense that

u (OAn> = Z.U(An)
n=1 n=

holds for each infinite sequence {A,} of disjoint sets in .27. Note that by definition
a complex measure has only complex values and so has no infinite values.

Each complex measure i on (X, o) can of course be written in the form y =
W' +in"”, where ' and p" are finite signed measures on (X, <). Hence the Jordan
decomposition theorem implies that each complex measure p can be written in the
form

U=y — fo + i3 — i, “)

where 1, i, U3, and L are finite positive measures on (X, <7). Such a representa-
tion is called the Jordan decomposition of p if u’ = py — Uy and pu” = yz — yy are
the Jordan decompositions of the real and imaginary parts of u.

We turn to the variation |i| of the complex measure y. For each A in & let
|14|(A) be the supremum of the numbers Xj_, [1(A;)|, where {A;}"_, ranges over
all finite partitions of A into <7-measurable sets.

Proposition 4.1.7. Let (X,<7) be a measurable space, and let |L be a complex
measure on (X, ). Then the variation ||| of WL is a finite measure on (X, o).

Proof. The relation |u|(@) = 0 is immediate.

We can check the finite additivity of |u| by showing that if B} and B, are disjoint
sets that belong to <7, then |u|(By UB,) = |u|(B1) + |it|(B2). For this, note that if
{A;}_, is afinite partition of By UB; into «/-measurable sets, then

2@ <X luA;nBy)|+ X u(A4;NBy)]
J J J

< |u[(B1) + [p|(By).

Since |u|(B UB3) is the supremum of the numbers that can appear on the left side
of the inequality, it follows that

u[(B1UBy) < |u[(Br) + |u[(Ba).
A similar argument, based on partitioning By and B, shows that
[1I(B1) + |u[(B2) < [u|(B1UBy).

Thus |u|(B; UBy) = |ut|(By) + |1t|(B2), and the finite additivity of |ut| is proved.
If u = g — Hp +iuz — iy is the Jordan decomposition of (1, then

[1|(A) < mi(A) + 2 (A) + p3(A) + 1a(A) (5)
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holds for each A in /. Since the measures U, Uy, U3, and py are finite, the
finiteness of |u| follows. Furthermore, if {4,} is a decreasing sequence of .-
measurable sets such that N,A, = &, then lim, 1 (A,) = 0 holds for k = 1,
..., 4, and so (5) implies that lim, |u|(A,) = 0. Thus |¢| is countably additive
(Proposition 1.2.6). O

It is easy to check that if u is a complex measure on (X, <), then |u| is the
smallest of the positive measures v that satisfy [u(A)] < v(A) for all A in &
(see Exercise 5). Note that if u is a finite signed measure, then p is also a complex
measure; it is easy to check that in this case the variation of U as a signed measure
is the same as its variation as a complex measure (Exercise 6).

The total variation ||| of the complex measure u is defined by ||u|| = |u|(X).

Suppose that (X,.7) is a measurable space. Let M (X, <7, R) be the collection of
all finite signed measures on (X,<”), and let M(X,27,C) be the collection of all
complex measures on (X,.27). It is easy to check that M(X, .o/, R) and M (X, </,C)
are vector spaces over R and C, respectively, and that the total variation gives a
norm on each of them.

Proposition 4.1.8. Ler (X,4/) be a measurable space. Then the spaces
M(X, o/ ,\R) and M(X, % ,C) are complete under the total variation norm.

Proof. Let {u,} be a Cauchy sequence in M(X,</,R) or in M(X,«/,C). The in-
equality |tm(A) — wa(A)| < ||m — Un|| implies that for each A in < the sequence
{tn(A)} is a Cauchy sequence of real or complex numbers and hence is convergent.
Define a real- or complex-valued function ¢ on 7 by letting ((A) = lim, ,(A)
hold at each A in 7. We need to check that u is a signed or complex measure and
that limy, ||i, — || = 0.

It is clear that yt (@) = 0 and that u is at least finitely additive.

As preparation for checking the countable additivity of u, we will show that the
convergence of U, (A) to t(A) is uniform in A. If € is a positive number and if N is
a positive integer such that ||, — U,|| < € holds whenever m > N and n > N, then

| (A) — un(A)| < & (6)

holds whenever A € .o/, m > N, and n > N, and so

u(A) —un(A)| < &

holds whenever A € ./ and n > N (let m approach infinity in (6)). Since € is arbitrary,
the uniformity of the convergence of 1, (A) to i (A) follows.

We now use Lemmas 4.1.2 and 4.1.3 (and their extensions to complex measures)
to prove the countable additivity of u. Let {A;} be a decreasing sequence of sets
in &7 such that N;A; = &, and let € be a positive number. Use the uniformity of
the convergence of 1, (A) to 11(A) to choose N so that |1(A) — u,(A)| < €/2 holds
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whenever A € o/ and n > N, and then use Lemma 4.1.2 to choose K such that
|t (Ag)] < €/2 holds whenever k > K. It follows that if k£ > K then

[(AD] < [1(AR) — (A + (A < 5 +5 =&
Thus limy (1(Ay) = 0, and the countable additivity of u follows.

We turn to the relation lim,, || — u,|| = 0. Let € be a positive number, and use
the fact that {u,} is a Cauchy sequence to choose N so that |1, — Uy || < € holds
whenever m > N and n > N. Note that if m > N and n > N, then each partition of X
into &/-measurable sets A, j = 1,...,k, satisfies

k
Zlum AN < (|t — o] < €,

and hence satisfies

-

1

k
|14(A}) = pn(A;)| = lim Zl |m(A)) — pn(Aj)| < €.
J J=

Since ||it — Uy is the supremum of the numbers that can appear on the left side of
this inequality, it follows that ||it — t,]| < € holds whenever n > N. Consequently
lim,, |t — || = 0. Thus M(X, o/, R) and M(X, o/, C) are complete. O

Let us deal briefly with integration with respect to a finite signed or complex
measure.

Suppose that (X,47) is a measurable space. We will denote by B(X, </ ,R)
the vector space of bounded real-valued .&/-measurable functions on X and by
B(X,4,C) the vector space of bounded complex-valued .7 -measurable functions
on X. If u is a finite signed measure on (X, &), if 4 = u* — u~ is the Jordan
decomposition of u, and if f belongs to B(X,.<7,R), then the integral of f with
respect to u is defined by

[rau= [ raw [ rau-.

Itis clear that f — [ fdu defines a linear functional on B(X, <7, R).
IfA € o7, then [ yadp = 1(A) holds for each 1 in M (X, <7, R). Thus the formula

uH/fdu

defines a linear functional on M(X, ./ ,R) if f is an ./-measurable characteristic
function and hence if f is an arbitrary function in B(X,7,R) (use the linearity of
the integral and the dominated convergence theorem).
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Similarly, if g is a complex measure on (X,<?), then we can use the Jordan
decomposition of u to define the integral with respect to p of a function in
B(X,,C). The expressions f — [ fdu and u — [ fdu define linear functionals
on B(X,4/,C) and on M(X, .o/, C), respectively.

Now use the formula

[[fllee = sup{|f(x)] : x € X}

to define norms on B(X,<,R) and B(X,</,C) (see Example 3.2.1(f)). If u is a
finite signed or complex measure on (X,.<7) and if f is a simple 27/-measurable
function on X, say with values ay, ..., ai, attained on the sets Ay, ..., A, then

. k k k
[ ran| = | S amap)| < Xlalluan| < 114,
j= j= j=
and so
| [ rau] <A1l ™

Since each function in B(X,«,R) or in B(X,«/,C) is the uniform limit of a
sequence of simple .2/-measurable functions, it follows that (7) holds whenever f
belongs to B(X, </ ,R) or B(X,<,C).

Exercises

1. Let u be a signed or complex measure on (X,.o/), and let A belong to <7

(a) Show that |u|(A) = 0 holds if and only if each &/-measurable subset B of A
satisfies u(B) = 0.

(b) Show that in general the relation p(A) = 0 does not imply the relation
|uf(A) =0.

2. Let u be a signed measure on (X, <), and let v; and v, be positive measures
on (X,.«/) such that 4 = v; — v,. Show that v;(A) > u™(A) and v,(A) > u=(A)
hold for each A in 7.

3. Let u; and y; be finite signed measures on the measurable space (X, ./). Define
signed measures (; V (o and [y A pp on (X,./) by iV pp = iy + (2 — )™
and g Aty =y — (U — p2) ™"

(a) Show that u; V u, is the smallest of those finite signed measures v that satisfy
v(A) > 1 (A) and v(A) > up(A) forall A in <7 .
(b) Find and prove an analogous characterization of t; A .

4. Show that the quantities &§;, &, ... defined in the proof of Lemma 4.1.4 are
finite. (Hint: Use Theorem 4.1.5; this is legitimate, since Lemma 4.1.4 and
Theorem 4.1.5 were proved without using the finiteness of the J,’s.)
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5. Let u be a signed or complex measure on (X,.27), and let v be a positive measure
on (X,.27) such that |(A)| < v(A) holds for each A in </. Show that |u|(A) <
v(A) holds for each A in .
6. Note that if u is a finite signed measure, then U is both a signed measure and a
complex measure. Show that in this case the two definitions of |u| yield the same
result.
7. Let u; and U, be finite signed measures, and let v be the complex measure
defined by v = p; + ittp. Show that || < |v|, [u2| < |v| and |v| < ||+ |u2].
Is it necessarily true that ||v]] < /||t1]]? + || i22]|*?
8. Let u and y, U, ... be finite signed or complex measures on (X, .27). Show that
lim, ||, — pt]| = 0 holds if and only if u,(A) converges to 1 (A) uniformly in A
as n approaches infinity.
9. Use Proposition 3.2.5, Exercise 1.2.6, and the Jordan decomposition to give
another proof of Proposition 4.1.8.
10. Check that the spaces B(X, <7, R) and B(X, <7, C) are complete under the norm
[l

11. Let u be a finite signed or complex measure on (X,), and let {f,} be
a uniformly bounded sequence of real- or complex-valued .7-measurable
functions on X (thus there is a positive number B such that | f,(x)| < B holds
for each x and n). Show that if f(x) = lim, f,(x) holds at each x in X, then

Jfdp=1lim, [ fydu.

4.2 Absolute Continuity

Let (X, <7) be a measurable space, and let i and v be positive measures on (X,.27).
Then v is absolutely continuous with respect to L if each set A that belongs to .7 and
satisfies [1(A) = 0 also satisfies V(A) = 0. One sometimes writes v < U to indicate
that v is absolutely continuous with respect to . A measure on (RY, Z(R?)) is
simply called absolutely continuous if it is absolutely continuous with respect to
d-dimensional Lebesgue measure.

Suppose that (X,.o7, i) is a measure space and that f is a nonnegative function
in £V (X, o/, 1, R). We have seen (in Sect.2.4) that the formula v(A) = [, fdu
defines a finite positive measure v on 7. If y1(A) =0, then fy, vanishes p-almost
everywhere, and so vV(A) = 0. Thus v is absolutely continuous with respect to 1. We
will see that if u is o-finite, then every finite measure on (X,.27) that is absolutely
continuous with respect to y arises in this way.

The following lemma characterizes those finite positive measures that are abso-
lutely continuous with respect to an arbitrary positive measure; this characterization
is useful in the classical theory of functions of a real variable (see Sect. 4.4).

Lemma 4.2.1. Let (X, o) be a measurable space, let |1 be a positive measure on
(X,97), and let v be a finite positive measure on (X, ). Then v < W if and only
if for each positive € there is a positive 6 such that each <7 -measurable set A that
satisfies W(A) < & also satisfies V(A) < €.
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Proof. First suppose that for each positive € there is a corresponding &. Let A be
an o7 -measurable set that satisfies 11(A) = 0. Then u(A) < 8 holds for each 8, and
so V(A) < € holds for each &; hence A satisfies v(A) = 0. Thus v is absolutely
continuous with respect to .

Next suppose that there is a positive number € (which we will hold fixed) for
which there is no suitable §. Then for each positive integer k¥ we can (and do)
choose an .«7-measurable set A; that satisfies (A;) < 1/2% and v(A;) > €. Then
the inequalities u (U Ax) < S, t(Ax) < 1/2" 1 and v(UZ_Ax) > v(A,) > €
hold for each n, and so the set A defined by A = N> Up?_, Ay satisfies 1 (A) =0 and
v(A) > € (see Proposition 1.2.5). Thus A satisfies (1(A) = 0 but not v(A) = 0, and
so V is not absolutely continuous with respect to . O

‘We turn to the main result of this section.

Theorem 4.2.2 (Radon-Nikodym Theorem). Let (X,<7) be a measurable space,
and let |t and v be o-finite positive measures on (X,<7). If v is absolutely
continuous with respect to U, then there is an o/ -measurable function g: X —
[0,+00) such that v(A) = [, gdu holds for each A in /. The function g is unique
up to l-almost everywhere equality.

Proof. First consider the case where u and v are both finite. Let .# be the set
consisting of those .«7-measurable functions f: X — [0, +oo] that satisfy [, fdu <
v(A) for each A in 7. We will show first that .% contains a function g such that

/gdu—sup{/fdu:feﬂ} (1)

and then that this function g satisfies v(A) = [, gdu for each A in 7. Finally, we
will show that g can be modified so as to have only finite values.

We begin by checking that if f; and f; belong to .%, then f; V f> belongs to .7
to see this note that if A is an arbitrary setin &, if Ay = {x € A: fi(x) > f>(x)}, and
ifAy ={x€A: fo(x) > fi(x)}, then

/(fl\/fz)dli:/ flle-/ fdp < v(A)+Vv(A2) = Vv(A).
A Ay Ay

Furthermore, .% is not empty (the constant 0 belongs to it). Now choose a sequence
{fu} of functions in .% for which

lilgn/f,,d,u:sup{/fdu fes}.

By replacing f,, with f; V ---V f,, we can assume that the sequence {f,} is
increasing. Let g = lim,, f,,. The monotone convergence theorem implies that the
relation

[ sdu=tim [ fudu < via)
A n JA
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holds for each A and hence that g belongs to .%#. It also implies that [gdu =
sup{ [ fdu : f € F}. Thus g has the first of the properties claimed for it.

We turn to the proof that v(A) = [, gdu holds for each A in <. Since g belongs
to .Z, the formula vo(A) = v(A) — [, g du defines a positive measure on .«7. We need
only show that vg = 0. Assume the contrary. Then, since u is finite, there is a positive
number € such that

vo(X) > en(X). 2

Let (P,N) be a Hahn decomposition (see Sect. 4.1) for the signed measure vy — eLL.
Note that for each A in &7 we have vo(ANP) > eu(ANP), and hence we have

V(A):Agdu+Vo(A)2'/Agdu+vo(AmP) 3)

2Agdu+8u(AﬁP)=A(g+sxP)du.
Note also that (P) > 0, since if @ (P) = 0, then® vy (P) = 0, and so
Vo(X) —en(X) = (vo—en)(N) <0,

contradicting (2). It follows from this, the relation [gdu < v(X) < 4oo, and (3)
that g+ exp belongs to .# and satisfies [(g+ exp)du > [gdu. This, however,
contradicts (1) and so implies that vy = 0. Hence v(A) = [, gdu holds for each A
in 7. Since g can have an infinite value only on a p-null set (Corollary 2.3.14), it
can be redefined so as to have only finite values. With this we have constructed the
required function in the case where ( and v are finite.

Now suppose that it and v are o-finite. Then X is the union of a sequence { B, } of
disjoint .o/ -measurable sets, each of which has finite measure under ¢t and under v.
For each n the first part of this proof provides an 2/ -measurable function g, : B, —
[0,4-0) such that V(A) = [, g»du holds for each .«/-measurable subset A of B,,.
The function g: X — [0,+eo) that agrees on each B, with g, is then the required
function.

We turn to the uniqueness of g. Let g,h: X — [0,4+<0) be </-measurable
functions that satisfy

Vi) = [ edu= [ na

for each A in 7. First consider the case where v is finite. Then g — /& is integrable
and

J(s=mau=o

3This is where we use the absolute continuity of v.
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holds for each A in <7 since in this equation A can be the set where g > / or the
set where g < h, it follows that [(g—h)"du =0and [(g—h)~ du = 0 and hence
that (g — )" and (g — h)~ vanish u-almost everywhere (Corollary 2.3.12). Thus
g and h agree p-almost everywhere. If v is o-finite and if {B,} is a sequence of
o/ -measurable sets that have finite measure under v and satisfy X = U, B,, then the
preceding argument shows that g and % agree p-almost everywhere on each B, and
hence p-almost everywhere on X. O

Example 4.2.3. The assumption that u is o-finite cannot simply be omitted from
Theorem 4.2.2. To see that, let X be the interval [0, 1], let o be the o-algebra of
Borel subsets of [0, 1], let it be counting measure on (X, .¢), and let v be Lebesgue
measure on (X, ). Then v < u, but there is no measurable function f such that
V(A) = [, fdu holds for all A. (Concerning the possibility of not requiring that v
be o-finite, see Exercise 6.) O

Now suppose that (X, .o/) is a measurable space, that (t is a positive measure on
(X,47), and that v is a signed or complex measure on (X,<7). Then Vv is absolutely
continuous with respect to I, written v < 1, if its variation |v| is absolutely
continuous with respect to u. It is easy to check that a signed measure v is absolutely
continuous with respect to u if and only if v and v~ are absolutely continuous with
respect to 4 and that a complex measure Vv is absolutely continuous with respect to
if and only if the measures vy, v;, v3, and v4 appearing in its Jordan decomposition
V = V| — Vo +iVv3 — iV, are absolutely continuous with respect to . It is also easy to
check that a signed or complex measure Vv is absolutely continuous with respect to
if and only if each A in .« that satisfies (1(A) = 0 also satisfies v(A) = 0 (be careful:
v(A) = 0is not equivalent to |v|(A) = 0; see Exercise 4.1.1).

The Radon-Nikodym theorem can be formulated for signed and complex
measures as follows.

Theorem 4.2.4 (Radon-Nikodym Theorem). Let (X,<7) be a measurable space,
let U be a o-finite positive measure on (X, <), and let v be a finite signed or
complex measure on (X, ). If v is absolutely continuous with respect to L, then
there is a function g that belongs to " (X, ,u,R) or to L'(X,o/,u,C) and
satisfies v(A) = [, gd for each A in /. The function g is unique up to [1-almost
everywhere equality.

Proof. 1f v is a complex measure that is absolutely continuous with respect to ,
then it can be written in the form v = v| — v, +iv3 — iv4, where vy, V;, v3, and vy
are finite positive measures that are absolutely continuous with respect to . Then
Theorem 4.2.2 yields functions g;, j =1, ..., 4, that satisfy v;(A) = [, g;du for
each A in /. The required function g is now given by g = g1 — g» + ig3 — ig4.
The case of a finite signed measure is similar.

The uniqueness of g can be proved with the method used in the proof of
Theorem 4.2.2; in case Vv is a complex measure, the real and imaginary parts of
g should be considered separately. a
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Let (X, o7) be ameasurable space, let i be a -finite positive measure on (X, <),
and let v be a finite signed, complex, or o-finite positive measure on (X,.<).
Suppose that v is absolutely continuous with respect to (. An ./-measurable
function g on X that satisfies V(A) = [, gdu for each A in </ is called a Radon—
Nikodym derivative of v with respect to U or, in view of its uniqueness up to (-null
sets, the Radon—Nikodym derivative of v with respect to . A Radon—Nikodym
derivative of v with respect to i is sometimes denoted by 3—;1

We close this section with a few facts about the relationship of a finite signed or

complex measure to its variation.

Proposition 4.2.5. Suppose that (X, </, L) is a measure space, that [ belongs to
LYX, o 1u,R) orto LV(X, o/ ,1u,C), and that v is the finite signed or complex
measure defined by v(A) = [, fdu. Then

vI(a) = [ 11w

holds for each A in < .

Proof. Let A belong to </ and let {Aj}ljzl be a finite sequence of disjoint .-
measurable sets whose union is A. Then

;lv(A,»l :; /Ajfdu‘ s;/AJ_ |fldu :/Alfldu-

Since |v|(A) is the supremum of the sums that can appear on the left side of this
inequality, it follows that |v|(A) < [, | f|dpu.

Next construct a sequence {g, } of o/ -measurable simple functions for which the
relations |g,(x)| = 1 and lim, g, (x)f(x) = |f(x)| hold at each x in X (the details

of the construction are left to the reader). Suppose that a, j, j =1, ..., ky, are the
values of g, and that these values are attained on the sets A, j, j =1, ..., k,. Then
for an arbitrary set A in .2/ we have
‘ / gnfdﬂ‘ [ Zans [ fdu’
A j AﬂA,,J'

Za,wv(A ﬂAnJ)
J

<D IvAnA, )| <[v|(4).
J

Since the dominated convergence theorem implies that lim,, [, gofdu = [, |f|du, it
follows that [, | f|du < |v|(A). Thus |v|(A) = [, |f]|du, and the proof is complete.
O

Corollary 4.2.6. Let v be a finite signed or complex measure on the measurable
space (X, ). Then the Radon—-Nikodym derivative of v with respect to |v| has
absolute value 1 at |v|-almost every point in X.
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Proof. Proposition 4.2.5, applied in the case where f =

that
|v|<A>—/A|%

holds for each A in &7 . Thus | dd‘—z‘ | is a Radon-Nikodym derivative of |v| with respect

dM and p = |v|, implies

dlv|

to |v| Since the constant 1 is another such Radon-Nikodym derivative, it follows
that | 4V it | = 1 almost everywhere. O

Recall that in Sect. 4.1 we used the formulas

/fdv:/fdv+—/fdv*
/de=/de1—'/fdvz—i—i/fdw—i/fdvzt

to define the integral of a bounded 427 measurable function f with respect to a finite
signed or complex measure v. Let 4 av | be a Radon-Nikodym derivative of v with

and

respect to |v|. Then the relation

/fdvf/fd|| @)

holds for each bounded .<7-measurable function f on X this is clear in case f is the
characteristic function of an 7 -measurable set and then follows in the general case
from the linearity of the integral and the dominated convergence theorem.

Exercises

1. Define a measure v on (R, Z(R)) by v(A) = [, |x|A(dx). Show that v <« 4,
but that for no positive € does there exist a positive § such that v(A) < € holds
whenever A is a Borel set for which A(A) < §. Thus the assumption that v is
finite is essential in Lemma 4.2.1.

2. Let {r,} be an enumeration of the rational numbers, and for each positive integer
n let f,: R — R be a nonnegative Borel function that satisfies [ f,dA =1 and
vanishes outside the closed interval of length 1/2" centered at r,. Define  on

(a) Show that Y, f,(x) < +oo holds at A-almost every x in R. (Hint: See
Exercise 1.2.9.)

(b) Show that u is o-finite, that 4 < A, and that each nonempty open subset of
R has infinite measure under L.
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3. Suppose that u and v are o-finite positive measures on (X,.27), that v < u, and
that g is a Radon—Nikodym derivative of v with respect to 1. Show that

(a) an o/-measurable function f: X — R is v-integrable if and only if fg is
u-integrable, and
(b) if those functions are integrable, then [ fdv = [ fgdu.

4. Suppose that v;, v,, and v3 are o-finite positive measures on (X, ), that v <
V,, and that v, < v3.
(a) Show that v; < v3.
(b) Make precise and prove the assertion that

dv1 _ dv1 de
dvs B dv; dV3.

5. Let (X,%7) be a measurable space, let 1 be a o-finite positive measure on
(X,4), and let v; and v, be finite signed measures on (X, /) that are absolutely
continuous with respect to L.

(a) Show that (v; Vv) < u and (v; A vy) < U (see Exercise 4.1.3).
(b) Express the Radon—Nikodym derivatives (with respect to ) of v; V v, and
Vi A v, in terms of those of v; and v;.

6. Show that the assumption that v is o-finite can be removed from Theorem 4.2.2
if g is allowed to have values in [0,4-cc]. (Hint: Reduce the general case to the
case where u is finite. For each positive integer n choose a Hahn decomposition
(Py,N,) for v —nu; then consider the measures A — v(AN (N,P,)) and A —
V(AN (NePy)).)

7. Let 1 be a o-finite positive measure on (X,.«7).

(a) Show that
{veMX, o R):v<u}

is a closed linear subspace of the normed linear space M (X, </ ,R).
(b) Find an isometric isomorphism of L'(X,.7,u,R) onto the subspace of
M(X, <7 R) considered in part (a).

8. Let (X, <) be a measurable space, let it be a finite signed or complex measure on
(X, <), and let f be a bounded real- or complex-valued <7-measurable function
on X. Show that | [ fdu| < [|f|d|u].

9. Let u and v be o-finite positive measures on (X,<7). Show that the condi-
tions

) v<uuand u K v,
(i1) u and v have exactly the same sets of measure zero, and
(iii) there is an <7-measurable function g that satisfies 0 < g(x) < —+eo at each x
in X and is such that v(A4) = [, gdp holds for each A in &7

are equivalent.
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10.

11.

12.

13.

14.

15.

16.
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Show that if u is a o-finite measure on (X,.27), then there is a finite measure v
on (X, <) such that v < p and u < v. (Hint: See Exercise 9.)

Supply the missing details in the following proof of the Radon—Nikodym
theorem for finite positive measures. Let (X,%7) be a measurable space, and
let 1 and v be finite positive measures on (X,.<7).

(a) Show that the formula F({f)) = | fdv defines a bounded linear functional
on L*(X, o, u+v,R).

(b) Use Exercises 3.3.3 and 3.5.7 to obtain a function g in £?(X,.</, u + v,R)
such that F((f)) = [ fgd(u+ v) holds for each f in Z?(X, o, u+v,R).

(c) Show that if v < u, then the function g satisfies 0 < g(x) < 1 at (4 + v)-
almost every x in X and hence can be redefined so that 0 < g(x) < 1 holds
atevery xin X.

(d) Show that if v < u and if g has been redefined as in part (c), then v(A) =
J18/(1 —g)du holds for each A in 7.

Let (X, o7, 1) be a finite measure space, and let .% be a subset of ! (X, .o, 11).
Then .7 is called L!-bounded if the set {||f||1 : f € Z} is bounded above, is
called uniformly absolutely continuous if for each positive € there is a positive
0 such that [, |f|du < € holds whenever f € .#, A € o/, and (A) < 6,
and is called uniformly integrable if it is L'-bounded and uniformly absolutely
continuous. Show that .% is uniformly integrable if and only if it satisfies

lim sup{/ |f|d/,t:f€9}—0.
a=rfe {If>a}

(Hint: Recall Proposition 2.3.10.)

Show that if (X, </, 1) is a finite measure space, then every finite subset of
ZY(X, o/, 1) is uniformly integrable.

Let (X, <7, 1) be a finite measure space, and let g be a nonnegative function
that belongs to .Z!(X, o7, u). Show that if . is a collection of measurable
functions such that |f(x)| < g(x) holds for each f in .# and each x in X, then
Z is uniformly integrable.

Construct a finite measure space (X,</,u) and a sequence {f,} of /-
measurable functions on X such that {f, :n =1, 2, ... } is uniformly integrable,
but sup,, | f»| is not integrable. (Compare this with Exercise 14.)

Let (X, </, 1) be a finite measure space, let { f,,} be a sequence of functions in
ZVY(X,of, 1), and let f be an .7 -measurable real- or complex-valued function
on X.

(a) Show that if {f,} is uniformly integrable and if {f,} converges to f
in measure, then f is integrable and [ fdu = lim, [ f,du. (Hint: Use
Proposition 3.1.3, Theorem 2.4.4, and the inequality

[it=sldu< [1f=fldu+ [ Aldu+ [ 1flan)



130 4 Signed and Complex Measures

(b) Now suppose that f belongs to .Z'(X,.7, it). Show that {f,} converges to
f in mean if and only if {f,,} is uniformly integrable and converges to f in
measure.

(c) Use part (a) to give another proof of the dominated convergence theorem in
the case where 1 is finite. (See Exercise 14.)

4.3 Singularity

Let (X,.<7) be a measurable space. A positive measure {1t on (X, ) is concentrated
on the &/-measurable set E if u(E¢) = 0. A signed or complex measure 1 on
(X,4f) is concentrated on the f-measurable set E if the variation |u| of u is
concentrated on E, or equivalently, if each .«/-measurable subset A of E€ satisfies
1(A) = 0 (see Exercise 4.1.1). Now suppose that i and v are positive, signed, or
complex measures on (X,.7). Then u and v are mutually singular if there is an
o/ -measurable set E such that u is concentrated on E and v is concentrated on E°.
One sometimes writes ¢ L v to indicate that ¢t and v are mutually singular. Instead
of saying that u and v are mutually singular, one sometimes says that (4 and v are
singular, that v is singular with respect to u, or that u is singular with respect to v.
A positive, signed, or complex measure on (RY, (R%)) is simply called singular if
it is singular with respect to d-dimensional Lebesgue measure.

Examples 4.3.1.

(a) Let u be a signed measure on the measurable set (X,.27). Then the positive and
negative parts 4+ and u~ of u are mutually singular; they are concentrated on
the pair of disjoint sets appearing in a Hahn decomposition of 4.

(b) Next let us consider some measures on (R, Z(R)) that are singular with respect
to Lebesgue measure. If u is a finite discrete measure on (R, %Z(R)), then
there is a countable subset C of R on which p is concentrated; since Lebesgue
measure is concentrated on the complement of C, u is singular with respect
to Lebesgue measure. However not every finite measure on (R, Z(R)) that
is singular with respect to Lebesgue measure is discrete; for example, the
measure induced by the Cantor function (defined in Sect. 2.1) is singular with
respect to Lebesgue measure but assigns measure zero to each point in R
(see Exercise 2.1.7). a

Theorem 4.3.2 (Lebesgue Decomposition Theorem). Ler (X,<7) be a measur-
able space, let L be a positive measure on (X,</), and let v be a finite signed,
complex, or o-finite positive measure on (X, .</). Then there are unique finite signed,
complex, or positive measures V, and Vg on (X, <) such that

(a) v, is absolutely continuous with respect to |,
(b) vy is singular with respect to |, and
©) v=v,+vs

The decomposition v = Vv, + V; is called the Lebesgue decomposition of v, while
v, and vy are called the absolutely continuous and singular parts of v.
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Proof. We begin with the case in which v is a finite positive measure. Define .4, by
Ny ={Be o :u(B)=0},

and choose a sequence {B;} of sets in .4, such that

liﬁnv(Bj) =sup{v(B):Be A}

Let N = U;B;, and define measures v, and v, on (X,.%7) by v,(A) = v(ANN¢) and
vs(A) = v(ANN). Of course v = v, + ;. The countable subadditivity of u implies
that (t(N) = 0 and hence that v; is singular with respect to (. Since

V(N) =sup{v(B):B e A},

each «7-measurable subset B of N¢ that satisfies p(B) = 0 also satisfies v(B) =0
(otherwise N UB would belong to .4, and satisfy v(N UB) > v(N)). The absolute
continuity of v, follows.

In case v is a finite signed or complex measure, we can apply the preceding
construction to the finite positive measure |v|, obtaining a p-null set N such that
the Lebesgue decomposition of |v| is given by |v|,(A) = |[V[(ANN) and |v|s(A) =
[V|(ANN). It is easy to check that the signed or complex measures Vv, and v, defined
by v,(A) = v(ANN¢) and v5(A) = v(ANN) form a Lebesgue decomposition of v.

Now suppose that v is a o-finite positive measure, and let {D;} be a partition
of X into .o/-measurable sets that have finite measure under v. For each k let .27,
be the o-algebra on Dy that consists of the .<7-measurable subsets of Dy, and apply
the construction above to the restrictions of the measures ¢ and v to the spaces
(D, %). Let Ny, Ny, ... be the p-null subsets of Dy, D,, ... thus constructed,
and let N = UgNy. Then the measures v, and v, defined by v,(4) = v(ANN¢) and
Vs(A) = v(ANN) form a Lebesgue decomposition of v.

We turn to the uniqueness of the Lebesgue decomposition. Let v = v, 4 v, and
v =V, + V! be Lebesgue decompositions of v. First suppose that v is a finite signed,
complex, or finite positive measure. Then

/ /
Vg — V, = Vg — Vs,

and since (v, — Vv),) < p and (V] — vy) L p, it follows that

Va—Vi=Vi—v;=0
(see Exercise 1). Thus v, = v/, and v; = V.. The case where V is a o-finite positive
measure can be dealt with by choosing a partition {D;} of X into </-measurable
subsets that have finite measure under v, and applying the preceding argument to

the restrictions of v,, v;, v[,, and v‘é to the ./ -measurable subsets of the sets D;. 0O

See Exercise 6 for another proof of the uniqueness of the Lebesgue
decomposition.
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One sometimes goes a step further for a finite measure v on (R, Z(R)). Let C =
{xeR:v({x}) # 0}, and note that C is countable (for each positive integer n, there
are only finitely many points x such that v({x}) > 1/n). Let v; be the measure on
A(R) defined by vi(A) = v(ANC), and let v, and v; be the singular and absolutely
continuous (with respect to Lebesgue measure) parts of the measure A — v(ANC®).
Then v = v; + v, + v3 is a decomposition of v into the sum of a discrete measure,
a continuous but singular measure, and an absolutely continuous measure. It is easy
to check that the measures appearing in this decomposition are unique.

Exercises

1. Let i be a positive measure on (X,.o/), and let v be a positive, signed, or complex
measure on (X,.o/). Show that if v <« u and v L u, then v = 0. (Hint: Use the
definitions of absolute continuity and of singularity.)

2. Let u be a positive measure on (X, 7). Show that

{veMX,o/,R):v Lu}

is a closed linear subspace of the normed linear space M(X,.<7,R).

3. Let u be a positive measure on (X,27), let v be a finite signed or complex
measure on (X,.7), and let v = v, + v; be the Lebesgue decomposition of v.
Show that ||v|| = [|va|| + || vs]|-

4. Let p and v be positive measures on (X, %7) such that for each positive € there
is a set A in 7 that satisfies [1(A) < € and V(A®) < €. Show that p L v. (Hint:
Choose sets A1, Ap, ... in such a way that the set A defined by A = M>_, U, Ax
satisfies £(A) =0 and v(A€) =0.)

5. Show by example that in the Lebesgue decomposition theorem, we cannot allow
v to be an arbitrary positive measure. (Hint: Let (X, %) = (R, Z4(R)), let u be
Lebesgue measure on (X,.2/), and let v be counting measure on (X,.2/).)

6.(a) Let u and v be as in Theorem 4.3.2, let v = v, + v; be a Lebesgue

decomposition of v, and suppose that v, is concentrated on the u-null set
N. Show that each A in .« satisfies Vs(A) = V(ANN) and v,(A) = v(ANN®).

(b) Use part (a) to give another proof of the uniqueness assertion in Theo-
rem 4.3.2.

7. (Continuation of Exercise 4.1.3.) Let it and v be finite positive measures on
(X, ). Show that the conditions

H ulyv,
(i) puAv=0,and
(i) uvv=u+v

are equivalent.
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4.4 Functions of Finite Variation

In Sect. 1.3 we constructed a bijection between the set of all finite positive measures
on (R, %(R)) and the set of all bounded nondecreasing right-continuous functions
F: R — R that vanish at —eo.* In this section we will extend this correspondence to
a bijection between the set of all finite signed measures on (R, Z(R)) and a certain
set of real-valued functions on R, and we will use this bijection to give a classical
characterization of those finite signed measures on (R, Z(R)) that are absolutely
continuous with respect to Lebesgue measure.

Suppose that F is a real-valued function whose domain includes the interval
[a,b]. Let . be the collection of finite sequences {#;}}_, such that

altpy<fy < ---<t, <bh.

Then Vg[a, b], the variation of F over [a,b], is defined by
Vila,b] = sup{ T |F (1) = F(ti1)|: {} € 7 }.

The function F is of finite variation (or of bounded variation) on [a,b) if Vi [a,b] is
finite.

The variation of F over the interval (—oe, b] and the variation of F over R, written
Vp(—eo,b] and Vg (—oo, +e0), respectively, are defined in a similar way, now using
finite sequences whose members belong to (—eo,b] or to (—oo,4o0). Of course,
F is said to be of finite variation on (—eo,b] if Vp(—oo,b] is finite, and to be of
finite variation if Vp(—eo,+o0) is finite. If F: R — R is of finite variation, then the
variation of F is the function Vr: R — R defined by Vg (x) = Vp(—oo,x].

Suppose that u is a finite signed measure on (R, Z(R)). Define a function
Fy: R — R by letting

Fu(x) = p((=ee,x]) (D

hold at each x in R. If {#;}}"_ is an increasing sequence of real numbers, then

ZlF“ l‘, Fll ti—1 I—ZW i 1h])|<|I~L|( )

i=1

it follows that V, (—oo,+e0) < [u[(R) and hence that F, is of finite variation. It is
easy to check that F, vanishes at —eo and is right-continuous (use Proposition 1.3.9
and the Jordan decomposition of u). We will soon see that every right-continuous
function of finite variation that vanishes at —eco arises from a finite signed measure
in this way.

4Recall that a function F: R — R is said to vanish at —oo if lim,_, .. F(x) = 0.
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It is easy to check that the function Fy; defined by (1) is continuous if and only if
1 ({x}) = 0 holds for each x in R. In this case

u((a,b)) = u(la,b]) = u(la,b)) = u((a,b]) = Fu(b) — Fu(a)

holds whenever a < b.

Let us turn to some general properties of functions of finite variation.

Suppose that F': R — R is of finite variation. It is easy to check that F is bounded
and that if —eo < a < b < +-oo, then

VF(—OO,b] = VF(—oo,a] + Vi [a,b]. 2)
Furthermore, if b € R, then

Vie(—oo,b] = lim Vila,b]; 3)

to prove this, let € be a positive number, choose an increasing sequence {7}, of
numbers that belong to (—e, b] and satisfy

n
Y F(t;) = F(ti-1)| > Vi (—o0,b] &,
i=1
and note that for each a that satisfies a < fy we have
VF(—OO,b] —&e< VF[a,b] < VF(—OO,b].

A similar argument shows that if @ < ¢ and if F is right-continuous at a, then

Vrla,c] = blilg Vr[b,c]. 4)

Lemma 4.4.1. Let F be a function of finite variation on R. Then

(a) VF is bounded and nondecreasing,
(b) Vr vanishes at —oo, and
(c) if F is right-continuous, then VF is right-continuous.

Proof. Part (a) is clear. Equations (2) and (3) justify the calculation

A, Vr(x) = B V(e

= lim (Vp(—oo,b] = Vr[x,b])
= VF(—‘X’,b] - VF(_‘x’vb] =0,

and so part (b) is proved. A similar argument, using Eqs. (2) and (4), yields part (c).
O

Proposition 4.4.2. Let F be a function of finite variation on R. Then there are
bounded nondecreasing functions Fy and F, such that F = F| — F,.
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Proof. Tt is easy to check that the functions defined by F = (Vp+F)/2 and F, =
(Vr — F)/2 have the required properties. O

Let F: R — R be of finite variation, and let F; and F> be the functions constructed
in the proof of Proposition 4.4.2. Lemma 4.4.1 implies that if F is right-continuous,
then F| and F, are right-continuous, and that if ' vanishes at —eo, then F] and F,
vanish at —oo.

Proposition 4.4.3. Equation (1) defines a bijection L — Fy, between the set of all
finite signed measures on (R, Z(R)) and the set of all right-continuous functions of
finite variation that vanish at —oo.

Proof. We have already checked that Fy, is a right-continuous function of finite
variation that vanishes at —eo. If ¢t and v are finite signed measures such that Fy, = F,,
andif g = pu* —pu~ and v =v* — v~ are their Jordan decompositions, then F,+ —
Fy- = F,+ — F,~; since this implies that F;+ + F,- = F,+ + F};-, it follows from
Proposition 1.3.10 that u* + v~ = v + 1~ and hence that 4 = v. The injectivity
of the map p — F, follows. The surjectivity follows from Proposition 1.3.10,
Proposition 4.4.2, and the remarks following the proof of Proposition 4.4.2. O

A function F': R — R is absolutely continuous if for each positive number € there
is a positive number & such that ;| F(#;) — F(s;)| < € holds whenever {(s;,#;)} is a
finite sequence of disjoint open intervals for which ¥;(f; —s;) < 6.

It is clear that every absolutely continuous function is continuous and, in fact,
uniformly continuous. There are, however, functions that are uniformly continuous
and of finite variation, but are not absolutely continuous (see Exercise 3). It is easy
to check that an absolutely continuous function is of finite variation on each closed
bounded interval (see Exercise 5), but is not necessarily of finite variation on R
(consider the function F defined by F(x) = x).

We turn to the relationship between absolute continuity for signed measures and
absolute continuity for functions of a real variable.

Lemma 4.4.4. If F: R — R is absolutely continuous and of finite variation, then
VF is absolutely continuous.

Proof. Let € be a positive number, and use the absolute continuity of F' to choose a
corresponding 6. If {(s;,#;)} is a finite sequence of disjoint open intervals such that
Y.(ti —si) < 6, then each finite sequence {(u;,v;)} of disjoint open subintervals of
Ui(si,t;) satisfies 3(v; —u;) < & and so satisfies 3; |F (v;) — F(u;)| < €. Since the
sequence {(u;,v;)} can be chosen so as to make ¥ ; |F(v;) — F (u;)| arbitrarily close
to X, Vr[si,ti], we have

1

D IVE(w) = Ve(si)| = ZVF[Sivti] <e.

The absolute continuity of Vr follows. a
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Proposition 4.4.5. Let |1 be a finite signed measure on (R, %(R)), and let F;: R —
R be defined by (1). Then Fy is absolutely continuous if and only if 1 is absolutely
continuous with respect to Lebesgue measure.

Proof. First suppose that u is absolutely continuous with respect to Lebesgue
measure. Let € be a positive number, and use Lemma 4.2.1 to choose a positive
number & such that [u|(A) < & holds whenever A is a Borel set that satisfies
A(A) < 8. If {(s;,1;)} is a finite sequence of disjoint open intervals such that
Y.i(ti — i) < 8, then A (U;(s;,4]) < 8, and so

S IFu() = Fulsi)l = X (Gsist)] <l (Ui < e
i i i
Hence F), is absolutely continuous.

Now suppose that F, is absolutely continuous. Then Vg, is absolutely continuous
(Lemma 4.4.4), and so the functions F; and F, defined by Fy = (Vp, + Fy)/2 and
F, = (Vg, — Fy)/2 are absolutely continuous. Let y; and i be the finite positive
measures on (R, Z(RR)) that correspond to F; and F>. Since Fy, = F; — F>, it follows
(Proposition 4.4.3) that g = p; — Up; thus we need only show that y; < A and
Uy < A. Let € be a positive number, and let § be a positive number such that

2|F1 (t;) — Fi(si)| < € holds whenever {(s;,#;)} is a finite

sequence of disjoint open intervals such that (1 — ;) < 8. ®)
Suppose that A is a Borel subset of R such that A (A) < &, and use the regularity of
Lebesgue measure to choose an open set U that includes A and satisfies A (U) <
6. Then U is the union of a sequence {(s;,#;)} of disjoint open intervals (see
Proposition C.4), and it follows from (5) that

n n

t (U(Si,ti)) =D (Fi)—Fi(si) <e

i=1 i=1

holds for each n. Hence y; (U) = py (U3 (si,1i)) < € (see Proposition 1.2.5), and so
U1 (A) < e. The absolute continuity of () now follows from Lemma 4.2.1. The case
of U, is similar, and so the proof is complete. a

Proposition 4.4.6. The functions F : R — R that can be written in the form

-/ 0L ©)

for some f in L1 (R, B(R), A,R) are exactly the absolutely continuous functions of
finite variation that vanish at —oo.

Proof. First suppose that f belongs to .2 (R, %(R),A,R) and that F arises from
f through (6). The signed measure p defined by u(A) = [, fdA is absolutely



4.5 The Duals of the I? Spaces 137

continuous with respect to A, and F = Fy; hence it follows from Propositions 4.4.3
and 4.4.5 that F is of finite variation, is absolutely continuous, and vanishes at —oo.

Now suppose that F: R — R is of finite variation, is absolutely continuous, and
vanishes at —eo. Proposition 4.4.3 implies that there is a finite signed measure U
such that F = F),, and Proposition 4.4.5 implies that u < A. If f = j—f{, then (6)
holds at each x in R. a

The study of absolute continuity for functions of a real variable, and in particular
of Eq. (6), will be continued in Sect. 6.3.

Exercises

1. Suppose that F': R — R is defined by

0 if x <0,

nm-{ L

xsiny ifx>0.
Find the closed bounded intervals [a,b] for which Vr[a, b] is finite.

2. Show that if F: R — R is of finite variation, then the limits lim,_, . F(x) and
lim,_, 4o F'(x) exist.

3. Let F be the Cantor function, extended so as to vanish on the interval (—eo,0)
and to have value 1 on the interval (1,+e0). Show directly (i.e., without using
Proposition 4.4.5) that F is uniformly continuous but not absolutely continuous.

4. Show that if F: R — R is continuous and of finite variation, then Vy: R — R is
continuous.

5. Show that if F: R — R is absolutely continuous, then F is of finite variation
on each closed bounded interval. (Hint: Let § be a positive number such that
> |F(t:) — F(si)] < 1 holds whenever {(s;,#;)} is a finite sequence of disjoint
open intervals such that ¥;(#; —s;) < 8, and let [a, b] be a closed bounded interval.
Show that if {u;}}_ is a finite sequence such that

a<uy<up <...<u, <b,

then Y7 | |F (ui) — F(ui—1)| < (b—a)/0+1.)
6. Let u be a finite signed measure on (R,%(R)). Show that Vg, (—oo,x] =
|| ((—eo,x]) holds at each x in R.

4.5 The Duals of the I” Spaces

We return to the study, which we began in Sect. 3.5, of the duals of the L” spaces.
Let (X, o/, 1) be a measure space, let p satisfy 1 < p < +oo, and let ¢ be defined
by 1/p+1/q = 1. Recall that if f belongs to £?(X, o/, 1) (or to L1(X, o, 1)),
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then (f) is the coset in LP(X,o/, ) (or in L9(X,«/, 1)) to which f belongs.
We have seen that each (g) in L7(X, <7, 1) induces a bounded linear functional
Tig on LP(X,o/,u) by means of the formula Tj,((f)) = [ fgdu and that the
operator T that takes (g) to T,y is an isometry of L9(X, o7, ) into (L (X, ./, u))*
(Proposition 3.5.5). We now use the Radon—-Nikodym theorem to show that in many
situations the operator 7 is surjective and hence is an isometric isomorphism.

Theorem 4.5.1. Let (X, ./, 11) be a measure space, let p satisfy 1 < p < 4o, and
let q be defined by 1/p+1/q=1.1f p=1and U is o-finite, or if | < p < 4o and
W is arbitrary, then the operator T defined above is an isometric isomorphism of
L1(X, e/, 1) onto (LP (X, o, 11))*.

Proof. Since we know that T is an isometry (Proposition 3.5.5), we need only show
that it is surjective.

Let F be an arbitrary element of (L” (X, %7, 1t))*. First suppose that 1(X) < +eo
and that p satisfies 1 < p < +e. We define a function v on the c-algebra &/
by means of the formula v(A) = F({)a)). If {A¢} is a sequence of disjoint sets
in &/ and if A = UiA;, then the dominated convergence theorem implies that
lim,, [|xa — Xf_; Xa.llp = 0; since F is continuous and linear, this implies that
F((xa)) = Xk F({xa,)) and hence that v(A) = ¥;v(Ax). Thus v is countably
additive and so is a finite signed or complex measure. It is clear that v is absolutely
continuous with respect to it. Hence the Radon—Nikodym theorem (Theorem 4.2.4)
provides a function g in ! (X, o7, ) that satisfies v(A) = [, gdu foreach A in 7.
We will show that g belongs to £7(X, .o/, 1) and that F({f)) = [ fgdu holds for
each fin L7 (X, o/, 11).

For each positive integer n let E, = {x € X : |g(x)| < n}. Then gyxz, is bounded
and so belongs to Z4(X, o/, ) (recall that u is finite). Define a functional F, on
LP (X, o, 1) by Fg,((f)) = F({fxg,)). Consider the relation

Fi () = [ fos, du. M)

If f is the characteristic function of an .7-measurable set A, then both sides of
(1) are equal to v(ANE,)); thus (1) holds if f is the characteristic function of
an ./-measurable set and hence if f is an .&/-measurable simple function. Since
the ./ -measurable simple functions determine a dense subspace of L”(X,.«7, )
(Proposition 3.4.2), Eq.(1) holds for all (f) in LP(X,%7,u). It follows from
Proposition 3.5.5 that

gz, llq = I1Fell < IFI-

If g < +oo, then the monotone convergence theorem implies that g € £9(X, .o, 1)
and ||g||g < ||F||. If ¢ = oo, then (since E = U,E,) we have

p{xeX g0l > |F[]}) =limu({x € En: [g(x)] > [|F[[}) =0,

and we can redefine g so that it will be bounded, in fact satisfying |g(x)| < ||F|| at
every x in X. Thus ||g||; < ||F||, whether ¢ is finite or infinite. Furthermore, in both
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cases we can take limits in (1) as n approaches infinity and conclude that F({f)) =
J fgdu. With this the theorem is proved in the case of finite measures.

We need some notation in order to deal with the case where p is not finite.
Suppose that B belongs to 7. Let 7z be the o-algebra on B consisting of those
subsets of B that belong to .27, and let pip be the restriction of u to .o7p. If f is a real-
or complex-valued function on B, then we will denote by f’ the function on X that
agrees with f on B and vanishes outside B. The formula Fz({f)) = F({f")) defines
a linear functional Fg on L? (B, o7, lip); this functional satisfies || Fp|| < ||F||.

Now suppose that p is o-finite and that p satisfies 1 < p < +oo. Let {B;} be a
sequence of disjoint sets that belong to .7, have finite measure under p, and satisfy
X = UBy. According to the first part of this proof there is for each k a function g
in Z9(By, o/, , Up, ) that represents Fp, on L”(By, </, g, ) and satisfies ||gx|ls <
||Fg,||. Define g on X so that it agrees on each By with g. It is not difficult to check
(do so) that g € £9(X, o/, 1) and that

F((£) = [ fedu

holds for each (f) in L (X, o/, ).

Finally we turn to the case where  is arbitrary. Now we assume that 1 < p < 4-oo
and hence that 1 < g < 4-oo. Let . be the collection of sets in .27 that are o-finite
under p. Note that if B € ., then (B, .o/, lp) is o-finite, and so by what we have
just proved, there is a function g in .£4(B, <, lug) such that

Fal(f)) = [ Fedus

holds for each (f) in L?(B, <7, ). Furthermore if B; and B, are disjoint sets in
.Z, then

(1FBy08, 1 = [ Fay |17 + 1| B, 1 @

to prove this, choose a function g in .Z9(By U Bo, %/B,uB, “BNBz) that represents
Fg,uB,, and note that

HFBlUanq = /B

B |g|qdl’LB]UBz
1 2

= [ Taldun, + [ I du, = |Fs, |10+ i, .
By By
Now choose a sequence {C,} of sets in . such that
lim||Fg, || = sup{|| 3| : B € 7}

LetC =U,C,. ThenC € .7,

[Fcl = sup{||Fzll : B}, 3)
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and we can choose a function g¢ in £9(C, o/, lic) such that

Fe((f) = '/fgcdﬂc 4)

holds for each (f) in LP(C, </, lc). Note that if f belongs to £7(X,</, 1) and
vanishes on C, then F({f)) = 0 (otherwise, if D = {x € X : f(x) # 0}, then D would
belong to . (Corollary 2.3.11) and would satisfy Fp # 0, and so in view of (2),
Fcup would satisfy

[Fcopl|” = [Fell” + [[Fp]|* > [ Fell?,

contradicting (3)). It follows from this and (4) that if g is the function on X that
agrees with gc on C and vanishes off C, then g € £7(X, o/, 1) and

F(() = [ fedu

holds for each (f) in LP(X,</,u) (decompose f into the sum of a function that
vanishes on C and a function that vanishes on C). Hence F = T, and the proof of
the surjectivity of T is complete. a

Example 4.5.2. Let us consider an example that shows that the hypothesis of
o-finiteness cannot simply be omitted in Theorem 4.5.1 (see, however, Theo-
rems 7.5.4 and 9.4.8). Let X = R, let o7 be the o-algebra consisting of those subsets
A of R such that A or A€ is countable, and let it be counting measure on (X, 7). Then
LY (X,4, ) consists of those functions f on R that vanish outside a countable
set and satisfy Y, | f(x)| < 4-eo, and for such functions we have || f||; = X |f(x)]-
Define a functional F on L' (X, o7, 1) by F({f)) = ¥~ f(x). Then F is continuous,
and if g is a function that satisfies F((f)) = [ fgdu for each f in (X, ,u),
then g must be the characteristic function of the interval (0,+oc). However this
function is not <7 -measurable, and so the functional F is induced by no function in

L2(X, 4, 10). O
Exercises
1. Let V be a normed linear space, and let v and vy, v,, ... belong to V. The

sequence {v,} is said to converge weakly to v if F(v) = lim, F(v,) holds for
each F in V*.

(a) Show that if {v,} converges to v in norm (that is, if lim,, ||v, — v|| = 0), then
{vn} converges weakly to v.
(b) Does the converse of part (a) hold if V = L?(R, Z(R),A)?
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2. Let (X,o/,u) be a measure space. Show that the formula Tio) ((f)) = [ fgdu
defines an isometry T of L' (X, o7, 1) into (L™ (X,.<7, 1))*. (Thus we could have
allowed p to be +-oo in Proposition 3.5.5. See, however, the following exercise.)

3. (This exercise depends on Exercise 3.5.8, and hence on the Hahn-Banach
theorem.) Let (X,.7, 1t) be a finite measure space. Show that the conditions

(i) the map T in Exercise 2 is surjective,
(i) L'(X,, ) is finite dimensional,
(iii) L=(X,«/,u) is finite dimensional, and
(iv) there is a finite o-algebra % on X such that % C & and such that each set
in 7 differs from a set in <% by a p-null set

are equivalent. (Hint: To show that (i) implies (iv), assume that (iv) fails and use
ideas from Exercise 3.5.8 to show that (i) fails.)

Notes

The basic facts about absolute continuity and singularity of measures are contained
in essentially all books on measure and integration, while the results given in the
last part of Sect.4.1 and in Sect. 4.4 are sometimes omitted. See Chap. 10, on
probability, for applications of most of these results.

The proof of the Radon—Nikodym theorem outlined in Exercise 4.2.11 is due to
von Neumann (see [120, pp. 124-131]).



Chapter 5
Product Measures

In calculus courses one defines integrals over two- (or higher-) dimensional regions
and then evaluates these integrals by applying the usual techniques of integration,
one variable at a time. In this chapter we show that similar techniques work for the
Lebesgue integral. More generally, given o-finite measures (1 and v on spaces X and
Y, we first define a natural product measure on the product space X x Y (Sect.5.1).
Then we look at how integrals with respect to this product measure can be evaluated
in terms of integrals with respect to i and v over X and Y (Sect. 5.2). The chapter
ends with a few applications (Sect.5.3).

5.1 Constructions

Let (X,</) and (Y,%) be measurable spaces, and, as usual, let X x Y be the
Cartesian product of the sets X and Y. A subset of X XY is a rectangle with
measurable sides if it has the form A x B for some A in &/ and some B in &; the
o-algebra on X x Y generated by the collection of all rectangles with measurable
sides is called the product of the o-algebras ./ and % and is denoted by .o/ X A.

Example 5.1.1. Consider the space R2. This is, of course, a Cartesian product, the
product of R with itself. Let us show that the product c-algebra B(R) x B(R)
is equal to the o-algebra %(R?) of Borel subsets of R?. Recall that Z(R?) is
generated by the collection of all sets of the form (a,b] x (c,d] (Proposition 1.1.5).
Thus %(IR?) is generated by a subfamily of the o-algebra Z(R) x %(R) and so is
included in Z(R) x Z(R). We turn to the reverse inclusion. The projections 7; and
m, of R? onto R defined by 7 (x,y) = x and m,(x,y) = y are continuous and hence
Borel measurable (Example 2.1.2(a)). It follows from this and the identity

AxB=(AxR)N(RxB)=r"(A)nr, " (B)
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that if A and B belong to (R), then A x B belongs to (R?). Since Z(R) x B(R)
is the o-algebra generated by the collection of all such rectangles A x B, it must be
included in Z(RR?). Thus Z(R) x B(R) = B(R?). O

Let us introduce some terminology and notation. Suppose that X and Y are sets
and that E is a subset of X x Y. Then for each x in X and each y in Y the sections Ey
and EY are the subsets of Y and X given by

E.={yeY:(x,y)€E}

and
EY={xeX:(x,y) €E}.

If f is a function on X x Y, then the sections f, and f* are the functions on Y and X
given by

L) = f(xy)

and

F(x) = f(x.y).

Lemma 5.1.2. Let (X, /) and (Y,9B) be measurable spaces.

(a) If E is a subset of X X Y that belongs to o/ X 9, then each section E, belongs
to A and each section E? belongs to <f .

(b) If f is an extended real-valued (or a complex-valued) o/ x ZB-measurable
Sfunction on X XY, then each section fy is B-measurable and each section f? is
o/ -measurable.

Proof. Suppose that x belongs to X, and let .% be the collection of all subsets E of
X x Y such that E, belongs to %. Then .% contains all rectangles A x B for which
A € o and B € & (note that (A X B), is either B or &). In particular, X XY € Z.
Furthermore, the identities (E€), = (Ex)¢ and (U,Ep)x = Un((Ey)y) imply that .
is closed under complementation and under the formation of countable unions; thus
Z is a o-algebra. It follows that .% includes the o-algebra &7 x % and hence that
E, belongs to # whenever E belongs to .o/ x 8. A similar argument shows that E”
belongs to o7 whenever E belongs to o7 x 8. With this part (a) is proved.

Part (b) follows from part (a) and the identities (f;)~'(D) = (f~'(D)), and
()" (D) = (F (D))" 0

Proposition 5.1.3. Let (X, o/, 1) and (Y,%,V) be o-finite measure spaces. If E
belongs to the c-algebra of X P, then the function x — V(E,) is </ -measurable
and the function y — W(E>) is $B-measurable.

Proof. First suppose that the measure Vv is finite. Let .% be the class of those sets E
in &/ x % for which the function x — v(E,) is &/ -measurable (Lemma 5.1.2 implies
that E, belongs to 4, and hence that v(E,) is defined). If A € & and B € £, then
V((A x B)y) = v(B)xa(x), and so the rectangle A x B belongs to .%#. In particular,
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the space X x Y belongs to .%. Note that if E and F are sets in &/ X % such
that E C F, then v((F — E)y) = V(Fy) — V(Ey), and that if {E,} is an increasing
sequence of sets in &7 X B, then V((UpEy)x) = lim, v((E,),); it follows that . is
closed under the formation of proper differences and under the formation of unions
of increasing sequences of sets. Thus .% is a d-system (see Sect. 1.6). Since the
family of rectangles with measurable sides is closed under the formation of finite
intersections (note that

(A1 X B1) N (A2 X By) = (A1 NA2) x (B1NBy)),

Theorem 1.6.2 implies that .# = &/ x 8. Thus x — V(E,) is measurable for each E
in.o/ X A.

Now suppose that v is o-infinite, and let { D, } be a sequence of disjoint subsets of
Y that belong to 4, have finite measure under v, and satisfy U,D,, =Y. Define finite
measures Vi, Va, ... on A by letting v,(B) = v(BND,). According to what we have
just proved, for each n the function x — v, (E;) is </-measurable; since v(E,) =
Y. Vu(Ex) holds for each x, the measurability of x — Vv(Ey) follows. The function
y+— (E?) can be treated similarly, and so the proof is complete. a

Theorem 5.1.4. Let (X,</,1) and (Y,%B,v) be o-finite measure spaces. Then
there is a unique measure |1 X v on the G-algebra of x 9 such that

(1 % V)(A x B) = n(A)V(B)

holds for each A in o/ and B in 9B. Furthermore, the measure under |L X v of an
arbitrary set E in o/ X A is given by

(uxv)(E) = [ vEu(@) = [ u(E)vidy). (1)

The measure p x v is called the product of u and v.

Proof. The measurability of x — v(Ex) and y — u(EY) foreach E in o/ x 2 follows
from Proposition 5.1.3. Thus we can define functions (¢t x v); and (i X v); on
o % B by (ux V)i(E) = [y v(E)u(dx) and (u x v)2(E) = fy u(E*) v(dy). T
is clear that (u x v)1(@) = (U x v)2(2) = 0. If {E,} is a sequence of disjoint
sets in .o X B, if E = U,E,, and if x € X, then {(E,).} is a sequence of disjoint
sets in Z such that Ex = U, ((E,)x) and hence such that v(Ey) = Y, V((E,)x); thus
Corollary 2.4.2 implies that

(uxvn(E) = |

JX

VED () =3, [ V((E))pdx) = S (ux V) (En)

n

and so (U x V) is countably additive. A similar argument shows that (1 x v), is
countably additive. It is easy to check that if A € & and B € 4, then

(1 X V)1(4 x B) = w(A)V(B) = (1t x V)2(A x B).
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Hence (1 x v); and (u x v), are measures on .2/ X 4 that have the required values
on the rectangles with measurable sides.

The uniqueness of 1 x v follows from Corollary 1.6.4. Thus (it X v); = (1 X V)2,
and Eq. (1) holds for each E in &/ x A. a

Example 5.1.5. Let us look again at the space R2. We have already shown that
B(R?) = B(R) x B(R). Let A; be Lebesgue measure on the Borel subsets of R,
and let A, be Lebesgue measure on the Borel subsets of R?. Each rectangle in R?
of the form (a,b] X (c,d] is assigned the same value, namely (b —a)(d — ¢), by A,
and by A; x A;; thus Proposition 1.4.3 or Corollary 1.6.4 implies that A, = A; X A;.
With this we have a second construction of Lebesgue measure on R. O

Exercises

1. Use the results of Sect. 5.1 to give another solution to Exercise 1.4.1.

2. Let (X, <, 1) and (Y, 2, Vv) be o-finite measure spaces, and let E belong to &7 x
2. Show that if p-almost every section E; has measure zero under v, then v-
almost every section E” has measure zero under L.

3. Show that every (d — 1)-dimensional hyperplane in R? has zero d-dimensional
Lebesgue measure (a (d — 1)-dimensional hyperplane is a set that has the form
{x € R?: Y, a;x; = b} for some b in R and some nonzero element (ay,...,a,) of
RY).

4. Let (X,.2/) and (Y, %) be measurable spaces.

(a) Use Proposition 2.6.2 to show that for each y in ¥ the function x — (x,y)
is measurable with respect to &/ and &/ X Z and that for each x in X the
function y — (x,y) is measurable with respect to % and &7 x 2.

(b) Use part (a) to give another proof of Lemma 5.1.2. (See Proposition 2.6.1.)

5. Let . be the o-algebra of Lebesgue measurable subsets of R, and let .#, be the
o-algebra of Lebesgue measurable subsets of R?. Show that .#5 # .#\ x .
(Hint: Which subsets of R can arise as sections of sets in .#>?)

6. Let (X, /) and (Y, %) be measurable spaces, and let K be a kernel from (X,<7)
to (Y, %) such that K(x,Y) is finite for each x in X (see Exercise 2.4.7).

(a) Show that the formula (x,E) — K(x,Ey) defines a kernel from (X,.«) to
(X XY, o X B).
(b) Show that if u is a measure on (X, <), then

Er / K(x, Ex) pt(dx)

defines a measure on & X Z.
(c) How can the existence of the product of a pair of finite measures be deduced
from parts (a) and (b) of this exercise?
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7. Let (X,.7) and (Y, %) be measurable spaces. Show that if C € &7 x 2, then the
collection of sections {Cy : x € X} has at most the cardinality of the continuum.
(Hint: See Exercise 1.1.7. Show that if

Ceo({A,xB,:n=1,2,...})

and if x; and x; belong to exactly the same A,’s, then Cy, = Cy,. Next use the
function x — {yxa,(x)} to map X into {0,1}", and note that {0,1}" has the
cardinality of the continuum (see A.8).)

8. Show that if the cardinality of X is larger than that of the continuum and if &7 is
a o-algebra on X, then the diagonal in X x X (that is, the set {(x1,x;) € X x X :
x1 =x2}) does not belong to &7 x <. (Hint: Use Exercise 7.)

5.2 Fubini’s Theorem

The following two theorems enable one to evaluate integrals with respect to product
measures by evaluating iterated integrals.

Proposition 5.2.1 (Tonelli’s Theorem). Ler (X, o7, 1) and (Y,%,V) be G-finite
measure spaces, and let f: X X Y — [0, 40| be o7 x FB-measurable. Then

(a) the function x — [, fydVv is o -measurable and the function y — [y f¥du is
AB-measurable, and

(b) f satisfies

V) = /(/fxdv> /Yl('/xfydu) vidy). (1)

Note that the functions f; and f~ are nonnegative and measurable (Lemma 5.1.2);
thus the expression [, fydVv is defined for each x in X and the expression [y f7du
is defined for each y in Y. Note also that (1) can be reformulated as

[t = [ ([ esvian) w)

- [ ([routan ) vian,

Proof. First suppose that E belongs to &/ x % and that f is the characteristic
function of E. Then the sections f, and f¥ are the characteristic functions of the
sections Ex and E”, and so the relations [ fydv = v(E;) and [ f*du = u(E”) hold
for each x and y. Thus Proposition 5.1.3 and Theorem 5.1.4 imply that conclusions
(a) and (b) hold if f is a characteristic function. The additivity and homogeneity of
the integral now imply that they hold for nonnegative simple .o/ X Z8-measurable
functions, and Proposition 2.1.5, Proposition 2.1.8, and Theorem 2.4.1 imply that
they hold for arbitrary nonnegative .of' x Z-measurable functions. O
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Note that (1) is applicable to each nonnegative 7 x %8-measurable function,
integrable or not; thus one can often determine whether an ./ x 9-measurable
function f is integrable by using Proposition 5.2.1 to calculate [ |f|d(u x v).

Theorem 5.2.2 (Fubini’s Theorem). Ler (X, 1) and (Y,%B,v) be o-finite
measure spaces, and let f: X XY — [—oco, +oo| be o X PB-measurable and |1 X V-
integrable. Then

(a) for p-almost every x in X the section f is v-integrable and for v-almost every
yinY the section [ is |-integrable,
(b) the functions Iy and Jy defined by

Jy fxdv if fx is v-integrable,
Iy(x) = )
0 otherwise

and

vfrdu if f7is p-integrable,
#M—{k

0 otherwise

belong to L' (X, ,u,R) and L (Y, %, andv,R), respectively, and
(¢) the relation

fd(uxv):/lfdu:/dev
XxY b Y

holds.

Note that part (c) of this theorem is just a precise way of rephrasing equation (1)
in the case where f is integrable but not necessarily nonnegative.

Proof. Let fT and f~ be the positive and negative parts of f. Lemma 5.1.2 implies
that the sections fy, (f7)x, and (f7); are %-measurable, and Proposition 5.2.1
implies that the functions x+— [(f),dv andx+> [(f ™), dV are &7-measurable and
u-integrable and hence that they are finite -almost everywhere (Corollary 2.3.14).
Thus f; is v-integrable for almost every x. Let N be the set of those x for which
J(fT)xdv =eoor [(f)rdv = +oeo. Then N belongs to o7, and I7(x) is equal to 0
if x € N andis equal to [(fT).dv — [(f)cdVv otherwise; consequently /s belongs
to ' (X, ,u,R). Propositions 5.2.1 and 2.3.9 now imply that

[rawxvy= [ rrawxv)- [ 1 d@xv)

~[(Juronav)wa [ ([t mav) uan
= /Ifdu.

Similar arguments apply to the functions f* and J¢, and so the proof is complete.
O
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Of course we can deal with a complex-valued function on X x Y by separating it
into its real and imaginary parts.

We briefly sketch the theory of products of a finite number of measure spaces.
Let (X1,9,11), - - ., (Xu, %, Uy) be o-finite measure spaces. Then

AR YA

is defined to be the o-algebra on X; x --- X X,, generated by the sets of the form
Apx--- XA, where A; € o fori=1, ..., n. Itis not hard to check thatif 1 <k <n
and if we make the usual identification of (X} X -+ X Xi) X (Xjuq X -+ X X;,) with
Xj X -+ x X, then

(MX"'X%)X(M{JAX“'X%):'Q{lx"'x%-

Thus we can use Theorem 5.1.4 (applied n — 1 times) to construct a measure
Uy X -+ X U, on ] X --- X @, that satisfies

(1 X - X ) (A X X Ap) = Wi(Ar) - i (Ag)

whenever A; € & for i = 1, ..., n. Corollary 1.6.4 implies that the measure
Uy X --- X U, is unique. Integrals with respect to y; x --- X U, can be evaluated
by repeated applications of Proposition 5.2.1 or Theorem 5.2.2.

Exercises

1. Let A be Lebesgue measure on (R,#(R)), let u be counting measure on
(R, 2(R)), and let f: R> — R be the characteristic function of the line
{(x,y) € R? : y = x}. Show that

[ [ reyuanaan # [ [ £y o ua.
2. Suppose that f: R? — R is defined by

1 ifx>0andx<y<x+1,
flry)=4q -1 ifx>0andx+1<y<x+2,

0 otherwise.

Show that [[ f(x,y)A(dy)A(dx) # [[ f(x,y)A(dx)A(dy). Why does this not
contradict Theorem 5.2.27
3. (a) Let u be ameasure on (X,.o7). Show that if u is o-finite, then there are finite
measures [, Uy, ... on (X,./) such that u =Y, .
(b) Show by example that the converse of part (a) does not hold.
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(c) Let (X, 7, 1) and (Y, 2, Vv) be measure spaces, and let f: X x Y — [0, +o0]
be .o/ x Z-measurable. Show that if u and v are sums of series of finite
measures, then the functions x — [ f(x,y) v(dy) and y — [ f(x,y) u(dx) are
measurable, and

.//f(xvy) v(dy) p(dx) = //f(w)u(dx) v(dy).

4. Let (X,«7) and (Y, %) be measurable spaces, let y; and i, be finite measures
on (X, %), and let v| and v; be finite measures on (Y, .%). Show that if u, < g
and v, < vy, then Uy X vo < U X vi. How are the various Radon—Nikodym
derivatives related? (Hint: Do both parts at once, showing that (i, X v, can be
computed by integrating an appropriate function with respect to f; X vy.)

5. Let (X,), (Y,%), K, and u be as in Exercise 5.1.6, and let v be the measure
on (X x Y, x #) defined in part (b) of that exercise. Show thatif f: X xY —
[0, +e0] is &7 x ZB-measurable, then
(@ x— [ f(x,y)K(x,dy) is &/ -measurable, and
() [ Fav = ] £(x,)K(x,dy) p(d).

6. Let (X,/,1) and (Y, 4, V) be o-finite measure spaces, let (.7 x %), xv be the
completion of &/ X % under y X v, and let & X v be the completion of @ X v.

(a) Suppose that f: X XY — [0,4-e0] is (& x B), xv-measurable. Show that f,
is #y-measurable for p-almost every x in X and that fY is .27,-measurable
for v-almost every y in Y. Show also that if [ f(x,y)V(dy) is defined to be
0 whenever f; is not %\, -measurable and [ f(x,y)I(dx) is defined to be 0
whenever f7 is not /,-measurable, then

[ ra@sv) = [ [ xnvanman = [ [ e aaviay).

(Hint: See Proposition 2.2.5.)
(b) State and prove an analogous modification of Theorem 5.2.2.

5.3 Applications

We begin by noting a couple of easy-to-derive consequences of the theory of product
measures.

Example 5.3.1. Let (X,</,u) be a o-finite measure space, let A be Lebesgue
measure on (R, %(R)), and let f: X — [0,4c0] be o/-measurable. Let E be
defined by

E={(x,y) eXxR:0<y< f(x)};
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in other words, E is the “region under the graph of f.” Then E belongs to &7 x (R)
(check this), and so its measure under X A can be computed using Theorem 5.1.4.

On the one hand,
I‘LX‘L /‘L a'() /f('()‘u(“‘x)

while on the other,

(X 2)(E) = [ wE)A@) = [ u({reX: 100> Ad).

Thus we have the often useful relation
| rn@o = [ ulirex: s >yhar o

Example 5.3.2. Next we use Fubini’s theorem to derive a familiar result about
double series. Let Y, , an,n be a double series, and let (i be counting measure on
N (more precisely, on the o-algebra of all subsets of N). The series Y, , dm is
absolutely convergent if and only if the function (m,n) — ap » is i X /,L-integrable.
Thus Fubini’s theorem implies that if Y, , @, is absolutely convergent, then
Y X Amn = Yoo oo @mp; in other words, the order of summation can be
reversed for absolutely convergent series. See also Exercise 3. a

Let us consider one version of integration by parts. Another version will be
discussed in Sect. 6.3.

Proposition 5.3.3. Let F, G: R — R be bounded nondecreasing right-continuous
functions that vanish' at —es, let Ur and Ug be the measures they induce on %B(R),
and let a and b be real numbers such that a < b. Then
"~ F(x)+F(x— G(x)+ G(x—
PR R e R M
[a.b] 2 [a,b] 2

=F(b)G(b) — F(a—)G(a—).

Proof. Let S be the square [a,b] X [a,b], and let T} and T, be the triangular
regions consisting of those points (x,y) in S for which x > y and for which x < y,
respectively. We compute the measure of S under Ur X U in two ways. On the
one hand,

(ur > uG)(S) = pr ([a, b)) uG([a, b)) = (F(b) — F(a—))(G(b) = G(a—)).  (2)

'In other words, lim, , . F(x) = lim,, o G(x) =0.
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On the other hand, the relation S = 77 UT; and Theorem 5.1.4 imply that
(<)) = [ polfaxur@)+ | pr(la)po(@). )
a, a,

If we replace the “dummy variable” y in this equation with x and express t¢([a,x])
and Ur([a,x)) in terms of G and F, then the right-hand side of (3) becomes

(G(x) = Gla=))p(dx) + [ (Flx=) = F(a=) Ho(dx).
la,b] [a,b]

Equating this to the expression on the right side of (2) and using a little algebra gives
/[ , GLmr(d) + /[ , P H6(d) = F()G(2) — F(a)Gla-).
a, a,
The functions F' and G can be interchanged in this identity, yielding

Gl p()+ [ F(3) o) = F(B)G(B) ~ Fla-)Gla-).
[a,b] Jla,b)

These two equations together imply Eq. (1). a

See Exercises 4 and 5 for more information about Eq. (1).
Our last application of Fubini’s theorem is to the convolution of functions in
LY R, B(R),1).

Proposition 5.3.4. Let f and g belong to L' (R, B(R), ). Then

(a) for almost every x the function t — f(x —1t)g(t) belongs to ' (R, B(R),1),
and
(b) the function f * g defined by

Jfx—t)g(t)dr ift > f(x—1t)g(t) is Lebesgue integrable,

0 otherwise

f*g(X)—{

belongs to £ (R, B(R), A and satisfies || f+ g 1 < || fI|1]lgll-

Proof. We begin by checking that the function (x,7) — f(x—17)g(z) is measurable
with respect to Z(IR?), and hence (see Sect.5.1) with respect to Z(R) x Z(R).
The function (x,t) — f(x —t) is the composition of the continuous, and hence
Borel measurable, function (x,7) — x —¢ with the Borel measurable function f;
thus it is Borel measurable (Proposition 2.6.1). A similar argument shows that
(x,1) — g(t) is Borel measurable. Consequently the function (x,#) — f(x—1)g(z) is
Borel measurable.
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Thus we can use Proposition 5.2.1 and the translation invariance of Lebesgue
measure (see the remarks at the end of Sect. 2.6) to justify the calculation

/|f — 1)) d(A x 1) (x,1) //|f — )g()| A(dx) A (dr)
:/|\f||1|g(f)|/1(df):||f|\1||8||1- 4)

It follows that (x,#) — f(x—1)g(¢) belongs to
LY R2, B(R) x BR),A x L),

and so Fubini’s theorem implies that # — f(x—7)g(¢) is integrable for almost every x.
Since |f*g(x)| < [|f(x—1)g(t)| A (dt) holds for each x in R, Fubini’s theorem and
calculation (4) also imply that f * g belongs to .Z! (R, 2(R), 1) and that || f * g||1 <
£l O

The convolution of the functions f and g in .Z!(R,%(R),A) is the function
f * g defined in part (b) of Proposition 5.3.4. Note that if fi, f>, g1, and g, belong
to ' (R,B(R),A) and if f; = f> and g; = g» hold A-almost everywhere, then
(f1*21)(x) = (f2 * g2)(x) holds at each x in R. Thus convolution, which we have
defined as an operator that assigns a function in 2! (R, %(R), 1) to each pair of
functions in ' (R, %(R), ), can be (and usually is) considered as an operator that
assigns an element of L' (R, %(R), 1) to each pair of elements of L' (R, Z(R),1).

Convolution turns out to be a fundamental operation in harmonic analysis.
Although we do not have space to develop its properties in detail, a few are presented
in the exercises below. See Chap. 10 for convolutions in probability theory, and see
Sect. 9.4 for convolutions in a much more general setting.

Exercises

1. Let u be a o-finite measure on (X,<”), and let f,g: X — [0,+oc] be «7-
measurable functions such that

p({x: f(x) > 1)) <p({x:glx) >1})

holds for each positive 7. Show that [ fdu < [gdu.
2. Let u be a o-finite measure on (X, /), let f: X — [0, +ec] be 7-measurable,
and let p satisfy 1 < p < 4-co. Show that

[rrau= [ pr e g0 >
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3. Let %, ,amn be a double series whose terms are nonnegative. Show that
Zm Zn Amn = Zn Zm Am,n
(a) by applying Proposition 5.2.1, and
(b) by checking directly that 3, 3, @, and Y, 3, am , are both equal to

sup { 2 A,y - F is a finite subset of N x N} .
(

m,n)eF

(Note that we did not assume that the series involved are convergent.)
4. Show that if the functions F and G in Proposition 5.3.3 have no points of
discontinuity in common, then Eq. (1) can be replaced with the equation

| F@uo+ [ G600 ue(d) = F(B)G() - Fla-)Gla-).
[a,b] la,b]

5. Show by example that formula (1) of Proposition 5.3.3 cannot in general be
replaced with the formula in Exercise 4.

6. Show that if f and g belong to .Z' (R, Z(R),A), then f * g = g f. (Hint: See
the remarks at the end of Sect.2.6.)

7. Show that if f and g belong to .Z!(R,%(R),A) and if g is bounded, then f * g
is continuous. (Hint: See Exercise 3.4.5.)

8. Suppose that A is a Borel subset of R that satisfies 0 < A (A) < +oo.

(a) Show that the function x — A(A N (x+A)) is continuous and is nonzero
throughout some open interval about 0 (of course x + A is the set {x+a:
a € A}). (Hint: Consider y_ * x4, where —A = {—a : a € A}, and use
Exercise 7.)

(b) Use part (a) to give another proof of Proposition 1.4.10.

Notes

The theory of products of a finite number of o-finite measure spaces, as given in this
chapter, can be found in almost every book on measure and integration. The theory
of products of an infinite number of measure spaces of total mass 1, as presented in
Sect. 10.6, is needed for the study of probability and can be found in some books on
measure theory and in most books on measure-theoretic probability.

The proof of Proposition 1.4.10 indicated in Exercise 5.3.8 was shown to me by
Charles Rockland and (independently) by Lee Rubel.



Chapter 6
Differentiation

In this chapter we look at two aspects of the relationship between differentiation
and integration. First, in Sect. 6.1, we look at changes of variables in d-dimensional
integrals. Such changes of variables occur, for example, when one evaluates an
integral over a region in R? by converting to polar coordinates. Then, in Sects. 6.2
and 6.3, we look at some deeper aspects of differentiation theory, including the
almost everywhere differentiability of monotone functions and of indefinite inte-
grals and the relationship between Radon—Nikodym derivatives and differentiation
theory. The Vitali covering theorem is an important tool for this. The discussion
of differentiation theory will be resumed when we discuss the Henstock—Kurzweil
integral in Appendix H.

6.1 Change of Variable in R?

In this section we deal with changes of variable in R and with their relation to
Lebesgue measure. The main result is Theorem 6.1.7. Let us begin by recalling
some definitions.

Let M, be the set of all d by d matrices with real entries, and let D be a real-valued
function on M,;. We will sometimes find it convenient to denote the columns of a d
by d matrix A by Ay, Ay, ..., Ay and to write D(A},As,...,Ay) in place of D(A).
The function D is multilinear if for each i and each choice of A; (for j # i) the map
Ai— D(Ay,...,Ay) is linear, is alternating if D(A) = 0 holds whenever two of the
columns of A are equal, and is a deferminant if it is multilinear, is alternating, and
satisfies D(I) = 1 (here [ is, of course, the d by d identity matrix).

We need to recall a few basic facts about determinants.

Lemma 6.1.1. For each positive integer d there is a unique determinant on M.

We follow the standard usage and use det(A) to denote the determinant of a
matrix A.

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 155
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8_6,
© Springer Science+Business Media, LLC 2013
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Lemma 6.1.2. Letd be a positive integer, and let M; be the set of all d by d matrices
with real entries. Then

(a) det(AB) = det(A)det(B) holds for all A, B in My,
(b) det(A) is nonzero if and only if A is invertible,

(c) det(A) is a polynomial in the components of A, and
(d) det(A") = det(A), where A" is the transpose of A.

Proofs of Lemmas 6.1.1 and 6.1.2 can be found in Halmos [53] and Hoffman and
Kunze [61].

Recall that if 7: R? — R? is linear, if A is the matrix of 7 with respect to
some ordered basis of R?, and if B is the matrix of T with respect to some
possibly different ordered basis of R?, then there is an invertible matrix U such
that A = UBU~!. It follows that det(A) = det(U)det(B)det(U~") = det(B). Thus
det(T), the determinant of the linear operator 7', can be defined to be the determinant
of a matrix representing 7'; it does not matter which ordered basis is used to compute
the matrix.

Let us prove the following special case of Theorem 6.1.7.

Proposition 6.1.3. Let T: R? — R? be an invertible linear map. Then
A(T(B)) = |det(T)|A(B)
holds for each Borel subset B of R%.

Proof. The maps T and 7! are continuous (check this) and hence measurable'
with respect to Z(R?) and Z(R?); thus T(B) is a Borel set if and only if B is a
Borel set.

Since T is invertible, there exist linear maps Ti, 7>, ..., T, such that T =
TyoT,o---oT, and such that each T; operates on a vector x in one of the following
ways:

(a) one component of x is multiplied by a nonzero number, and the other compo-
nents are left unchanged;

(b) two components of x are interchanged, and the other components are left
unchanged;

(c) for some i and j the component x; is replaced with x; + x;, while the other
components of x are left unchanged

(see Exercise 1). In view of the relation det(7T) = det(7})det(73)...det(T,), it
suffices to show that

A(Ti(B)) = | det(Ty)[|A(B) )
holds for each k and each Borel set B.

!Since 7-!(U) and T(U) are open and hence Borel whenever U is a open subset of RY, the
measurability of 7 and 7~ follows from Proposition 2.6.2.
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First suppose that 7; arises through case (a) or case (b) above. Then it is easy
to check that (1) holds if B is a cube with edges parallel to the coordinate axes
and hence if B is an open set (use Lemma 1.4.2) or an arbitrary Borel set (use the
regularity of 1).

Next suppose that 7; arises through case (c). Then there exist indices i and j
such that if x = (x1,...,x4), then the ith component of Tj(x) is x; 4+ x;, while the
other components of T;(x) agree with the corresponding components of x. Let us
view R? as the product of R (corresponding to the ith coordinate in R¢) with RY~!
(corresponding to the remaining coordinates). Let B be a Borel subset of R?. It is
easy to check that for each u in R?~! the sections at u of B and of T; (B) are translates
of one another and hence have the same Lebesgue measure. Thus it follows from
the theory of product measures (in particular, from Theorem 5.1.4, an extension of
Example 5.1.5 to R¢, and the remarks at the end of Sect. 5.2) that A (B) = A (Tx(B)).
Since det(7;) = 1 holds whenever T arises through case (c), the proof is complete.

O

We will need the following standard facts about derivatives of vector-valued
functions; proofs can be found in a number of advanced calculus or basic analysis
texts,? and are sketched in Exercises 2, 3, and 4.

Let X and Y be Banach spaces, let U be an open subset of X, and let xy belong
to U. A function F: U — Y is differentiable at x if there is a continuous linear map
T: X — Y such that

o IFG) = Flxo) = Tx—x0)]
on =l

=0. 2)

It is easy to check that given xy and F, there is at most one such map T'; it is called

the derivative of F at xo and is denoted by F’(xp). It is also easy to check that if

F is differentiable at x, then F is continuous at xy. Furthermore, if 7: X — Y is

continuous and linear, then it is differentiable, with derivative T, at each point in X.
The chain rule now takes the following form.

Proposition 6.1.4. Let X, Y, and Z be Banach spaces, and let U and V be open
subsets of X and Y. If xo € U, if G: U — Y is differentiable at xy and satisfies
GWU)CV, and if F: V — Z is differentiable at G(xy), then F o G is differentiable
at xg, and

(FoG) (x0) = F'(G(x0)) 0 G'(x0).

A method for proving Proposition 6.1.4 is suggested in Exercise 5.
Let us now restrict our attention to the special case of the space R¢. It will prove
convenient to endow R? with the norm || - || defined by

[1llee = max(fxi ], [x2l,. ., [xal)

2See Bartle [4], Hoffman [60], Loomis and Sternberg [85], Rudin [104], or Thomson, Bruckner,
and Bruckner [117]
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(here x1, xp, ..., x4 are the components of the vector x). It is easy to check that the
open sets and the continuous functions determined by || - || are the same as those
determined by the usual norm || - ||, (see Exercise 6). If R? is given the norm || - ||c,
if 7: RY — R? is linear, and if (a;;) is the matrix of T with respect to the usual
ordered basis of R?, then T is continuous and its norm (see Sect. 3.5) is given by

1T = maxz |aij| 3)

(see Exercise 7).

Now let U be an open subset of R4, let F be a function from U to RY, and let
f1, ..., fa be the components of F; thus F(x) = (fi(x),..., fs(x)) holds at each x in
U. Then F is said to be a C! function (or to be of class C') if the partial derivatives
dfi/dxj,i,j=1, ..., d exist and are continuous at each point in U.

We will need the following facts.

Lemma 6.1.5. Let U be an open subset of R, and let F: U — R¥ be a C' function.
Then F is differentiable at each point in U, and the matrix of F'(x) (with respect to
the usual ordered basis of R?) is (9 fi(x)/dx;).

Lemma 6.1.6. Let U be an open subset of R, and let F : U — R? be differentiable
at each point in U. If xy and x1, together with all the points on the line segment
connecting them, belong to U and if |F'(x)|| < C holds at each point x on this line
segment, then

[F(x1) = F(x0) [« < Cllxr = xo]| -

See Exercises 8 and 9 for sketches of proofs of these lemmas.

The Jacobian Jr of the C' function F is defined by Jr(x) = det(F’(x)). In view
of Lemmas 6.1.2 and 6.1.5, the Jacobian of such a function is continuous and hence
Borel measurable.

We turn to the main result of this section.

Theorem 6.1.7. Let U and V be open subsets of RY, and let T be a bijection of U
onto V such that T and T~" are both of class C'. Then each Borel subset B of U
satisfies

AT®) = [ V(|4 (), @
and each Borel measurable function f: V — R satisfies
| ran= [ 7 @aa, )

in the sense that if either of the integrals in (5) exists, then both exist and (5) holds.
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Note that, in view of the identity 7~!(T(x)) = x, the chain rule implies that
(T~1Y(T(x))oT'(x) = I holds at each x in U. Thus T"(x) is invertible, and so J7(x)
is nonzero, for each such x.

Note also that 7 and 7! are Borel measurable (since they are continuous); thus
a subset B of U is a Borel set if and only if 7'(B) is Borel.

We need the following two lemmas for the proof of Theorem 6.1.7.

Lemma 6.1.8. Let U be an open subset of R?, let G: U — R? be a differentiable
function, let € be a positive number, and let C be a cube that is a Borel set, is
included in U, has edges parallel to the coordinate axes, and is such that

IG'(x) -1 <
holds at each x in C. Then the image G(C) of C under G satisfies
A*(G(C)) < (1+&)?A(C).
Proof. Let xy be the center of C and let b be the length of the edges of C. Then

each x in C satisfies ||x — xg|| < b/2, and so Lemma 6.1.6, applied to the function
x +— G(x) — x, implies that each x in C satisfies

[(G(x) —x) — (G(x0) —x0) |- < &]|x — X[
and hence satisfies

1G(x) = G(xo)ll < (14 ) x =0l <

(14¢€)b.

N =

Thus G(C) is a subset of the closed cube (with edges parallel to the coordinate axes)
whose center is at G(xp) and whose edges are of length (1 + €)b. Since this cube
has measure (1 +&)?b¢, while C has measure b¢, the lemma follows. ad

Lemma 6.1.9. Let U, V, and T be as in the statement of Theorem 6.1.7. Suppose
that a is a positive number and that B is a Borel subset of U.

(@) If |Jr(x)| < a holds at each x in B, then A(T (B)) < aA(B).
(b) If |Jr(x)| > a holds at each x in B, then A(T (B)) > aA(B).

Proof. First suppose that b is a positive number and that W is an open subset of U
such that

(a) Wis compact and included in U, and
(b) |Jr(x)| < bholds at each xin W.

Let € be a positive number. Since W is compact and T is of class C!, the functions
that take x to the components® of 7’(x)—that is, to the partial derivatives of the

3Here we are dealing with the components of the matrices of these operators with respect to the
usual ordered basis of RY.
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components of T—are uniformly continuous on W (part (a) of Theorem C.12). A
similar argument shows that the components of (7’(x))~! are bounded on W. Thus
(see Eq. (3)) we can choose first a positive number M such that

(T (x) ' <M (6)

holds at each x in W and then a positive number & such that
1T =T (o) < ™
]

holds whenever x and xo belong to W and satisfy ||x — xg|| < 0.

According to Lemma 1.4.2 the set W is the union of a countable family {C;} of
disjoint half-open cubes with edges parallel to the coordinate axes. By subdividing
these cubes, if necessary, we can assume that each has edges of length at most 26.
Let C be one of these cubes, let x( be its center, and define G: U — R4 by

G=(T'(x0)) 'oT.
The chain rule implies that for each x in U we have
G'(x)—1=(T'(x0)) toT'(x)—1
= (T'(x0)) " o (T"(x) = T"(x0)),
and so (6), (7), and Exercise 3.5.1 imply that
I1G'(x) =11 < II(T"(x0)) |- 17" (x) = T" (xo) |
<m-E_¢
M
holds at each x in C. It now follows from Lemma 6.1.8 that A(G(C)) <
(14 €)4A(C). If we use Proposition 6.1.3 and the fact that T = T’(xy) o G, we find
A(T(C)) = | det(T" (x0))|A(G(C))
<b(1+€)?A(C).
Since C was an arbitrary one of the cubes C;, it follows that
MT(W)) =3 A(T(Ch))
l
<Y b(1+€)A(C) =b(1+¢€)A(W)
i

holds for each €, and hence that A (T (W)) < bA(W).

Now suppose that W is an arbitrary open subset of U such that |J7(x)| < b holds
at each x in W. We can choose an increasing sequence {W,} of open sets such that
W = U, W, and such that the closure of each W, is compact and included in U (the
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details are left to the reader). Then each W, satisfies A (T (W,)) < bA(W,), and so
we have

A(T(W)) = imA (T (W) < limbA(W,) = bA(W). @)

More generally, let B be a Borel subset of U such that |J7(x)| < a holds at each x
in B. Let b be a number such that a < b. If W is an open subset of U that includes B
and if W}, is defined by W, = {x € W : |Jr(x)| < b}, then B C W, and inequality (8)
implies that

A(T(B)) < A(T(W)) < bA(Wp) < BA(W),

Since b can be made arbitrarily close to a and since A is regular (Proposition 1.4.1),
part (a) of the lemma follows.

We will prove part (b) by applying part (a) to the function 7~ ': V — U. If
|7 (x)| > a holds at each x in B, then |J;—1 ()| < 1/aholds at each y in T'(B), and so
part (a) of the lemma implies that A(T~!(T(B))) < (1/a)A(T(B)) or, equivalently,

that aA (B) < A(T(B)). a
Proof of Theorem 6.1.7. First suppose that B is a Borel subset of U for which A(B)
is finite. For each positive integer n define sets B, x, k=1, 2, ..., by

k—1 k
Buy=qx€B: —— <|Jr(x)| < = ¢.
n n

It follows from Lemma 6.1.9 that

k—1 k
Tl(Bn,k) SA(T(Bug)) < ;l(Bn,k) )
and from the definition of B,,  that
k—1 k
SAB < [ )12 < A B (10)
n Bux n

We conclude from (9) and (10) that

@) - [ ria@)| < 2,0 - e - Lama

Bn,k

and, from this, since B = U B, x, that

AT ) - [l < 26

However, n is arbitrary and A (B) is finite, and so

AT(®B) = [ 1r(|A(dx)

Thus (4) is proved in the case where A (B) is finite.
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If B is an arbitrary Borel subset of U, then it is the union of an increasing
sequence { By} of Borel sets of finite measure, and taking limits over k in the relation

MT(BA) = [ 1] A(a)
yields
AT(®B) = [ 1r(|A(dx)

This completes the proof of (4).

We turn to the proof of (5). If f is the characteristic function of a Borel subset
Cof Vandif B=T"" (C), then (5) reduces to (4). The linearity of the integral and
the monotone convergence theorem now imply that (5) holds for all nonnegative
Borel functions. The case of an arbitrary Borel function f reduces to this through
the decomposition f = f+— f. 0

With more work it is possible to prove somewhat strengthened versions of
Theorem 6.1.7 (see, for example, Theorem 8.26 in Rudin [105]). The version given
here, however, seems adequate for most purposes.

Example 6.1.10. Let us apply Theorem 6.1.7 to polar coordinates in R?. Let R be
a positive number, let

U={(r0):0<r<Rand0< 0 < 2m},
let
V={(xy):x*+y? <R},

and let V be the set consisting of those points in V that do not lie on the nonnegative
x-axis. Define T: U — R? by T(r,0) = (rcos 0,rsin8). Then T, U, and V, satisfy
the hypotheses of Theorem 6.1.7. Furthermore, Jr(r,0) = r. Since V and V} differ
only by a Lebesgue null set, each integrable function f: V — R satisfies

/Vfdl—/Vofdl—/OM/ORf(rcose,rsinG)rdrdG.

This is, of course, the standard formula for the evaluation of integrals by means of
polar coordinates. a
Exercises

1. Show that if 7: R — R? is an invertible linear map, then 7' can be decomposed
as specified in the second paragraph of the proof of Proposition 6.1.3. (Hint: Let
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A be the matrix of T with respect to the usual basis of R4, and recall hows one can
use Gaussian elimination to find the inverse of A by performing row operations
on the d by 2d matrix (A|l), consisting of A followed by the d by d identity
matrix. How are linear maps satisfying conditions (a), (b), and (c) of the proof of
Proposition 6.1.3 related to row operations?)

2. Show that if F is differentiable at x;, then F”(x() is unique. (Hint: Check that if
S and T are both derivatives of F at xg, then

i 18Dl _
=[x —xol|
conclude that S =T.)

3. Show that if F is differentiable at xy, then F is continuous at x¢. (Hint:
Use Eq.(2), together with the continuity of x — F'(xp)(x), to verify that
limy sy, [[F(x) ~ F(x0) | = 0.)

4. Show that if 7: X — Y is a continuous linear map from one Banach space to
another, then T is differentiable, with derivative T, at each point in X. (Hint:
Simplify the expression T (x) — T (xp) — T (x — xp).)

5. Prove the chain rule, Proposition 6.1.4. (Hint: Let yo = G(xo) and define
remainders Ry, and Rg y, by

F(y) = F(y0) + F'(y0)(y = y0) + REyo (y — 0)

and
G(x) = G(x0) + G (x0) (x — x0) + RGxo (X — %0);

then compute F(G(x)) in terms of F(G(xo)), G'(x0), F'(G(x0)), RG x> RFy,. and
x — xg. Consider the behavior of the remainders as x approaches xg.)

6. Let || - ||2 and || - || be the norms on R? defined by ||x||» = (¥, x7)'/? and ||x||. =

max; |x;|.

(a) Show that each x in RY satisfies ||x||.. < ||x||2 < V@ [|x]|<o.

(b) Use part (a) to show that the open sets determined by || - ||, are the same as
those determined by || - |-

7. Verify Eq. (3). (Hint: Suppose that x € RY and y = T (x), and calculate an upper
bound for |y;| in terms of ||x||. and the elements of the matrix (a;;). Also note
how to construct a vector x that satisfies ||x[|« = 1 and [|T'(x)|[. = max;¥.;]a;;]
by letting x be an appropriate sequence of 1’s and —1°s.)

8. Prove Lemma 6.1.5. (Hint: First consider the derivatives (as linear operators from
R4 to R) of the components f; of F. Let x and xq belong to U, and define
points u;, for j =0, ..., d, by letting the first j components of u; agree with
the corresponding components of x and letting the remaining components of u;
agree with the corresponding components of x. If x is fixed and x is sufficiently
close to xg, then each u; belongs to U. Use the formula fi(x) — fi(xo) =
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2?:1 (fi(u;) — fi(uj—1)), together with the mean value theorem (Theorem C.14),

to show that there are points vy, ..., v4 such that*
d
fi(x) = filxo) = X (9fi(vj)/0xj) (xj — x0.5) (1)
j=1

and such that for each j the point v; lies on the line segment connecting u;_;
and u;. Deduce the differentiability of f; at xy and compute the matrix of f(xo).
Finally, turn to F.)

9. Prove Lemma 6.1.6. (Hint: Let fi, ..., f; be the components of F. It is enough
to show that | f;(x1) — fi(x0)| < Cl|x; — x0||- holds for each i. Use the chain rule
to compute the derivative of the function z — f;(xo+(x; —xo)), and then use the
mean value theorem (Theorem C.14) and Exercise 3.5.1 to obtain the required
bound for | f;(x1) — fi(x0)|.)

6.2 Differentiation of Measures

Let € be the family consisting of those nondegenerate closed cubes in R? whose
edges are parallel to the coordinate axes. In other words, let € be the collection of
all sets of the form

a1, b1] x [az,b2] X -+ X [ag, ba],

where [a1,b1], ..., [a4,b,] are closed subintervals of R that have a common nonzero
length. For each cube C in € let ¢(C) be the length of the edges of C.

Suppose that A is a subset of R?. A Vitali covering of A is a subfamily ¥ of ¢
such that for each x in A and each positive number 0 there is a cube C that belongs
to ¥, contains x, and satisfies ¢(C) < 6.

The following fact about Vitali coverings forms the basis for our treatment of
differentiation theory. The reader should note, however, that differentiation theory
can also be based on the “rising sun lemma” of F. Riesz; see, for example, Chapter I
of Riesz and Nagy [99].

Theorem 6.2.1 (Vitali Covering Theorem). Let A be an arbitrary nonempty
subset of RY, and let ¥ be a Vitali covering of A. Then there is a finite or infinite
sequence {C,} of disjoint sets that belong to V" and are such that U,C, contains
A-almost every point in A.

Proof. First consider the case where the set A is bounded. Choose a bounded open
subset U of R? that includes A, and let #; consist of those cubes in ¥ that are
included in U. It is clear that %j is a Vitali covering of A. Let

01 =sup{e(C):C € ¥}.

4The symbols x; and xg ; in (11) refer to the jth components of the vectors x and xo.
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Then §; satisfies 0 < §; < oo (recall that A is nonempty and U is bounded), and
we can choose a cube C that belongs to %) and satisfies e(C;) > 8; /2. We continue
this construction inductively, producing sequences {8, } and {C,} as follows. If A C
Ui_Ck, then the construction is complete. Otherwise there are points in A that lie
outside U}_ Cy, and so, since Uj_, Cy is closed and ¥ is a Vitali covering of A, there
are cubes in 7 that are disjoint from U}_, C;. Thus the quantity J,, defined by

Op+1 =sup{e(C): C € ¥ and CN(U[_,Cy) = 2}

satisfies 0 < 8,11 < +oo, and we can choose a cube C,y; in ¥ that satisfies
e(Cy1) > 6,41/2 and is disjoint from U}_, C¢. This completes the induction step in
the construction of the sequences {8,} and {C,}.

If this construction terminates in a finite number, say N, of steps, then A C
UN_,C, and {C,}Y_, is the required sequence. We turn to the case in which the
construction does not terminate.

Since the sets C, are disjoint and included in the bounded set U, the series
Y. A(C,,) must be convergent; thus lim, A (C,) = 0 and hence lim, 6, = 0. For each n
let D, be the cube in % with the same center as C, but with edges 5 times as long as
those of C,. Then, since A (D,,) = 594 (C,), the series 3, A(D,) is also convergent.
We will show that

A—U) Gy C Uy Da (H

holds for each positive integer N. This inclusion implies that

A (A= iG) S A (A= UL G) < 2 A(Dn);
n=N+1

since the convergence of ¥ | A(D,) implies that limy ¥, v, A(D,) = 0, it
follows that A*(A —U?_,C,) = 0 and hence that {C, } is the required sequence.

We turn to the proof of (1). Suppose that x belongs to A — uﬁ;’:lc,,. Since uﬁ;’:lc,,
is closed and % is a Vitali covering of A, there are cubes in ¥ that contain x and are
disjoint from Ulnv 1Cn. Let C be such a cube. Then C meets U§:1Cn for some k, since
otherwise we would have e(C) < § for all k, contradicting lim, §, = 0. Let k¢ be
the smallest of those positive integers k for which C meets U _,C,,. Then e(C) < &,
and &, /2 < e(Cy,), and it follows that ¢(C) < 2¢(Cy,). The definition of the sets
D, the inequality ¢(C) < 2¢(Cy, ), and the fact that C N Cy, # @ together imply that
C C Dy,. Since C was chosen to be disjoint from uﬁlvzlc,,, it follows that kg > N+ 1,
and so

x€CCD,C |J D
n=N+1

Relation (1) follows, since x was an arbitrary element of A — uﬁ;’:lc,,. This completes
the proof of the theorem in the case where A is bounded.

Now suppose that the set A is unbounded. Let Uj, U,, ... be disjoint bounded
open subsets of RY such that A(R? — (U, Uy)) = 0; for example, the open cubes



166 6 Differentiation

whose edges have length 1 and whose corners have integer coordinates will do. For
each k such that ANUy # @ we can use the preceding argument to choose a sequence
{Cx j}; of disjoint cubes that belong to #" and are such that U;Cy ; is included in Uy
and contains almost every point in A N Uy. Merging the resulting sequences into one
sequence completes the proof. O

Let u be a finite Borel measure on RY. Then (D) (x), the upper derivate of i at
x, is defined by

(Eu)(x)—lsiﬁ)lsup{%:CG%,xéC, ande(C)<£}, (2)

and (Du)(x), the lower derivate of U at x, is defined by

(Qu)(x)—leiﬂ)linf{% :Ce¥,xeC,and e(C) <£}. 3)

The upper derivate and the lower derivate of i are the [0, +oo]-valued functions Dyt
and Du whose values at x are given by (2) and (3). The measure U is differentiable
at x if (Du)(x) and (Du)(x) are finite and equal, and at each such x the derivative
(Du)(x) of 1 at x is defined by

(Du)(x) = (Dp)(x) = (Du)(x). )

The derivative of i is the function Du that is defined by (4) at each x at which u is
differentiable and is undefined elsewhere.

Lemma 6.2.2. Let U be a finite Borel measure on R?. Then Dy, Du, and Dy are
Borel measurable.

Proof. Let % be the collection of all open cubes in R? whose edges are parallel
to the coordinate axes, and for each U in % let e(U) be the length of the edges of
U. Note that for each cube C in € there is a decreasing sequence {U,} of cubes
in % for which C = N, U, and hence (Proposition 1.2.5) for which u(C)/A(C) =
lim,, 4 (U,) /A (Uy). Likewise for each cube U in % there is an increasing sequence
{C,} of cubes in € for which U = U,C, and hence for which u(U)/A(U) =
lim, 1t(Cy)/A(Cy). It follows that (D )(x) is given by

(Bu)(x)—lsiﬁ)lsup{% :Ue,xeU,ande(U) <£}.

For each positive € let us define a function s¢ : R? — [0, 0] whose value at x is the
supremum considered above:

sg(x)_sup{%:Ue%,er,ande(U)<8}.

Then for each a in R we have
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{xeRd:ss(x)>a}:U{U6%:e(U)<8and Zégg >a},

and so s, is Borel measurable. If {g,} is a sequence of numbers that decreases to
0, then Dy is the pointwise limit of the sequence of functions {s, } and so is Borel
measurable. The measurability of Du can be proved in a similar way.

The measurability of Du is a consequence of Proposition 2.1.3 and the measura-
bility of Dy and Dy 0

The following theorem is the main result of this section.

Theorem 6.2.3. Let i be a finite Borel measure on RY. Then u is differentiable at
A-almost every point in R, and the function defined by

o (Du)(x) if u is differentiable at x,
x
0 otherwise

is a Radon—Nikodym derivative of the absolutely continuous part of L.
We will need the following two lemmas for the proof of Theorem 6.2.3.

Lemma 6.2.4. Let | be a finite Borel measure on RY, let a be a positive real
number; and let A be a Borel subset of R? such that (Du)(x) > a holds at each
xinA. Then u(A) > al(A).

Proof. We can certainly assume that A is nonempty. Let U be an open set that
includes A, let € satisfy 0 < € < a, and let ¥ be the family consisting of those cubes
C in ¢ that are included in U and satisfy ((C) > (a —€)A(C). Since (Du)(x) > a
holds at each x in A, the family ¥ is a Vitali covering of A. Thus the Vitali covering
theorem (Theorem 6.2.1) provides a sequence {C, } of disjoint cubes that belong to
¥ and satisfy A (A —U,C,) = 0. If we use the fact that the sets C, are disjoint and
included in U, the fact that each G, satisfies 1 (C,) > (a — €)A(Cy), and finally the
fact that A (A — U,C,) = 0, we find

1) > Y u(C) > Y(a-e)A(C)
n n
—(a—e&)A (Uc,,) > (a—e)A(A).
n
Since u is regular (Proposition 1.5.6) and € can be made arbitrarily close to 0, the

inequality tt(A) > aA(A) follows. O

Lemma 6.2.5. Let U be a finite Borel measure on RY that is absolutely continuous
with respect to Lebesgue measure, let a be a positive real number, and let A be a
Borel subset of R? such that (Du)(x) < a holds at each x in A. Then u(A) < aA(A).

Proof. We can again assume that A is not empty. Let U be an open set that includes
A, and let € be a positive number. Arguments similar to those used in the proof of the
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preceding lemma show that there is a sequence {C,} of disjoint closed cubes that
are included in U, satisfy u(C,) < (a+ €)A(C,), and are such that U,C, contains

A-almost every point in A. Since p is absolutely continuous with respect to A, the
union of the sets C, also contains p-almost every point in A. It follows that

(@+e)AW) 2 (a+€) TAG) = T(G) = u(UhCo) = H(A).

Since A is regular (Proposition 1.4.1) and ¢ is arbitrary, it follows that p(A) <
ar(A). O

Proof of Theorem 6.2.3. We begin with the case where u is singular with respect
to Lebesgue measure. Let N be a Borel set such that A(N) =0 and p(N¢) = 0. For
each n define a subset B, of N¢ by

B,={x€N: (Du)(x) > 1/n}.
Then Lemma 6.2.4 (with a equal to 1/n) implies that
A(Bn) < njt(By) <nu(N)=0

holds for each n. Thus {x € RY : (Du)(x) > 0}, since it is a subset of N U (U,B,,),
has Lebesgue measure 0; since also 0 < Du < 5/,1, it follows that u is differentiable,
with derivative 0, A-almost everywhere.

Next let us consider the case where u is absolutely continuous with respect to
Lebesgue measure. We start by proving that in this case Dyt and Dy are equal almost
everywhere. For positive rational numbers p and ¢ such that p < ¢, define A(p,q) by

A(p.q) = {x€R?: (Du)(x) < p < q < (Du)(x)}-

Lemmas 6.2.4 and 6.2.5 imply that

gA(A(p,q)) < u(A(p,q)) < pA(A(p,q));

it follows from this first that A(A(p,q)) is finite and then, since p < ¢, that

A(A(p,q)) = 0. Since (Du)(x) < (Du)(x) holds for every x, while

{xeR: (D)(x) < (Dp)(x)} =JA(p.9),
pq

it follows that Dy and Dy are equal A-almost everywhere. (Note that we have not
yet shown that they are finite almost everywhere.)

We continue to assume that 4 < A. Let f be a Radon—Nikodym derivative of u
with respect to A. An easy modification of the argument in the preceding paragraph
shows that f < Du holds A-almost everywhere (use the fact that whenever a is a
positive number and A is a Borel set such that f(x) > a holds at each x in A, then
U(A) = [, fdA > aA(A)). A similar argument shows that f > Dy holds A-a .e.
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Since in addition f is finite almost everywhere, it follows that f, Du, and 5[.1 are
finite and equal almost everywhere and hence that u is differentiable, with derivative
f, almost everywhere.

Finally, let u be an arbitrary finite Borel measure on R?, let u = u, + s be
its Lebesgue decomposition, and let f be a Radon—Nikodym derivative of u, with
respect to A. Then

(Du)(x) = (Dpta) (x) + (Dits) (x) = f(x) +0 = f(x)

holds at almost every x, and the proof is complete. O
Let E be a Lebesgue measurable subset of R?. A point x in R? is a point of
density of E if for each positive € there is a positive & such that

A(ENC)
e <

holds whenever C is a cube that belongs to %, contains x, and satisfies ¢(C) < 8. Less
formally, x is a point of density of E if imA(ENC)/A(C) = 1, where the limit is
taken as C approaches x (through the collection of cubes in %’ that contain x). A point
x is a point of dispersion of E if it is a point of density of E. Equivalently, x is a
point of dispersion of E if im A (ENC)/A(C) = 0 holds as the cube C approaches x.

Corollary 6.2.6 (Lebesgue Density Theorem). Let E be a Lebesgue measurable
subset of RY. Then A-almost every point in E is a point of density of E, and A-almost
every point in E€ is a point of dispersion of E.

Proof. First suppose that A (E) < oo, and define a finite Borel measure u on R?
by u(A) = A(ANE). Choose a Borel subset Ey of E such that A(E — Ey) = 0 (see
Lemma 1.5.3). Since u < A and since xg, is a Radon—Nikodym derivative of pt with
respect to A, Theorem 6.2.3 implies that almost every x in E satisfies (Du)(x) =1
and so is a point of density of E.

If A(E) is infinite and if {E,, } is a sequence of Lebesgue measurable sets of finite
measure such that £ = U, E,,, then almost every point of E is a point of density of
some E, and so is a point of density of E. Finally, almost every point of E€ is a point
of density of E€ and so is a point of dispersion of E. O

Exercises

1. Show that the union of an arbitrary family of closed cubes with edges parallel
to the coordinate axes is Lebesgue measurable. (Hint: Use the Vitali covering
theorem.)

2. Let I be the line segment in R? that connects the points (0,0) and (1,1). Define a
finite Borel measure y on R? by letting 11(A) be the one-dimensional Lebesgue
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measure of A NI. (More precisely, let T be the map of the interval [0, \/5] onto
I given by T(r) = (t/v/2)(1,1), and define u by u(A) = A(T~'(A)).) Find Du
and Du.

3. Let f be a nonnegative function in .2 (R¢, Z(R%), A, R), and let u be the finite
Borel measure on RY given by p(A) = [, fdA.
(a) Show that (Du)(x) = f(x) holds at each x at which f is continuous.
(b) Show by example that the equation (D) (x) = f(x) need not hold at every x

in RY.

4. Show by example that the assumption that g < A cannot be omitted in

Lemma 6.2.5.

6.3 Differentiation of Functions

Let us apply the results of Sect.6.2 to the differentiation of functions of a real
variable. We begin with two lemmas.

Lemma 6.3.1. Let U be a finite Borel measure on R, and let F: R — R be defined
by F(x) = u((—oe,x]). If u is differentiable at xo, then F is differentiable at x, and
F(x0) = (D) (x0).

Proof. The differentiability of u at xo implies that t({xp}) = 0 and hence that F
is continuous at xo. Thus %fo(x(’) is equal to %[ﬁg[—i% if xg < x and to % if
x < xo. Now apply the definitions of (D) (xo) and F’(xp) (note that the half-open
interval (x,xg] causes no difficulty, since its measure is the limit of the measure of
[x+ %,xo] as n approaches infinity). O

Lemma 6.3.2. Let F: R — R be nondecreasing. Then

(a) the one-sided limits F (x—) and F (x+) exist at each x in R,

(b) the set of points at which F fails to be continuous is at most countably infinite,
and

(¢) the function G: R — R defined by G(x) = F(x+) is nondecreasing and right-
continuous, and agrees with F at each point at which F is continuous.

Proof. Since F is nondecreasing, the limits F(x—) and F(x+) exist and are given
by F(x—) =sup{F(¢) : t < x} and F(x+) = inf{F(¢) : t > x}. For each x we have
F(x—) <F(x) < F(x+), and so F is continuous at x if and only if F (x—) = F (x+).
Let D be the set of points at which F' is not continuous, and for each x in D choose
a rational number r, that satisfies F/(x—) < ry < F(x+). Then r, and r, are distinct
whenever x and y are distinct elements of D, and the countability of D follows from
the countability of Q.

Now suppose that G is defined by G(x) = F(x+). Then G satisfies the relation
G(x) = inf{F(¢) : ¢+ > x}, which implies that G is nondecreasing and right-
continuous. Since F(x) = F(x+) holds if F is continuous at x, the proof is complete.

O
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The following is one of the basic theorems of differentiation theory.

Theorem 6.3.3 (Lebesgue). Let F: R — R be nondecreasing. Then F is differen-
tiable A-almost everywhere.

Proof. First suppose that F is bounded, nondecreasing, and right-continuous, and
that it vanishes at —eo. Then there is a finite Borel measure u such that F(x) =
U ((—oe,x]) holds at each x in R (Proposition 1.3.10), and so Theorem 6.2.3 and
Lemma 6.3.1 imply that F is differentiable almost everywhere.

Now remove the requirement that F' be right-continuous, and define G: R —+ R
by G(x) = F(x+). Then G is right-continuous (Lemma 6.3.2) and so, by what
we have just proved, differentiable almost everywhere. Note that F and G are
continuous at the same points and they agree at each point at which they are
continuous; furthermore, if F(x9) = G(x), then Lf(x") lies between E)=6x0)

X—X0 X—X0
and w Hence if G is differentiable at xg, then F' is differentiable at x(, and

F'(xp) = G'(x0). The almost everywhere differentiability of F follows.

Finally, suppose that F is an arbitrary nondecreasing function. It is enough to
prove that F is differentiable almost everywhere on an arbitrary bounded open
interval (a,b). Since we can reduce this to the preceding case by considering the
function

0 ifx<a,
x— S F(x)—F(a) ifa<x<b,
F(b)—F(a) ifb<ux,

the proof is complete. a

Corollary 6.3.4. Let F: R — R be of finite variation. Then F is differentiable
A-almost everywhere.

Proof. Since each function of finite variation is the difference of two nondecreasing
functions (Proposition 4.4.2), this is an immediate consequence of Theorem 6.3.3.
O

Proposition 6.3.5 (Fubini). Let F,,: R - R, n =1, 2, ..., be nondecreasing
functions such that the series Y., F,(x) converges at each x in R. Define F: R — R
by F(x) =Y, F,(x). Then F' =3, F, holds A-almost everywhere.

Proof. First suppose that the functions F,, for n = 1, 2, ..., are bounded,
nondecreasing, and right-continuous, that they vanish at —eo, and that the function
F (defined by F (x) =3, F,(x)) is bounded. Let 1, n =1, 2, ..., be the finite Borel
measures corresponding to the functions F;,, and define a Borel measure (t on R by
1(A) =3, tn(A) (check that u is a measure). Since we are temporarily assuming
that F is bounded and since p((—oe,x]) = F(x) holds at each x, the measure u is
finite.



172 6 Differentiation

For each n form the Lebesgue decomposition U, = i, 4 + Un s Of U1, With respect
to Lebesgue measure,’ let f;, be a Radon—Nikodym derivative of 1, , with respect to
A, and let N, be a Borel set of Lebesgue measure zero on which f,, s is concentrated.
It is easy to check that X, i, s is concentrated on U,N, and that Y, 11, ,(A) =
J4 X fadA holds for each A in Z(R). Thus the Lebesgue decomposition of p is
given by 4 = (X, Una) + (X tns), and Y, f, is a Radon-Nikodym derivative of
Y. HUna With respect to 4. It now follows from Theorem 6.2.3 and Lemma 6.3.1 that

ZF 2 D,Un an = ) = F/(X)

holds at almost every x in R.

Arguments similar to those given in the second and third paragraphs of the proof
of Theorem 6.3.3 allow one to reduce the proposition to the case just considered;
the details are left to the reader. ad

Theorem 6.3.6 (Lebesgue). Suppose that f belongsto £ (R, .#+,A,R) and that
F: R — R is defined by F(x) = [*_ f(t)dt. Then F is differentiable, and its
derivative is given by F'(x) = f(x), at A-almost every x in R.

Proof. First suppose that f is nonnegative, and define a finite Borel measure ¢ on
R by u(A) = [, fdA. Let fy be a Borel measurable function that agrees with f
almost everywhere (see Proposition 2.2.5). Then Theorem 6.2.3 and Lemma 6.3.1
imply that

F'(x) = (Dp)(x) = fo(x) = f(x)

holds at almost every x, and so the proof is complete in the case where f is
nonnegative.
An arbitrary f in Z!(R,.#,+,,R) can be dealt with through the decomposition
f=r-r. O
We will often need to know that almost everywhere derivatives of reasonable
functions are measurable. This is given by the following lemma.

Lemma 6.3.7. Let F: [a,b] = R be a Lebesgue measurable function that is
differentiable almost everywhere. Suppose that g: |a,b] — R satisfies g(x) = F'(x)
almost everywhere. Then g is Lebesgue measurable, as is F' (whose domain is the
set where F is differentiable).

Proof. Extend F to the interval [a,+e<) by letting F (x) be equal to F(b) if x > b.
Since

8(x) =T n(F v+ )~ F(x)

SThus ty,, < A and ;5 L A.
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holds at almost every x in [a,b], it follows from Propositions 2.1.5 and 2.2.2 that
g is Lebesgue measurable. Since the set of points where F is differentiable is the
complement in [a,b] of a Lebesgue null set, it follows that F’ is also Lebesgue

measurable. O
We can now derive the following characterization of the absolutely continuous®

functions on a closed bounded interval.

Corollary 6.3.8. A function F: [a,b] — R is absolutely continuous if and only if it
is differentiable A-almost everywhere, F' is integrable, and F can be reconstructed
from its derivative through the formula

F) :F(a)—i—/:F’(t)dt. 0

Proof. First suppose that F is absolutely continuous. Then F is also of finite
variation (Exercise 4.4.5), and so Proposition 4.4.6, applied to the function

0 ifx<a,
x—= S F(x)—F(a) ifa<x<b,
F(b)—F(a) ifb<ux,

provides a function f in ' (R, %(R),A,R) such that

Fx) :F(a)+[f(t)dt

holds at each x in [a,b]. Theorem 6.3.6 then implies that F is differentiable, with
derivative given by F’(x) = f(x), at almost every such x; hence (1) follows.

The other half of the proof is easy; Proposition 4.4.6 (see also Proposition 2.2.5
or Exercise 2) implies that each F that has an integrable derivative and satisfies (1)
is absolutely continuous. O

We are now in a position to prove the following version of integration by parts.

Corollary 6.3.9. Let F and G be absolutely continuous functions on the interval
[a,b]. Then

b b
F(b)G(b) — Fa)G(a) — / F()G (1) di + / F/(1)G(r)dr.

Proof. We begin by showing that the function F G is absolutely continuous. Since
the functions F and G are continuous and the interval [a,b] is compact, there are
positive numbers M and N such that |F(x)| < M and |G(x)| < N hold at each x

%It is easy to modify the definition of absolute continuity for functions on R to make it apply to
functions on [a, b].
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in [a,b]. Suppose that {(s;,#;)} is a finite sequence of disjoint open subintervals of
[@,b]. Then for each i we have

|F(t:)G(ti) — F(s:)G(si)| < [F(t:) = F(si) |G(t:)| + [F (s:)| |G (t:) — G(s7)]|
< NIF(ti) — F(si)| + M|G(1:) — G(si)],

and so
2IF@)G(t) = F(s)G(si)| <N Y |F(6) = F(si)| +M Y |G(1i) — G(si)].

Since F' and G are absolutely continuous, we can make the sums on the right side
of this inequality small by making Y;(¢; — s;) small. The absolute continuity of FG
follows.

Thus Corollary 6.3.8 can be applied to the function FG. Since FG' and F'G are
integrable (check this) and since

(FG)'(x) = F(x)G'(x) + F'(x)G(x)

holds at almost every x in [a, b], the proof is complete. O

Theorem 6.2.3 also implies the following strengthened version of Theorem 6.3.6
(see also Exercises 3 and 4).

Proposition 6.3.10. Suppose that f belongs to L' (R, #)+,A,R). Then

. 1
hpxﬁy[vm—funm:o @)

holds at A-almost every x in R; here I is a closed interval that contains x, and the
limit is taken as the length of I approaches zero.

Points x at which (2) holds are called Lebesgue points’ of f, and the set of all
Lebesgue points of f is called the Lebesgue set of f.

Proof. Tt is enough to choose an arbitrary bounded open interval (a,b) and to show
that (2) holds at almost every x in (a,b).

Let us first suppose that the integrable function f is in fact Borel measurable. For
each rational number r let u, be the finite Borel measure on R defined by

prd)= [ 1) —rlar

7Some authors use the condition lim,_,o+ %j({q |f(x+1)+ f(x—1t) —2f(x)|dr = 0 as the defining
condition for being a Lebesgue point; of course each point that satisfies (2) is also a Lebesgue point
in this sense.
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Theorem 6.2.3 implies that there is a Lebesgue null set N, such that (Dy,)(x) =
|f(x) —r| holds at each x in (a,b) — N,. Let N be the Lebesgue null set U,cqN;.
Suppose that x belongs to (a,b) — N, that I is a closed subinterval of (a,b) that
contains x, and that r is a rational number. Then

/I|f(t) |dt</|f —r|dt—|—/|r— x| dt,

and so if we divide the terms of this inequality by A(I) and let the length of I
approach 0, we find

T 75 /10 = 1]t < (D)) + 1= )] = 2170 =

Since |f(x) — | can be made arbitrarily small by an appropriate choice of the rational
number r, Eq. (2) follows.

In case f is Lebesgue measurable, rather than Borel measurable, we can complete
the proof by applying the preceding argument to a Borel measurable function that
agrees with f almost everywhere (see Proposition 2.2.5). O

It is of course of interest to have easily verified conditions that imply the absolute
continuity of a function. One might conjecture that a continuous function on a closed
bounded interval is absolutely continuous if it is differentiable almost everywhere,
if it is differentiable almost everywhere and its derivative is integrable, or if it is
differentiable everywhere. These conjectures all fail (see Exercises 5 and 6), but the
following related result holds.

Theorem 6.3.11. Let F: [a,b] — R be a continuous function such that

(a) F is differentiable at all except countably many of the points in [a,b], and
(b) F'is integrable.

Then F is absolutely continuous, and so F(x) = F(a)+ [ F'(t)dt holds at each x
in [a,b).

Theorem 6.3.11 would fail if condition (b) were removed (see Exercise 6), and
so condition (a) does not imply condition (b). There is, however, an analogue to
Theorem 6.3.11 for the Henstock—Kurzweil integral in which condition (b) is not
needed; see Exercise 23 in Appendix H.

For the proof we need the following definitions and lemmas.

A function f: R — (—oo,4oo] is lower semicontinuous if for each x in R and
each real number A such that A < f(x) there is a positive number & such that
A < f(t) holds whenever ¢ satisfies |t —x| < 0. A function f: R — [—eo,+o00) is
upper semicontinuous if —f is lower semicontinuous. In other words, f is upper
semicontinuous if for each x in R and each real number A such that f(x) < A there
is a positive number § such that f(#) < A holds whenever ¢ satisfies |t — x| < J.
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Of course, a function f: R — R is continuous if and only if it is both lower
semicontinuous and upper semicontinuous. Furthermore, it is easy to check that

(a) a function f: R — (—eo, 4] is lower semicontinuous if and only if for each
real number A, the set {x € R: A < f(x)} is open,

(b) a function f: R — [—eo,+e0) is upper semicontinuous if and only if for each
real number A, the set {x € R: f(x) <A} is open,

(c) if U is an open subset of R, then the characteristic function yy is lower
semicontinuous,

(d) if C is a closed subset of R, then the characteristic function )¢ is upper
semicontinuous,

(e) if f and g are lower semicontinuous, then f + g is lower semicontinuous, and

(f) if {f,} is an increasing sequence of lower semicontinuous functions, then
lim,, f,, is lower semicontinuous.

It follows (from (a) and (b)) that the upper semicontinuous functions and the lower
semicontinuous functions are Borel measurable.

Lemma 6.3.12. Let f: [a,b] — [—oo, 40| be Lebesgue integrable. Then for each
positive € there is a lower semicontinuous function g: R — (—oo, 40| that is
integrable on [a,b] and satisfies

(@) f(t) <g(t) holds at each t in [a,b], and
(b) [ g(t)dr <[] f(t)dr +e.
Proof. Let € be a positive number. First suppose that f is nonnegative. There is a

nondecreasing sequence { f;, } of nonnegative simple measurable functions such that
f =1im,, f,, (Proposition 2.1.8), and so we can find Lebesgue measurable sets Ay, k =

1,2, ..., and positive real numbers a; such that f = ¥ ayxa, (write each f, — f,—1
as a sum of positive multiples of characteristic functions). Use the regularity of
Lebesgue measure (Proposition 1.4.1) to choose open sets Uy, k =1, 2, ..., that

include the corresponding A;’s and satisfy Y axA (Uy) < YparA(Ax) + €/2. Then
the formula f* = ¥ a; yu, defines a lower semicontinuous function f* that satisfies

b b
/ f"’(t)dt</2akgmkdt+e/2:/ f)ydt+¢/2
a k a

and is such that f(z) < f*(¢) holds for each 7 in [a, b].

Now suppose that f is an arbitrary integrable function on [a, b]. For each n define
a function h, by h,(x) = max(f(x),—n). The dominated convergence theorem
implies that fab f(r)dr = lim, fah hn(r)dt and hence that we can choose a positive
integer N such that ["hy(t)dr < [° f(t)dt + €/2. If we apply the argument in
the preceding paragraph to the nonnegative function hy + N, producing the lower
semicontinuous function f°, then the required function g is given by g = [~ —

NYXla.b)- O
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Lemma 6.3.13. Let H: [a,b] — R be continuous, and let C be a countable subset
of [a,b]. Suppose that for each x in [a,b) — C there is a positive number O, such that
H(t) > H(x) holds at each t in the interval (x,x + 6x). Then H is strictly increasing.

Proof. 1Tt suffices to prove that H is nondecreasing (why?), and for this it is enough
to show that numbers x; and x; in [a,b] that satisfy x; < x; and H(x;) > H(x2) do
not exist. Assume that such numbers do exist, and for each y between H(x;) and
H (x;) define a number x, by

xy = sup{x € [x1,x2] : H(x) > y}.

It is easy to check that each x, satisfies H(x,) =y and belongs to the countable
exceptional set C. Since there are uncountably many such points x,, we have reached
a contradiction, and the proof is complete. a

Proof of Theorem 6.3.11. Suppose that the function F satisfies the hypotheses of
Theorem 6.3.11 and that C is a countable subset of [a,b) such that F is differentiable
at each point of [a,b) — C. Let € be a positive number. Lemma 6.3.12 (applied to the
function that agrees with F’ where F is differentiable and that vanishes elsewhere)
provides a lower semicontinuous function g such that F’(z) < g(¢) holds at each t
in [a,b) — C and such that [”g(t)dr < [*F'(t)dt +e. By adding a small positive
continuous function to g, if necessary, we can assume that F’(r) < g(¢) holds at
each 7 in [a,b) — C. Define G: [a,b] — R by G(x) = F(a) + [ g(t)dt. The lower
semicontinuity of g implies that
lim G

(v) = Gx)
oo Y TX

> g(x)

holds at each x in [a,b). Thus

Jim (Gy) —F(») — (G(x) = F(x))
ylx y—x

>g(x)—F'(x) >0

holds at each x in [a,b) — C, and so Lemma 6.3.13 implies that G — F is
nondecreasing. Since furthermore G(a) = F(a), it follows that F < G. This and
the inequality [ g(1)dt < [ F'(t)dt + & imply that

X

F(x)<G(x)=F(a)+ | g(t)dt
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holds at each x in [a,b]. Since € was arbitrary,

Fx) §F(a)+/axF’(t)dt

must hold at each such x. The reverse inequality can be proved by applying the same

argument to —F, and so the proof is complete. a
Exercises
1. Let F: R — R be nondecreasing. Show that if € is a positive number, then

(O8]

each bounded interval contains only a finite number of values x such that
F(x+) — F(x—) > €. Use this observation to give a second proof of part (b)
of Lemma 6.3.2.

. Prove the following modified version of Lemma 6.3.7: If F: [a,b] — R is

continuous and if D is the set consisting of those points in [a,b] at which F
is differentiable, then D € Z#(R) and F’ (as a function from D to R) is Borel
measurable.

. Derive Theorem 6.3.6 from Proposition 6.3.10.
. Let f and F be as in Theorem 6.3.6. Show by example that there can be points

x that are not Lebesgue points of f, but are such that F’(x) exists and is equal to

S ().

. Show that the Cantor function provides a counterexample to two of the three

conjectures suggested just before the statement of Theorem 6.3.11.

. Define F: [0,1] — R by

) 0 if x=0,

F(x)= 1

xsin—  if0<x<I.
X

Show that F is differentiable everywhere on [0, 1] but is not absolutely continu-
ous.

. Show that there is a strictly increasing continuous function F: [0,1] — R such

that F'(x) = 0 holds at A-almost every x in [0,1]. (Hint: Let F be the sum of a
suitable series of functions, and use Proposition 6.3.5.)

Notes

The proof of Theorem 6.1.7 presented here was inspired by one given by
A.M. Gleason in some unpublished notes on advanced calculus.
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Munroe [92], Rudin [105], and Wheeden and Zygmund [127] carry the study of
the differentiation of measures and functions a bit farther than it is taken here. See
Bruckner [21], Bruckner [22], de Guzman [33], Hayes and Pauc [56], K6lzow [74],
and Saks [106] for more advanced treatments of differentiation theory.

The proof of Theorem 6.3.11 given here is taken from Walker [123].



Chapter 7
Measures on Locally Compact Spaces

Let 2 (R) be the vector space consisting of those continuous functions f: R — R
that have compact support—that is, for which the set {x € R : f(x) # 0} has a
compact closure. Then f — [ fdA defines a positive! linear functional on 7 (R).
More generally, if i is a measure on (R, Z(R)) that has finite values on the compact
subsets of R, then f +— [ fdu defines a positive linear functional on ' (R).
According to a special case of the Riesz representation theorem (see Theorem 7.2.8),
the converse also holds: for every positive linear functional : J# (R) — R there is
a Borel measure pt on R that is finite on compact sets and represents /, in the sense
that I(f) = Ji fdu holds for each f in # (R).

This chapter is devoted to the Riesz representation theorem and related results.
The first section (Sect.7.1) contains some basic facts about locally compact Haus-
dorff spaces, the spaces that provide the natural setting for the Riesz representation
theorem, while the second section (Sect.7.2) gives a proof of the Riesz represen-
tation theorem. The next two sections (Sects. 7.3 and 7.4) contain some useful and
relatively basic related material. The results of Sects. 7.5 and 7.6 are needed for
dealing with large locally compact Hausdorff spaces; for relatively small locally
compact Hausdorff spaces (those that have a countable base), Proposition 7.6.2 is
the only result from these sections that one really needs (see also Proposition 7.2.5
and Theorems 4.5.1 and 5.2.2).

The Daniell-Stone integral gives another way to deal with integration on locally
compact Hausdorff spaces. A measure-theoretic version of the basic result of the
Daniell-Stone theory is given by Theorem 7.7.4; the general Daniell-Stone setup is
outlined in the exercises at the end of Sect. 7.7.

Recall that a linear functional / on a vector space of functions is positive if I(f) > 0 holds for
each nonnegative function f in the domain of /.
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7.1 Locally Compact Spaces

In this chapter we will be dealing with measures and integrals on locally compact
Hausdorff spaces. This first section contains a summary of some of the necessary
topological facts and constructions; the main development begins in Sect. 7.2.

Recall that a topological space is locally compact if each of its points has an open
neighborhood whose closure is compact.

Examples 7.1.1. Examples of locally compact Hausdorff spaces include the
Euclidean spaces RY, spaces with the discrete’ topology (for example, the set
Z of all integers), and compact Hausdorff spaces. The space ¢ of sequences {x, }
such that ¥, x> < +eo, with the topology given by the norm {x,} — (X,x2)"/2, is
not locally compact (inside each open ball there is an infinite sequence that has no

convergent subsequence; see item D.39 in Appendix D). O
The following elementary proposition will be a basic tool for what follows.

Proposition 7.1.2. Let X be a Hausdorff space, and let K and L be disjoint compact
subsets of X. Then there are disjoint open subsets U and V of X such that K C U
and LC V.

Proof. We can assume that K and L are both nonempty (otherwise we could use &
as one of our open sets and X as the other). Let us begin with the case where K
contains exactly one point, say x. For each y in L there is a pair Uy, V, of disjoint
open sets such that x € Uy and y € V), (recall that X is Hausdorff). Since L is compact,
there is a finite family y1, ..., y, such that the sets V,, ..., V}, cover L. The sets U
and V defined by U = N, Uy, and V = U, V,, are then the required open sets.
Next consider the case where K has more than one element. We have just shown
that for each x in K there are disjoint open sets, say U, and V,, such that x € U,

and L C V.. Since K is compact, there is a finite family x1, ..., x; such that Uy,
..., Uy, cover K. The proof is complete if we define U and V by U = Uf.‘: Uy, and
V=nt V. O

The sets U and V just constructed are said to separate the sets K and L.
Let us note several useful results (Propositions 7.1.3—7.1.6), each of which makes
at least indirect use of Proposition 7.1.2.

Proposition 7.1.3. Let X be a locally compact Hausdorff space, let x be a point
in X, and let U be an open neighborhood of x. Then x has an open neighborhood
whose closure is compact and included in U.

Proof. Since X is locally compact, there is an open neighborhood of x, say W,
whose closure is compact. By replacing W with W N U, we can assume that W is
included in U. The difficulty is that W may extend outside U. Use Proposition 7.1.2

2 A topological space is discrete (or has the discrete topology) if each of its subsets is open.
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to choose disjoint open sets Vi and V5 that separate the compact sets {x} and W —W.
The closure of Vi "W is then compact and included in W and hence in U; thus ViNW
is the required open neighborhood of x. O

Proposition 7.1.4. Let X be a locally compact Hausdorff space, let K be a compact
subset of X, and let U be an open subset of X that includes K. Then there is an open
subset 'V of X that has a compact closure and satisfies K CV C VCu.

Proof. Proposition 7.1.3 implies that each point in K has an open neighborhood
whose closure is compact and included in U. Since K is compact, some finite
collection of these neighborhoods covers K. Let V be the union of the sets in such a
finite collection; then V is the required set. O

A subset of a topological space X is a Gy if it is the intersection of a sequence
of open subsets of X and is an Fy if it is the union of a sequence of closed subsets
of X.

Proposition 7.1.5. Let X be a locally compact Hausdorff space that has a count-
able base for its topology. Then each open subset of X is an Fs and is in fact the
union of a sequence of compact sets. Likewise, each closed subset of X is a Gg.

Proof. Suppose that 7 is a countable base for the topology of X. Let U be an open
subset of X, and let % be the collection of those sets V in % for which V is compact
and included in U. Proposition 7.1.3 implies that U is the union of the closures of the
sets in %4 (the open neighborhoods provided by Proposition 7.1.3 can be replaced
with smaller sets that belong to %). Thus U is the union of a countable collection
of sets that are closed and, in fact, compact.

Now suppose that C is a closed subset of X. Then C¢ is open and so is the union of
a sequence {F,} of closed sets. Consequently C is the intersection of the open sets
Ein=1,2,.... O

Recall that a topological space (or a subset thereof) is 6-compact if it is the union
of a countable collection of compact sets.

Proposition 7.1.6. Every locally compact Hausdorff space that has a countable
base for its topology is G-compact.

Proof. Since a topological space is an open subset of itself, this proposition is an
immediate corollary of Proposition 7.1.5. a

We turn to the continuous functions on a locally compact Hausdorff space.
Recall that a topological space is normal if it is Hausdorff and each pair of
disjoint closed subsets of it can be separated by a pair of disjoint open sets.

Proposition 7.1.7. Every compact Hausdorff space is normal.

Proof. Note that every closed subset of a compact space is compact, and use
Proposition 7.1.2 O

We will need the following standard result. A proof of it is sketched in Exercise 5.
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Theorem 7.1.8 (Urysohn’s Lemma). Ler X be a normal topological space, and
let E and F be disjoint closed subsets of X. Then there is a continuous function
f: X —[0,1] such that f(x) =0 holds at each x in E and f(x) = 1 holds at each x
inF.

Let f be a continuous real- or complex-valued function on a topological space X.
The support of f, written supp(f), is the closure of {x € X : f(x) # 0}. In case X
is a locally compact Hausdorff space, we will denote by % (X) the set of those
continuous functions f: X — R for which supp(f) is compact. Likewise, we will
denote by .#©(X) the set of those continuous functions f: X — C for which
supp(f) is compact.

It is clear that .# (X) and .# ©(X) are vector spaces over R and C, respectively,
and that each function in .7 (X) or in .#©(X) is bounded (recall that continuous
functions are bounded on compact sets).

The following fact about ¢ (X) is essential for the development of measure
theory on locally compact Hausdorff spaces.

Proposition 7.1.9. Let X be a locally compact Hausdorff space, let K be a compact
subset of X, and let U be an open subset of X that includes K. Then there is
a function f that belongs to J (X), satisfies yx < f < xu, and is such that

supp(f) CU.

Proof. Use Proposition 7.1.4 to choose an open set V that has a compact closure and
satisfies K CV CV C U. According to Urysohn’s lemma (applied to the compact
Hausdorff space V), there is a continuous function g: V — [0, 1] such that g(x) = 1
holds at each x in K and g(x) = 0 holds at each x in V — V. Now define the
function f: X — [0, 1] by requiring that f agree with g on V and vanish outside
V. The continuity of f follows from D.6 (note that f is continuous on V and is
constant, and hence continuous, on X — V). The support of f is included in V and
so is compact and included in U. a

Next we derive two consequences of Proposition 7.1.9 (Propositions 7.1.11
and 7.1.12); they will be needed in Sects.7.2 and 7.3, respectively. Let us begin
with the following lemma.

Lemma 7.1.10. Let X be a Hausdorff space, let K be a compact subset of X, and
let Uy and U, be open subsets of X such that K C Uy UU,. Then there are compact
sets Ky and K> such that K = K1 UK, K1 C Uy, and Ky C U,.

Proof. LetL; =K —Uj and Ly = K —U,. Then L; and L, are disjoint and compact,
and so according to Proposition 7.1.2 they can be separated by disjoint open sets,
say by V| and V;. If we define K; and K, by K} = K—V; and K, = K —V,, then
K and K are compact, are included in U; and Uy, respectively, and have K as their
union. a

Proposition 7.1.11. Let X be a locally compact Hausdorff space, let f belong to
H(X), and let Uy, ..., U, be open subsets of X such that supp(f) C Ui~ U;. Then
there are functions f, ..., fu in H(X) such that f = fi + fo+ -+ fu and such
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that for each i the support of f; is included in U;. Furthermore, if the function f is
nonnegative, then the functions f;, ..., f, can be chosen so that all are nonnegative.

Proof. In case n =1 we need only let f; be f. So we can begin by supposing that
n =2. Use Lemma 7.1.10 to construct compact sets K; and K, such that K} C Uy,
K, C U, and supp(f) = K; UK, and then use Proposition 7.1.9 to construct
functions /; and h; that belong to ¢ (X) and satisfy yx, < h; < yy, and supp(h;) C
U, fori = 1,2. Define functions g; and g, by g; = h; and g, = hp — (h; A hy). Then
g1 and g, are non-negative, their supports are included in U; and U,, respectively,
and they satisfy

81(x) +g2(x) = (b1 Vha)(x) = 1
at each x in supp(f). We can complete the proof in the case where n = 2 by defining
Jfi1and f> tobe fg and fg>.
The general case can be dealt with by induction: use what we have just proved
to write f as the sum of two functions, having supports included in U;’;IU,- and U,

respectively, and then use the induction hypothesis to decompose the first of these
functions into the sum of n — 1 suitable functions. a

Proposition 7.1.12. Let X be a locally compact Hausdorff space, let K, ..., K,
be disjoint compact subsets of X, and let ¢, ..., Oy be real (or complex) numbers.
Then there is a function f that belongs to # (X) (or to # ©(X)) and satisfies

(@ f(x)=o0;ifxeK;,i=1,...,n and
(®) [[f]lee = max{las|,... |an|}.

Proof. We begin by constructing disjoint open sets Uy, ..., U, such that K; C U;
holds for each i. If n = 2, such sets are provided by Proposition 7.1.2. The general
case follows by induction: use Proposition 7.1.2 to choose disjoint open sets V; and
V, that separate Ul’.';llK,- from K,,, use the induction hypothesis to choose disjoint

open sets Wi, ..., W,_ that separate Kj, ..., K,—; from one another, and then
define Uy, ..., U,tobe ViNW, ..., ViNnW,_4, Va.

Next we use Proposition 7.1.9 to choose functions fi, ..., f, that belong to
(X)) and satisfy yx, < f; < yy, fori=1, ..., n. The required function f is now
givenby f =" | 0;fi. O

We will have use for the one-point compactification of a locally compact
Hausdorff space X; it is constructed as follows. The underlying set X* consists
of the points in X, together with one additional point, called the point at infinity.
The open subsets of X* are, by definition, the open subsets of X, together with the
complements (with respect to X*) of the compact subsets of X. It is not hard to
check that this does define a topology on X* and that the topology induced by it
on the subspace X is the original topology on X; the details are left to the reader.
We need to verify that X* is a compact Hausdorff space. Let us begin by checking
that X* is Hausdorff. Suppose that x and y are distinct points in X*. If both points
belong to X, then they can be separated with sets that are open in X and hence in
X*. If one of these points, say y, is the point at infinity and if we choose an open
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neighborhood U of x whose closure (in X) is compact, then U and X* — U are
disjoint open neighborhoods in X* of x and y. Hence X* is Hausdorff. We turn to
the compactness of X*. Let %7 be an open cover of X*. The point at infinity must
belong to some set in %, say Uy. Then X* — Uy is a compact subset of X and so
is covered by some finite subfamily of % . The sets in this subfamily, together with
Uy, form a finite cover of X*. Thus X* is compact.

The remaining results in this section will be used in a few exercises, but otherwise
they will not be used until Chap. 8. They do, however, provide some perspective on
the spaces considered here.

Proposition 7.1.13. A compact Hausdorff space is metrizable if and only if there is
a countable base for its topology.

Proof. First suppose that X is compact and metrizable. Then X is separable
(Corollary D.40) and so has a countable base (see D.32).

Now suppose that X is a compact Hausdorff space that has a countable base, and
let % be such a base. The space X is normal (Proposition 7.1.7), and so for each pair
of sets U, V that belong to % and satisfy U NV = @ there is, by Urysohn’s lemma,
a continuous function f: X — [0, 1] that vanishes on U and has value 1 everywhere
on V. Form a sequence {f,} by choosing one such function for each such pair of
sets. Our next step is to check that this sequence of functions separates the points
of X, and for this it is enough to show that for each pair x, y of distinct points in
X there are sets U and V that belong to %, have disjoint closures, and contain x
and y, respectively. To construct such sets, choose disjoint open neighborhoods W;
and W, of x and y, and use Proposition 7.1.3 to choose open sets U and V such that
x€U CUCW,andy€V CV CW,. By making U and V a bit smaller, if necessary,
we can assume that they belong to % . Thus the required sets U and V exist, and the
sequence {f,} separates the points of X.

Define a function d: X x X — R by setting

d) = 3 o)~ )]

It is easy to use the fact that the functions fi, f5, ... separate the points of X to check
that d is a metric on the set X and to use the fact that the functions fi, f>, ... are
continuous (with respect to the original topology on X) to check that the topology
induced by d is weaker than the original topology. Since the original topology makes
X a compact space, while the topology induced by d is weaker and Hausdorff, the
two topologies must be the same (see D.17). Thus the original topology on X is
metrizable and in fact is metrized by d. O

Our next task is to prove that each locally compact Hausdorff space that has a
countable base is metrizable. For this we need the following lemma.

Lemma 7.1.14. Let X be a locally compact Hausdorff space. If there is a countable
base for the topology of X, then there is a countable base for the topology of the one-
point compactification of X.
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Proof. Let % be a countable base for the topology of X, and let %4 be the collection
of those sets V in % for which V is compact. Arrange the sets in % in a sequence,
say {Vi}. Then X = UV}, and so for each compact subset K of X there is a positive
integer n such that K C U?_, V;.. Thus if U is an open neighborhood in X* of the point
at infinity and if K = X* — U, then there is a positive integer n such that K C U;_, V;
and hence such that X* — (Uzlek) C U. It follows that the sets in %, together with
the sets X* — (U}_,Vx),n = 1,2, ..., form a countable base for the topology of X*.

O

Proposition 7.1.15. Each locally compact Hausdorff space that has a countable
base for its topology is metrizable.

Proof. Let X be a locally compact Hausdorff space whose topology has a countable
base. Proposition 7.1.13 and Lemma 7.1.14 imply that the one-point compactifica-
tion X* of X is metrizable. Then X, as a subspace of the metrizable space X*, is
metrizable. O

A locally compact Hausdorff space can be metrizable without having a countable
base; see Exercise 1.

Exercises

1. (a) Show that each discrete topological space is metrizable and locally
compact.
(b) Conclude that there are metrizable locally compact Hausdorff spaces that
are not second countable.

2. Let X be a locally compact Hausdorff space, and let Y be a subspace of X. Show
that if Y is open or closed (as a subset of X), then Y is locally compact.

3. Let X be a locally compact Hausdorff space, and let Y be a subspace of X. Show
that Y is locally compact if and only if ¥ = U N F for some open subset U and
some closed subset F' of X. (Hint: See Exercise 2. Also show that if Y is locally
compact, then Y is an open subset of Y (of course Y is the closure of ¥ in X and
is to be given the topology it inherits from X).)

4. Find all continuous functions f: Q — R such that supp(f) is compact.

5. Prove Urysohn’s lemma, Theorem 7.1.8. (Hint: Let D be the set of all dyadic
rationals in the interval (0,1) (that is, let D be the set of all numbers of the
form m /2", where m and n are positive integers and m < 2"). Use the normality
of X first to choose an open set Uy, such that E C Uy, C Uy, € F€ and
then to choose open sets U /4 and Uy 4 such that E C Uy 4 C Uy 4 C U/, and
Uy, C Usyy C Usyy C FC. Continue inductively, producing an indexed family
{U,},ep of open subsets of X such that

ECU,CU, CUCU,CF*
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holds whenever r and s belong to D and satisfy r < s. Define a function
f: X —=Rby

f(x)_{l ifx ¢ U, U,

inf{r:xe U} otherwise,

and check that it has the required properties.)

. Prove the Tietze extension theorem: if X is a normal topological space, if E

is a closed subspace of X, and if f: E — R is bounded and continuous, then
there is a bounded continuous function g: X — R whose restriction to E is f.
(Hint: Check that we can assume that f(E) C [—1,1]. Use Urysohn’s lemma to
choose a continuous function g;: X — [—1/3,1/3] such that g (x) = —1/3 if
xe{xeE: f(x)<—1/3}andg;(x) =1/3ifxe {x€E: f(x) > 1/3}. Show
that | f(x) — g1(x)| < 2/3 holds at each x in E. Continue inductively, choosing
continuous functions g5, g3, ... such that |g,(x)| < 2"~!/3" holds at each x in
X and |[f(x) — (g1 + - +gn)(x)| < (2/3)" holds at each x in E. Then define g

by g=>"_18n)

. Let X be a compact Hausdorff space that contains at least two points, and let

I be an uncountable set. Show that the product space X! (which is of course
compact3 and Hausdorff) does not have a countable base. (Hint: Use D.11 to
show that if X’ has a countable base and if % is the base for X’ constructed
in D.19, then some countable subset of % is a base for X/. Then show that no
countable subfamily of % can be a base for X'.)

. Let X be the set consisting of those step functions f: [0, 1] — [0, 1] such that

(i) each value of f is rational, and
(ii) each jump in the graph of y = f(x) occurs at a rational value of x.

Show that X is a countable dense subset of the product space [0, 1][071].
Conclude that a compact Hausdorff space can be separable without being
second countable. (See Exercise 7.)

. Let X be a second countable compact Hausdorff space (in other words, a

compact metrizable space), and let C(X) be the vector space of all real-
valued continuous functions on X. Give C(X) the norm || - ||.. defined by
[I£lle = sup{|f(x)| : x € X}. Show that C(X) is separable. (Hint: We saw in
the proof of Proposition 7.1.13 that one can choose a countable collection
S of continuous functions on X such that S separates the points of X. The
Stone—Weierstrass theorem (Theorem D.22) implies that the polynomials in the
functions belonging to S form a dense subset of C(X). Those polynomials that
have rational coefficients form a countable dense subset of C(X).)

Let Q be the smallest uncountable ordinal, let X be the set of all ordinal numbers
o such that o < Q, and let Y be the set of all ordinal numbers o such that o < €

3See Theorem D.20.
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(thus Y consists of the countable ordinals). Give X and Y the order topology
(see D.24). Show that

(a) X is a compact Hausdorff space, and

(b) Y is alocally compact Hausdorff space.

(Hint: Use transfinite induction to show that for each « in X the set {# € X :
B < a} is compact.)

7.2 The Riesz Representation Theorem

Let X be a Hausdorff topological space. Then Z(X), the Borel c-algebra on X, is
the o-algebra generated by the open subsets of X; the Borel subsets of X are those
that belong to #(X ). Note that #(X) is also the o-algebra generated by the closed
subsets of X.

We will need the following two elementary facts about the Borel subsets of
Hausdorff spaces.

Lemma 7.2.1. Let X and Y be Hausdorff topological spaces, and let f: X — Y be

continuous. Then f is Borel measurable (that is, measurable with respect to B(X)
and B(Y)).

Proof. The continuity of f implies that if U is an open subset of Y, then f~!(U) is
an open and hence a Borel subset of X. Since the collection of open subsets of ¥
generates Z(Y ), the measurability of f follows from Proposition 2.6.2. O

Lemma 7.2.2. Let X be a Hausdorf{f topological space, and let Y be a subspace of
X. Then

B(Y)={A :thereis a set Bin B(X) such that A=BNY }.

Proof. Let (X )y denote the collection of subsets of ¥ that have the form BNY
for some B in #(X). We need to show that B(Y) = %(X)y. Let f be the standard
injection of Y into X (in other words, let f(y) = y hold at each y in Y). Then f is
continuous and hence measurable with respect to %(Y) and %(X). Since f~!(B) =
BNY holds for each subset B of X, the measurability of f implies that (X)y C
A(Y). On the other hand, it is easy to check that Z(X)y is a c-algebra on Y that
contains all the open subsets of ¥ and hence includes %(Y). With this we have
shown that B(Y) = B(X)y. O

We turn to terminology for measures. Let X be a Hausdorff topological space.
A Borel measure on X is a measure whose domain is %(X). Suppose that &7 is a
o-algebra on X such that (X) C 7. A positive measure | on & is regular if

(a) each compact subset K of X satisfies f1(K) < oo,
(b) each set A in &7 satisfies

U(A) =inf{u(U): A C U and U is open}, and
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(c) each open subset U of X satisfies

w(U) =sup{u(K): K CU and K is compact}.

A regular Borel measure on X is a regular measure whose domain is Z(X). A
measure that satisfies condition (b) is often called outer regular, and a measure that
satisfies condition (c), inner regular.

We have already seen that Lebesgue measure on R is regular (Proposition 1.4.1)
and that every finite Borel measure on R is regular (Proposition 1.5.6).

The regularity of a measure allows many approximations and calculations that
would be impossible without it. In particular, various linear functionals can be
represented in a useful way with regular measures; see Theorems 7.2.8 and 7.3.6.

On certain rather complicated locally compact Hausdorff spaces there exist finite
Borel measures that are not regular; see Exercise 7. However, for a locally compact
Hausdorff space that has a countable base, we have the following result.

Proposition 7.2.3. Let X be a locally compact Hausdorff space that has a count-
able base, and let |1 be a Borel measure on X that is finite on compact sets. Then [
is regular.

Proof. First consider the inner regularity of y. Let U be an open subset of X.
Proposition 7.1.5 implies that U is the union of a sequence {K; } of compact sets, and
Proposition 1.2.5 then implies that yt(U) = limy, t(U}_, K;). The inner regularity of
u follows.

We will use the following reformulation of Lemma 1.5.7 in our proof of the outer
regularity of u.

Lemma 7.2.4. Let X be a Hausdorff space in which each open set is an Fg, and let
U be a finite Borel measure on X. Then each Borel subset A of X satisfies

u(A) =inf{u(U):ACU and U is open} (1)

and
U(A) =sup{u(F): F CAandF is closed}. )

Proof. The arguments used to prove Lemma 1.5.7 also prove this lemma; the details
will not be repeated. a

Let us continue with the proof of Proposition 7.2.3. We still need to check the
outer regularity of tt. In order to apply Lemma 7.2.4, we will consider certain finite
measures that are closely related to y. Let {U,} be a sequence of open sets such
that X = U,U, and such that u(U,) < oo holds for each n (for instance, take a
countable base % for X and arrange in a sequence those sets U in % for which
U is compact). For each n define a Borel measure t,, on X by u,(A) = u(ANU,).
The measures L, are finite, and so Proposition 7.1.5 and Lemma 7.2.4 imply that
they are outer regular. Hence if A belongs to 2(X) and if € is a positive number, then
for each n there is an open set V,, that includes A and satisfies u, (V,) < t,(A) +¢€/2".
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Consequently u((U,NV,) —A) < g/2". The set V defined by V = U, (U, NV,) is
open, includes A, and satisfies

(Vv —A) <> u((U,NVy) —A) <e.

Hence (V) < u(A) + &, and the outer regularity of p follows. O

Proposition 7.2.5. Let X be a locally compact Hausdorff space that has a count-
able base. Then every regular measure on X is G-finite.

Proof. The space X is, according to Proposition 7.1.6, the union of a sequence of
compact sets. Since the measure of a compact set is finite under a regular measure,
the proposition follows. a

The following proposition enables one to approximate many sets from within by
compact sets.

Proposition 7.2.6. Let X be a Hausdorff space, let &/ be a G-algebra on X that
includes B(X), and let U be a regular measure on <. If A belongs to </ and is
O-finite under U, then

1(A) =sup{u(K): K C A and K is compact}. 3)

Proof. First suppose that t1(A) < +eo. Let € be a positive number, and use the
regularity of u first to choose an open set V such that A CV and u(V) < u(A)+¢
and then to choose a compact subset L of V such that u(L) > u(V) — €. Since
u(V —A) < €, we can choose an open set W that includes V — A and satisfies
1(W) < €. The set L— W is then a compact subset of A, and it satisfies

M(L=W)=p(L)—pu(LNW) > pu(V)—2¢e > pu(A) - 2e.

Since € is arbitrary, relation (3) follows in the case where 1 (A) is finite.

In the case where 11 (A) = +eo, we can suppose that A = U,A,, where for each n
we have A, € &7 and [1(A,) < +ee. For each positive number o, we need to construct
a compact subset K of A such that u(K) > o. We can construct such a set by first
choosing N large enough that [,L(UflvzlA,,) > o and then using the construction in the
first part of the proof to produce an appropriate compact subset of UQ’:IA,,. O

Let X be a locally compact Hausdorff space. Recall that J# (X) is the vector
space consisting of all real-valued functions on X that are continuous and have
compact support. We will study the relationship between regular measures on X
and linear functionals on # (X). The first thing to note is that each function in
J (X) is integrable with respect to each regular measure on X (each such function
is measurable (Lemma 7.2.1) and so, since it is bounded and vanishes outside a set
that is compact and hence of finite measure, is integrable). It follows that if u is a
regular Borel measure on X, then f — [ fdu defines a linear functional on 7 (X).
Two questions arise immediately. Can several regular Borel measures induce the
same functional? Which functionals arise in this way? Both of these questions will
be answered in Theorem 7.2.8.
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For dealing with such questions the concept of positivity for linear functionals
is essential. A linear functional I on ¢ (X) is positive if for each nonnegative f
in 22 (X) we have I(f) > 0. Note that if u is a regular Borel measure on X, then
the functional f +— [ fdu is positive. Note also that a positive linear functional /
on ¥ (X) is order preserving, in the sense that if f and g belong to % (X) and
satisfy f < g, then I(f) < I(g) (if f < g, then g — f is nonnegative, and we have

I(g) = 1(f) =1(g = f) = 0).
Let U be an open subset of the locally compact Hausdorff space X. We will often
deal with functions f that belong to # (X ) and satisfy

0<f<xu. “

Among the functions f in J# (X) that satisfy (4), those that also satisfy supp(f) CU
are especially nice to deal with; accordingly we will write f < U to indicate that f
satisfies both (4) and the relation supp(f) C U.

Lemma 7.2.7. Let X be a locally compact Hausdor{f space, and let |l be a regular
Borel measure on X. If U is an open subset of X, then

/.L(U):sup{/fdu:fe%(X)andogfng}

- sup{/fdu feH(X)and f < U}.

Proof. Ttis clear that y(U) is at least as large as the first supremum and that the first
supremum is at least as large as the second. So it is enough to prove that

u(U)Ssup{/fdu:fG%(X) andf<U}.

Let o be a number that satisfies o« < p(U), and use the regularity of u to choose a
compact subset K of U such that o < y(K). Proposition 7.1.9 provides a function f
in 2 (X) that satisfies yx < f and f < U. Then o < [ fdu, and so

oc<sup{/fdu:f€%(X)andf<U}.

Since o was an arbitrary number less than p(U), the proof is complete. O
We are now in a position to prove the main result of this section.

Theorem 7.2.8 (Riesz Representation Theorem). Let X be a locally compact
Hausdorff space, and let I be a positive linear functional on J# (X). Then there is a
unique regular Borel measure |1 on X such that

1) = [ fau

holds for each f in ¢ (X).
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Proof. We first prove the uniqueness of (. Suppose that it and v are regular Borel
measures on X such that

[rau=[rav=1()

holds for each f in 2 (X). It follows from Lemma 7.2.7 that u(U) = v(U) holds
for each open subset U of X and then from the outer regularity of y and v that
1(A) = v(A) holds for each Borel subset A of X. Thus ¢ and v are equal, and the
uniqueness is proved.

We turn to the construction of a measure representing the functional 1.
Lemma 7.2.7 and condition (b) in the definition of regularity suggest how to
proceed. Define a function p* on the open subsets of X by

W (U) = sup{I(f) : f € #(X) and f < U}, s)
and then extend it to all subsets of X by
u*(A) =inf{u*(U):U isopenand A CU} (6)

(it is easy to check that Eq. (6) is consistent with Eq. (5), in the sense that an open set
is assigned the same value by both). We will presently see that the required measure
U can be obtained by restricting u* to A(X).

The rest of the proof of Theorem 7.2.8 will be given by Proposition 7.2.9,
Lemma 7.2.10, and Proposition 7.2.11.

Proposition 7.2.9. Let X and I be as in the statement of Theorem 7.2.8, and let u*
be defined by (5) and (6). Then L* is an outer measure on X, and every Borel subset
of X is u*-measurable.

Proof. The relation u*(2) = 0 and the monotonicity of u* are clear. We need to
check the countable subadditivity of p*. First suppose that {U,} is a sequence of
open subsets of X; we will verify that

wi(Uun) < SH (). %

Let f be a function that belongs to ¢ (X) and satisfies f < U,U,. Then supp(f) is
a compact subset of U,U,, and so there is a positive integer N such that supp(f) C
U;VZIUn. Proposition 7.1.11 implies that f is the sum of functions fi, ..., fy that
belong to J# (X) and satisfy f, < U, forn =1, ..., N. It follows that

M=

N I
I(f>: ;I(fn)g “*(Un)g ;H*(Un)'

n=1

This and Eq. (5) yield inequality (7).
Now suppose that {A,} is an arbitrary sequence of subsets of X. The in-
equality u*(UpA,) < Y, u*(A,) is clear if >, u*(A,) = +e. So suppose that
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Yl (Ay) < 4oo, let € be a positive number, and for each n use (6) to choose
an open set U, that includes A, and satisfies u*(U,) < p*(A,) + €/2". Then (see
inequality (7))

WU < Y 0 (A) .
1 n=1

DM s

W (UnAn) < 17 (UnUy) <

n

Since € is arbitrary, the relation p*(U,A,) < Y, u*(A,) follows. Thus u* is
countably subadditive and so is an outer measure.

Since the family of p*-measurable sets is a o-algebra, we can show that every
Borel subset of X is y*-measurable by checking that each open subset of X is p*-
measurable. So let U be an open subset of X. According to the discussion preceding
Proposition 1.3.5, we can prove that U is y*-measurable by showing that

ur(A) = u*(ANU) +u*(ANU°) ®)

holds for each subset A of X that satisfies 1*(A) < +eo. Let A be such a set, let € be
a positive number, and use (6) to choose an open set V that includes A and satisfies
u*(V) < u*(A) + €. If we show that

pr(V) > pr(Vau) +ut(VNU*) -2, ©)
it will follow that
U A)+e>u " (ANU)+u* (ANU) — 2,

and, since ¢ is arbitrary, that (8) holds. So let us verify (9). Choose a function fi
in 2 (X) that satisfies fj < VNU and I(f1) > pu*(VNU) — ¢, let K = supp(fi),
and then choose a function f; in J#(X) that satisfies fo < VNK¢ and I(f2) >
W (VNK®) — €. (This would be a good time to draw a sketch of the sets involved
here.) Since fi + fo < Vand VNU® C VNKC, we have

w (V) =I1(fi+f2) >p (VAU) +u*(VNU) —2e.
Thus (9) holds and proof of Proposition 7.2.9 is complete. a

Lemma 7.2.10. Let X and I be as in the statement of Theorem 7.2.8, and let 1™
be defined by (5) and (6). Suppose that A is a subset of X and that f belongs to
H(X). If xa < f, then u*(A) < I(f), while if0 < f < ya and if A is compact,* then
I1(f) < p*(A).

Proof. First assume that y4 < f. Let € satisfy 0 < € < 1, and define U; by U, =
{xeX: f(x) > 1—¢€}. Then U; is open, and each g in 2 (X) that satisfies g < yu,
also satisfies g < ﬁf; hence (5) implies that u*(U,) < lle(f). Since A C U, and
since € can be made arbitrarily close to 0, it follows that u*(A) < I(f).

4The assumption that A is compact simplifies the proof, but is not actually necessary.
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Now suppose that 0 < f < y4 and that A is compact. Let U be an open set that
includes A. Then f < U and so (5) implies that I(f) < u*(U). Since U was an
arbitrary open set that includes A, (6) implies that I(f) < p*(A). O

Proposition 7.2.11. Let X and I be as in the statement of Theorem 7.2.8, let u* be
defined by (5) and (6), let L be the restriction of U* to B(X), and let |; be the
restriction of [L* to the c-algebra M, of IW*-measurable sets. Then L and | are
regular measures, and

[ rau= [ ram =10s)
holds for each f in A (X).

Proof. Theorem 1.3.6 implies that y1; is a measure on ./« and, since #(X) C
M+ (Proposition 7.2.9), that u is a measure on %(X). Since for each compact
subset K of X there is a function f that belongs to J# (X) and satisfies yx < f
(Proposition 7.1.9), the first part of Lemma 7.2.10 implies that ¢ and p; are finite
on compact sets. The outer regularity of i and y; follows from (6), and the inner
regularity of these measures follows from (5) and the second part of Lemma 7.2.10
(where we let A be the support of f).

We turn to the identity I(f) = [ fdu = [ fdu,. Since each function in JZ'(X) is
the difference of two nonnegative functions in % (X ), we can restrict our attention
to the nonnegative functions in J# (X). Let f be such a function. Let € be a positive
number, and for each positive integer n define a function f;,: X — R by

0 if f(x) < (n—1)e,
fu(X) =< f(x)—(n—1)e if (n—1)e < f(x) < ne, (10)
€ if ne < f(x).

(See Fig.7.1 below.) Then each f, belongs to .2 (X), f = Y, fa, and there is a

positive integer N such that f, = 0if n > N. Let Ky = supp(f) and for each positive

integer n let K, = {x € X : f(x) > ne}. Then exk, < fu < €xk, , holds for each n,

and so Lemma 7.2.10 and the basic properties of the integral imply that i (K,) <

I(fy) < ep(K,—1) and ep(K,) < [ fudu < eu(K,—1) hold for each n. Since f =
N_| fu, the relations

N N—1
D eu(Ky) <I(f) < Y eu(Ka)
n=1 n=0

and
N N—1
D el(Ky) < /fdu < Y eu(K,)
n=1 n=0

follow. Thus /(f) and [ fdu both lie in the interval [YY_, eu (K, ), N1 ep(Ky)],
which has length e (Ky) — et (Ky). Since € is arbitrary and this length is at most
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Fig. 7.1 Decomposing f as Y. f, (see Eq. (10))

eu(Kop), I(f) and [ f du must be equal. It is clear that [ fdu; = [ fdu, and so the
proof of Proposition 7.2.11, and hence that of Theorem 7.2.8, is complete. O

Exercises

1. Let X be a locally compact Hausdorff space, let .7 be a o-algebra on X that
includes #(X), and let u be a regular measure on (X,.<”). Show that if A
belongs to <7 and is o-finite under p, then for each positive € there is an open
set U that includes A and satisfies (U —A) < &. (Be sure to consider the case
where UL (A) is infinite.)

2. Let X be a locally compact Hausdorff space, let </ be a ¢-algebra on X that
includes A(X), and let u be a regular measure on (X,.<”). Show that the
completion of U is regular.

3. Let X be a locally compact Hausdorff space, let </ be a ¢-algebra on X that
includes #(X), and let u be a regular measure on (X,<”). Show that if A
belongs to &/ and is o-finite under u, then there are sets E and F in ZA(X)
such that E CA C F and u(F — E) = 0. (In particular, if u is o-finite, then &/
is included in the completion of (X ) under the restriction of u to %(X).)

4. Let us construct a topological space X by letting the underlying set be R? and
declaring that the open subsets U of X are those for which each section of the
form U, is an open subset of R.

(a) Show that X is locally compact and Hausdorff.

(b) Characterize the functions f: X — R that belong to ¢ (X) in terms of their
sections fx.

(c) Show that the formula

10)=3, [ fda

(where A is Lebesgue measure on R) defines a positive linear functional
on % (X) and that the regular Borel measure associated to / by the Riesz
representation theorem is the restriction to Z(X) of the measure defined
in Exercise 3.3.6. (We will see in Exercise 9.4.12 that the o-algebra .o/ in
Exercise 3.3.6 is strictly larger than Z(X).)

(d) Show that if u is the regular Borel measure on X that corresponds to /, then

U(A) =sup{u(K): K C A and K is compact}

fails for some Borel subset A of X.
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5. Let X be a locally compact Hausdorff space, let 27 be a c-algebra on X that
includes Z(X), and let u be a regular measure on (X,./). Define u® as in
Exercise 1.2.8.

(a) Show that

1*(A) = sup{u°*(K) : K C A and K is compact}

holds for each A in 7. (In particular, u*® is inner regular.)
(b) Show that the conditions

(i) u® isregular,
(i) u®=u,and
(iii) every locally p-null set in <7 is y-null

are equivalent.

6. Let X be a locally compact Hausdorff space, and let 4 be a regular Borel
measure on X. Suppose that p({x}) = 0 holds for each x in X. Show that if
B is a Borel subset of X such that y1(B) < +ee and if a is a real number such
that 0 < a < u(B), then there is a Borel subset A of B that satisfies i (A) = a.
Can the Borel set A be replaced with a compact set?

7. Let Y be the collection of all countable ordinals, with the order topology (see
Exercise 7.1.10).

(a) Show that a subset A of Y is uncountable if and only if for each countable
ordinal o there is an ordinal 3 that belongs to A and satisfies 8 > c.

(b) Show that if {C,} is a sequence of uncountable closed subsets of Y, then
N,C, is an uncountable closed set. (Hint: Use part (a); show that if {0y}
is an increasing sequence of countable ordinals such that each C, contains
infinitely many terms of {04 }, then limy 04 exists and belongs to N,,C,,.)

(c) Show that if A € ZA(Y), then exactly one of A and A° includes an
uncountable closed subset of Y.

(d) Suppose that we define a function y on A(Y) by letting u(A) be 1 if A
includes an uncountable closed set and letting 1 (A) be 0 otherwise. Show
that u is a Borel measure that is not regular. Find the regular Borel measure
[’ onY that satisfies [ fdu' = [ fdu foreach fin #(Y).

(e) Let X be the collection of all ordinal numbers that are less than or equal
to the first uncountable ordinal, and give X the order topology (again see
Exercise 7.1.10). Show that the formula v(A) = u(ANY) defines a non-
regular Borel measure v on X. Find the regular Borel measure v/ on X that
satisfies [ fdv' = [ fdv for each f in 7 (X).

8. Let X be a compact Hausdorff space, and let C(X) be the set of all real-valued
continuous functions on X. Then %y (X), the Baire c-algebra on X, is the
smallest G-algebra on X that makes each function in C(X) measurable; the sets
that belong to %y (X) are called the Baire subsets of X. A Baire measure on X
is a finite measure on (X, %y(X)).

(a) Show that %,(X) is the o-algebra generated by the closed Gg’s in X. (Hint:
Check that if f € C(X) and if a € R, then {x: f(x) <a} isaclosed Gg, and
use Proposition 7.1.9 to check that every closed Gg in X arises in this way.)
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(b) Show that if the compact Hausdorff space X is second countable, then
PBo(X) = B(X).

. Show that if u is a Baire measure on a compact Hausdorff space X, then u is

regular, in the sense that
w(A) =inf{u(U):ACU,U isopen,and U € %y(X)}
holds for each set A in %, (X) and
u(U)=sup{u(K): K CU, K is compact, and K € %y(X)}

holds for each open set U in %y(X). (Hint: Modify the proof of Lemma 1.5.7;
show that the collection of Baire sets that can be approximated from above by
open Baire sets and from below by compact Baire sets is a o-algebra and that
this o-algebra contains all the closed G’s in X. See Exercise 8.)
Let X be a compact Hausdorff space, and let I be a positive linear functional
on C(X) (note that since X is compact, C(X) = .#(X)). Show that there is
a unique Baire measure y on X such that I(f) = [ fdu holds for each f in
C(X). (Hint: First check that the restriction to %, (X) of the measure given by
Theorem 7.2.8 works. Then modify the part of the proof of Theorem 7.2.8 that
deals with uniqueness; see Exercise 9.)
Let X be a compact Hausdorff space. Show that if K is a closed Baire subset
of X, then K is a Gg. (Hint: Use Exercise 1.1.7 to choose a sequence {f;,} of
functions in C(X) such that K belongs to the smallest 0-algebra making fi, f>,
. measurable; then define F: X — RN by letting F take x to the sequence
{fu(x)}. Show that F(K) is a compact subset of the second countable space
RN and so is a Gg; then check that K = F~!(F(K)) (see Exercise 2.6.5), and
conclude that Kisa G5 in X.)
Let I be the interval [0, 1], and let X be the product space I/, with the product
topology (here the interval [0, 1], when considered as a factor in the product
space, is to have its usual topology). Thus each element x of X is an indexed
family {x;};c; of elements of I.

(a) Show thatif f belongs to C(X), then f(x) depends on only countably many
of the components x; of x (in other words, for each f in C(X) there is
a countable subset C of I such that if x; = y; holds for each i in C, then
f(x) = f(v)). (Hint: First consider the case where f is a polynomial in the
components of x, and then use the Stone—Weierstrass theorem.)

(b) Show thatif A € %y (X), then x4 (x) depends on only countably many of the
components of x. (Hint: Check that the collection of sets A such that 4 (x)
depends on only countably many of the components of x is a ¢-algebra.)

(c) Show that if f: X — R is % (X )-measurable, then f(x) depends on only
countably many of the components of x.

(d) Show that the one-element subsets of X belong to #(X) but not to %y (X).
Conclude that %y (X) # A(X).
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13. Let X be the space of all ordinals less than or equal to the first uncountable
ordinal, and let X have the order topology (see Exercise 7.1.10). Find %, (X),
the Baire o-algebra on X. Is %y(X) equal to A(X)?

7.3 Signed and Complex Measures; Duality

This section is devoted to regularity for finite signed and complex Borel measures.
The main result is a measure-theoretic representation for the duals of certain Banach
spaces of continuous functions.

Let X be a locally compact Hausdorff space, and let f be a real- or complex-
valued continuous function on X. Then f is said to vanish at infinity if for every
positive number € there is a compact subset K of X such that | f(x)| < € holds at
each x outside K. We will denote by Cy(X) the set of all real-valued continuous
functions on X that vanish at infinity and by Cg (X) the set of all complex-valued
continuous functions on X that vanish at infinity.

Examples 7.3.1. Note that a continuous function f on R vanishes at infinity if and
only if lim,_, . f(x) = 0 and lim,_, .. f(x) = 0. Note also that every continuous
function on a compact Hausdorff space vanishes at infinity. See Exercises 1, 2, and 9
for some more examples, and see Exercise 3 for another characterization of the
continuous functions that vanish at infinity. O

Of course, Cy(X) and C§ (X ) are vector spaces over R and C, respectively. These
spaces are normed spaces: each continuous function that vanishes at infinity is
bounded (since a continuous function is bounded on a compact set), and so the
formula

£l = sup{|f ()] : x € X}
defines norms on Co(X) and C§ (X).

Proposition 7.3.2. Let X be a locally compact Hausdorff space. Then # (X) and
#C(X) are dense subspaces of Co(X) and C§ (X), respectively.

Proof. tis clear that 2 (X) and .# ©(X) are linear subspaces of Co(X) and C§ (X).
We need only show that they are dense. Suppose that f belongs to Cy(X) or to C§ (X)
and that € is a positive number. Choose a compact set K such that | f(x)| < € holds at
each x outside K, and use Proposition 7.1.9 to choose a function g: X — [0, 1] that
belongs to J# (X) and satisfies g(x) = 1 at each x in K. Let 2 = fg. Then & belongs
to # (X) or to # ©(X) and satisfies | f — /|| < €. Since ¢ is arbitrary, the proof is
complete. a

Proposition 7.3.3. Let X be a locally compact Hausdorff space. Then Cy(X) and
C§(X) are Banach spaces.

Proof. The only issue is the completeness of these spaces. So let { f,, } be a Cauchy
sequence in one of them. A standard argument (see the proof given in Sect. 3.2 of
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the completeness of Cla,b]) shows that there is a continuous function f such that
{fu} converges uniformly to f. We need only check that f vanishes at infinity. Let &
be a positive number, choose a positive integer n such that | f(x) — f, (x)| < € holds
at each x in X, and use the fact that f;, vanishes at infinity to choose a compact set
K such that |f,(x)| < € holds at each x outside K. Then

[ < 1f(x) = fa()[+ [ fa(x)] < 2¢
holds at each x outside K, and since € is arbitrary, the proof is complete. O

Let X be a locally compact Hausdorff space. A finite signed or complex measure
uon (X,%(X)) is regular if its variation || is regular (in the sense of Sect. 7.2). It
is convenient to note the following equivalent formulations of regularity.

Proposition 7.3.4. Let X be a locally compact Hausdorff space, and let L be a
finite signed or complex measure on (X,%(X)). Then the conditions

(a) W is regular,

(b) each of the positive measures appearing in the Jordan decomposition of | is
regular, and

(c) W is a linear combination of finite positive regular Borel measures

are equivalent.

Proof. Suppose that condition (a) holds, and let yt’ be one of the measures appearing
in the Jordan decomposition of u. Then ' satisfies u’ < || (consider how p’ arises
from a Hahn decomposition). Thus if A € #(X), if € is a positive number, and if U
is an open set that includes A and satisfies |u|(U) < |u|(A) + ¢, then p' (U —A) <
|u|(U—-A) < &g, and so

p(U)=p'(A)+p'(U-A) < p'(A)+e.

The outer regularity of u’ follows. The inner regularity of g’ can be proved in a
similar manner. Hence condition (a) implies condition (b).

Condition (b) certainly implies condition (c).

The proof that (c) implies (a) is similar to the proof that (a) implies (b) and makes
use of the fact that if u = ayu; +--- + o, Uy, where each ¢; is a real or complex
number and each ; is positive, then |u| < |og |uy + -+ | 04 | Un- O

Regularity makes possible the following approximation (see also Exercise 5).

Lemma 7.3.5. Let X be a locally compact Hausdorff space, and let L be a finite
signed or complex regular Borel measure on X. Then for each A in %8(X) and each
positive number € there is a compact subset K of A such that |(L(A) — u(B)| < &
holds whenever B is a Borel set that satisfies K C B C A.

Proof. Let A and € be as in the statement of the lemma. Use the regularity of ||
and Proposition 7.2.6 to choose a compact subset K of A such that |u|(A —K) < €.
Then each Borel set B that satisfies K C B C A also satisfies
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[u(A) = u(B)| = [u(A =B)| < [u|(A = B) < [u|(A-K) <&,
which completes the proof of the lemma. a

Let X be a locally compact Hausdorff space. We will denote by M, (X,R) the set
of all finite signed regular Borel measures on X and by M, (X,C) the set of all com-
plex regular Borel measures on X. It is easy to check that M,(X,R) and M,(X,C)
are linear subspaces of the vector spaces M(X,Z(X),R) and M(X,%#(X),C) of all
finite signed or complex measures on (X, %(X)). These larger spaces are Banach
spaces under the total variation norm (Proposition 4.1.8). Moreover M,(X,R) and
M, (X,C) are closed subspaces of M(X,%(X),R) and M(X,%(X),C) (to check
this, note that if u is regular, if || — v|| < €, and if A is a Borel set and U is an open
set chosen so that A C U and |u|(U — A) < &, then

VI(U—A) < [v—ul[+]ul(U-A) <2e).

It follows that M, (X ,R) and M, (X, C) are themselves Banach spaces under the total
variation norm.

Recall (see Sect. 4.1) that if (X, /) is a measurable space, if f is a bounded 7 -
measurable function on X, and if i is a finite signed measure on (X, .%7) with Jordan
decomposition 4 = u* — u~, then the integral of f with respect to u is defined by

[rau= [ rau*~ [rau-.

Likewise, if u is a complex measure with Jordan decomposition u = u; — U +
i3 — iy, then

/fdliZ/fd.m—/fdl.tz—i—i/fdm—i/fd/.u.

Theorem 7.3.6. Let X be a locally compact Hausdorff space. Then the map that
takes the finite signed (or complex) regular Borel measure UL to the functional f —
[ fdu is an isometric isomorphism of the Banach space M,(X,R) (or M,(X,C))
onto the dual of the Banach space Co(X) (or C§ (X)).

Proof. For each finite signed regular Borel measure (4 on X define a functional @,
on Cy(X) by @ (f) = [ fdu.Itis easy to see that @, is a linear functional on Cy(X)
and that

Dy ()] < [f ool 2]
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holds for each f and u (see the discussion at the end of Sect.4.1). Thus @, is
continuous and its norm satisfies

[P < [l e))

Moreover, u — @, defines a linear map @ from M,(X,R) to the dual of Cyp(X).
Analogous results hold for complex measures and complex-valued functions.

We need to show that @ is norm preserving and surjective. Let us begin with the
first of these tasks. In view of (1), it is enough to show that

[Pyl = [l 2

holds for each u. So let u belong to M,(X,R) or to M,(X,C), and let € be a
positive number. We can assume that ||| # 0. According to the definition of |||,

we can choose a finite partition of X into Borel sets A;, j =1, ..., n, such that
o1 lu(Aj)| > |lp]l — &. Now choose compact subsets K, ..., K of Ay, ..., A,
such that

il =& < X 1u(K))| < |l (K;)
J J

(see Lemma 7.3.5). We can assume that 1 (K;) # 0 holds for each j. Choose a
continuous function f that has compact support (and hence vanishes at infinity),
satisfies || f|| < 1, and is such that f(x) = u(K;)/|u(K;)| holds for each j and
each x in K (see Proposition 7.1.12). Let K = U;Kj. Then [i fdu = ¥; |u(K;| >
||| — €, while | [ge fdu| < |u|(K) < e. It follows that | [ fdu| > ||u|| — 2e.
Since f satisfies ||f|l < 1 and € is arbitrary, relation (2) follows. Thus @ is norm
preserving.

We turn to the surjectivity of ®. First consider the case of real-valued functions
and measures. Suppose that L is a continuous linear functional on Cy(X) that
is positive, in the sense that L(f) > 0 holds for each nonnegative f in Co(X).
The restriction of L to J£(X) is also positive, and so the Riesz representation
theorem (Theorem 7.2.8) provides a regular Borel measure y on X such that
L(f) = [ fdu holds for each f in ¢ (X). Lemma 7.2.7 implies that

u(X)=sup{L(f): fe X (X)and 0 < f <1},

and hence that (X) < ||L||; in particular, u is finite. Note that so far we have only
proved that L(f) = ®,(f) holds when f belongs to the subspace % (X) of Co(X).
However, since J¢ (X) is dense in Co(X) (Proposition 7.3.2), while L and @, are
continuous, the equality of L and ®, on Cy(X) follows. With this we have proved
that each positive continuous linear functional on Cy(X) is of the form @,,.

We need the following lemma to complete the proof of Theorem 7.3.6.

Lemma 7.3.7. Let X be a locally compact Hausdorff space. Then for each contin-
uous linear functional L on Cy(X) there are positive continuous linear functionals
Ly and L_ on Cy(X) such that L=L, —L_.
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Proof. For each nonnegative f in Cy(X) define L, (f) by

Li(f) =sup{L(g):g € Co(X)and 0 < g < f}. (3)
The relation

IL()] < ILI[llgllee < TIZ]flees

which is valid if 0 < g < f, implies that the supremum involved in the definition of
L (f) is finite and in fact that

Lo (f) < LIS llee- 4)

We need to check that if # > 0 and if f, f|, and f> are nonnegative functions in
Co(X), then

0<Ly(f),
Li(tf) =tL+(f), and
Li(fi+f2) =Li(fi) +L+(f2)

The first two of these properties are easy to check, and so we turn to the third. If g;
and g, belong to Cp(X) and satisfy 0 < g1 < fland0< g, < fo, then 0 < g1 + g2 <
fi+ f2, and so

L(g1) +L(g2) = L(g1+ &) < Ly (fi+ fo).
Since g; and g» can be chosen so as to make L(g;) + L(g») arbitrarily close to

Li(f1)+Ly(f>), the inequality

Li(fi)+Li(f2) <Ly (fi+f2)

follows. Now consider the reverse inequality. Suppose that g belongs to Cy(X) and
satisfies 0 < g < f] + f», and define functions g; and g, by g1 = gA fi and g, =
g — g1 Then g; and g; belong to Cyp(X) and satisfy 0 < g; < f; and 0 < g, < f>,
and so

L(g) = L(g1) +L(g2) < Ly (f1) +L+(f2)-

Since g can be chosen so as to make L(g) arbitrarily close to Ly (f1 + f2), the
inequality

L. (fi+f) <Ly (fi)+Li(f2)

follows. With this the third of our properties is proved.
Now use the formula

Lo(f) =L (f7)—Le(f), %)

where fT and f~ are the positive and negative parts of f, to extend the definition
of Ly to all of Cy(X). By imitating some arguments used in the construction of the



204 7 Measures on Locally Compact Spaces

integral (see Lemma 2.3.5 and Proposition 2.3.6), the reader can show that L, is
a linear functional on Cy(X). The positivity of L, is clear. Relations (4) and (5),
together with the positivity of L;., imply that |L; (f)| < ||L|||| /]| and hence that L
is continuous.

Define a functional L_ on Cy(X) by L_ = L, — L. The linearity and continuity of
L_ are immediate. Its positivity follows from its definition and the fact that L, (f) >
L(f) holds for each nonnegative f (let g = f in relation (3)). Since L=L, —L_,
the proof of the lemma is complete. O

Let us return to the proof of Theorem 7.3.6. Since we have already checked
that each positive continuous linear functional on Cy(X) is of the form @, the
surjectivity of ®@: M,(X,R) — Cy(X)* follows from Lemma 7.3.7. The extension
to the case of complex-valued functions and measures is easy: if L € Cg (X)*, then
there are functionals L, and L, in Co(X)* such that L(f) = L; (f) +iL,(f) foreach f
in Co(X) (that is, for each real-valued f in C§ (X)), and so if it and i, are the finite
signed regular Borel measures that represent L and L, then u; +ill; is a complex
regular Borel measure that represents L. O

We close this section by turning to those finite signed or complex measures v
on (X,#(X)) that have the form v(A) = [, fdu for some u-integrable f (here u
is a positive regular Borel measure on X). Two questions arise: Does the regularity
of v follow from the regularity of u? Can such measures v be characterized by a
version of the Radon—Nikodym theorem, even if y is not o-finite? The next two
propositions answer these questions.

These results will be used only in Sect. 9.4.

Proposition 7.3.8. Let X be a locally compact Hausdor{f space, let |l be a regular
Borel measure on X, let f belong to " (X, %(X), ), and let v be the finite signed
or complex measure on (X, #(X)) defined by v(A) = [, fdu. Then v is regular.

Proof. For each f in Z'(X,9(X),u) define a finite signed or complex measure
vy on (X,%(X)) by vf(A) = [, fdu. Let us deal first with the case where f is
the characteristic function of a Borel set B for which p(B) < +eo. In this case
Vv is the positive measure given by v¢(A) = u(ANB), and for each A in HA(X)
Proposition 7.2.6, applied to the measure t and the set A N B, implies that

v(A) = sup{v¢(K) : K C A and K is compact }. (6)

Thus vy is inner regular. The outer regularity of v, follows if for each A in #(X)
we use (6) (with A replaced by A€) to approximate A° from below by compact sets
and hence to approximate A from above by open sets.

We can use the regularity of v, for such characteristic functions to conclude first
that vz is regular if f is simple and integrable and then that vy is regular if f is an
arbitrary integrable function (see Propositions 3.4.2 and 4.2.5). a

Proposition 7.3.9. Let X be a locally compact Hausdor{f space, let |l be a regular
Borel measure on X, and let v be a finite signed or complex regular Borel measure
on X. Then the conditions
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(a) there is a function f in L1(X,%(X),u) such that v(A) = [, fdu holds for
each A in B(X),

(b) v is absolutely continuous with respect to |1 (each Borel subset A of X that
satisfies 1L(A) = 0 also satisfies v(A) = 0), and

(c¢) each compact subset K of X that satisfies L(K) = 0 also satisfies v(K) =0

are equivalent.

Proof. 1t is clear that condition (a) implies condition (b) and that condition (b)
implies condition (c).

If A € #(X), then Lemma 7.3.5 implies that for every positive € there is a
compact subset K of A such that |v(A) — v(K)| < €. Consequently if condition (c)
holds and if A satisfies pt(A) =0, then A must also satisfy v(A) = 0. Thus condition
(c) implies condition (b).

Next suppose that condition (b) holds. The difficulty in using the Radon—
Nikodym theorem (Theorem 4.2.4) to derive condition (a) is that we are not
assuming that y is o-finite. We take care of this as follows. Use the regularity of
v to choose an increasing sequence {K,} of compact sets such that lim, |V|(K,) =
|[v|(X). Then, because of the regularity of u, u(K,) is finite for each n, and so the
measure [y defined by up(A) = u(AN(U,K,)) is o-finite. Since v is absolutely
continuous with respect to p and since |V|(X — (UnK,)) = 0, v is also absolutely
continuous with respect to po. Thus the Radon-Nikodym theorem provides a
function f in £'(X, %(X), o) such that v(A) = [, f do holds for each A in Z(X).
If we modify f so that it vanishes outside U, K, then v(A) = [, fdu holds for each
A in Z(X). With this we have shown that condition (b) implies condition (a). O

Proposition 7.3.10. Let X be a locally compact Hausdorff space, and let |l be a
regular Borel measure on X. For each f in £ (X,%(X), 1) define a finite signed or
complex measure vy on (X, (X)) by means of the formula v¢(A) = [, fdu. Then
the map f — Vy induces a linear isometry of L' (X, %(X), 1) onto the subspace of
M (X,R) (or of M(X,C)) that consists of those v that are absolutely continuous
with respect to L.

Proof. The proposition is an immediate consequence of Propositions 7.3.8 and 7.3.9
and the fact that || v¢|| = [|f|du (see Proposition 4.2.5). O

Exercises

1. Describe % (X) and Cyp(X) rather explicitly in the case where X is the space
{(xl,X2) S R?: (Xl,xz) # (0,0)}

2. Give an example of a continuous function f: R> — R that does not belong to
Co(R?) but satisfies lim, .. f(tx1,tx) = 0 for each nonzero (x1,x;) in R,



206

10.

7 Measures on Locally Compact Spaces

. Let X be a locally compact Hausdorff space, let X* be its one-point compact-

ification, and let x.. be the point at infinity. Show that a function f: X — R
belongs to Cy(X) if and only if the function f*: X* — R defined by

P { flx) ifxeX,

0 if X = Xeo,

is continuous.

. Show that the decomposition L = L — L_ given in the proof of Lemma 7.3.7

is minimal, in the sense that if L = L| — L, is another decomposition of L into
a difference of positive linear functionals, then L;(f) > Ly (f) and Ly(f) >
L_(f) hold for each nonnegative f in Cy(X).

. Prove the converse of Lemma 7.3.5: if X is a locally compact Hausdorff space,

if u is a finite signed or complex measure on (X, (X)), and if u satisfies the
conclusion of Lemma 7.3.5, then u is regular.

. Let X be a locally compact Hausdorff space, and let u be a regular Borel

measure on X such that (X ) = +oo. Show that there is a nonnegative function
Fin Cy(X) such that [ fdu = +oo.

. Let X be a locally compact Hausdorff space. Show that each positive linear

functional on Cy(X) is continuous.

. Show that if X is a second countable locally compact Hausdorff space, then

Co(X) is separable. (Hint: Use Exercises 7.1.9 and 7.3.3.)

. Let Y be the space of all countable ordinals, with the order topology (see Exer-

cise 7.1.10). Show that Y is not compact, but Co(Y) = £ (Y).

Let X be a compact Hausdorff space, let %y(X) be the Baire o-algebra on
X (see Exercise 7.2.8), and let C(X) be the space of all continuous real-
(or complex-) valued functions on X. Give C(X) the norm || - || defined by
I f]leo = sup{] f(x)| : x € X }. Show that the map that assigns to a finite signed (or
complex) measure 1 on (X, % (X)) the functional f — [ fdu is an isometric
isomorphism of M(X,%y(X),R) (or of M(X,%y(X),C)) onto C(X)*. (Hint:
Modify the proof of Theorem 7.3.6; see Exercises 7.2.9 and 7.2.10.)

7.4 Additional Properties of Regular Measures

This section is devoted to several useful facts about regular measures.

Proposition 7.4.1. Let X be a locally compact Hausdorff space, let o/ be a o-
algebra on X that includes %(X ), and let |1 be a regular measure® on (X ,<7). Then
the union of all the open subsets of X that have measure zero under [l is itself an
open set that has measure zero under [l

>Note that u is a positive measure, since its specification has no modifier such as “signed” or
“complex.”
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Proof. Let % be the collection of all open subsets of X that have measure zero
under u, and let U be the union of the sets in 2. Then U is open and so belongs to
/. If K is a compact subset of U, then K can be covered by a finite collection Uy,
Us, ..., U, of sets that belong to %, and so we have

u(K) < i“(Ui) =0.

This and the inner regularity of u imply that u(U) = 0. O

Let us continue for a moment with X and p having the same meaning as in the
statement of Proposition 7.4.1. Then X has a largest open subset of (i-measure zero,
namely the union of all its open subsets of t-measure zero. The complement of this
open set is called the support of 1t and is denoted by supp(ut). Of course supp(ut) is
the smallest closed set whose complement has measure zero under . Furthermore,
a point x belongs to supp(ut) if and only if every open neighborhood of x has positive
measure under L.

If u is a finite signed or complex regular Borel measure on a locally compact
Hausdorff space, then its support is defined to be the support of its variation |].

Examples 7.4.2. It is easy to check that if, as usual, A is Lebesgue measure on
R, then supp(A) = R. At the other extreme, if Oy is the point mass on (R, %(R))
concentrated at x, then supp(dy) = {x}. See Exercises 1 through 5 for more
information about supports. O

We turn to two theorems that deal with the approximation of measurable
functions by continuous functions. These results are often useful, since continuous
functions are in many ways easier to handle than are measurable functions.

Proposition 7.4.3. Let X be a locally compact Hausdorff space, let o/ be a o-
algebra on X that includes B(X), and let | be a regular measure on (X, /).
Suppose that 1 < p < +eo. Then J¢ (X) is a dense subspace of £P(X, o, 1, R)
and so determines a dense subspace of LP (X, </, U, R).

Note that Proposition 7.4.3 is a generalization of Proposition 3.4.4.

Proof. 1t is clear that ¢ (X) C .£P(X,</,u,R). Since the simple functions in
LP(X, o/ ), R) are dense in £P(X,o7,1,R) (Proposition 3.4.2), it suffices to
show that if A belongs to <7 and has finite measure under u, then there are functions
fin Z (X) that make || x4 — f||, arbitrarily small.

So let A be as specified above, and let € be a positive number. Use the outer
regularity of u to choose an open set U that includes A and satisfies u(U) <
W(A) + €, and use Proposition 7.2.6 to choose a compact set K that is included
in A and satisfies u(K) > 1 (A) —e. Let f belong to ¢ (X ) and satisfy yx < f < yv
(see Proposition 7.1.9). Then | x4 — f| < xv — Xk, and so

la = fllp < llxw = xxllp = (u(U = K)) /P < (2¢)"/7;

since (28)1/ P can be made arbitrarily small by a suitable choice of €, the proof is
complete. O
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Theorem 7.4.4 (Lusin’s Theorem). Let X be a locally compact Hausdorff space,
let o be a o-algebra on X that includes B(X), let U be a regular measure on
(X,47), andlet f: X — R be of -measurable. If A belongs to <7 and satisfies L(A) <
oo and if € is a positive number, then there is a compact subset K of A such that
U(A—K) < € and such that the restriction of f to K is continuous. Moreover, there
is a function g in # (X) that agrees with f at each point in K; if A # @& and f is
bounded on A, then the function g can be chosen so that

supf{[¢(x)] : x € X} < sup{|f(x)| : x € A}. (1)

Proof. First suppose that f has only countably many values, say a;, as, ...,

and that these values are attained on the sets Ay, Aj, .... Use Proposition 1.2.5
to choose a positive integer n such that u(A — (U?_,A4;)) < €/2, and then use
Proposition 7.2.6 to choose compact subsets Kj, ..., K, of ANAj, ..., ANA, that

satisfy 7' | n((ANA;) —K;) < €/2. Let K = U | K;. Then K is a compact subset of
A, and

HA—K) = u(A— (U, A)) + S ((ANA) —K) < 2/2+2/2 = ¢.
i=1

Furthermore, since f is constant on each Kj, its restriction to K is continuous
(see D.6). Thus K is the required set.

Now let f be an arbitrary .« -measurable function. Then f is the uniform limit of a
sequence { f, } of functions, each of which is .«7-measurable and has only countably
many values (for example, f, might be defined by letting f,(x) be k/n, where k is
the integer that satisfies k/n < f(x) < (k+ 1)/n). According to what we have just
proved, for each n there is a compact subset K,, of A such that u(A — K,,) < £/2"
and such that the restriction of f;, to K, is continuous. Let K = M, K,,. Then K is a
compact subset of A,

HA—K) <Y uA—K,) <Y e/2"=¢,

and f, as the uniform limit of the functions f;,, each of which is continuous on K, is
itself continuous on K. With this the first part of the theorem is proved.

We turn to the construction of a function g in J#(X) that agrees with f on K.
The one-point compactification X* of X is normal (Proposition 7.1.7), and so the
Tietze extension theorem (Exercise 7.1.6) provides a continuous function 2*: X* —
R that agrees with f on K. Let g: X — R be the product ip, where £ is the restriction
of h* to X and p is a function that belongs to . (X) and satisfies p(x) = 1 at each
x in K (Proposition 7.1.9). Then g belongs to .# (X) and agrees with f on K. In
order to make sure that g satisfies inequality (1), let B = sup{|f(x)| : x € A}, define
¢o: R— Rby
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—-B ift < -B,
@(1)=qt if-B<t<B,
B ifB<1t,
and replace g with ¢ og. a

Note that Proposition 7.4.3 and Theorem 7.4.4 can be extended to apply to
complex-valued functions. Everything except for inequality (1) can be proved by
dealing with real and imaginary parts separately. For the proof of (1), let B =
sup{|f(x)|: x € A}, and define ¢: C — C by

t if [t| <B,
o(t) ={

‘i—‘B if |t| > B.

Then ¢ is continuous, and, as before, the function g can be replaced with ¢ o g.

The reader should note that in certain cases Lusin’s theorem can be used to
characterize measurable functions (see Exercise 7.5.2). In fact, Bourbaki defines
a function to be measurable if it satisfies the conclusion of Lusin’s theorem.

For our next result we need to recall two definitions. Let X be a topological space.
A function f: X — (—oo,+oo] is lower semicontinuous if for each x in X and each
real number A that satisfies A < f(x) there is an open neighborhood V of x such that
A < f(1) holds at each 7 in V. It is easy to see that f is lower semicontinuous if and
only if for each real number A the set {x € X : A < f(x)} is open. It follows that
the supremum of a collection of continuous (or lower semicontinuous) functions is
lower semicontinuous and that each lower semicontinuous function on a Hausdorff
space is Borel measurable.

Now suppose that X is an arbitrary set and that J# is a family of [—eo, +oo]-valued
functions on X. Then 47 is directed upward if for each pair hy, hy of functions in
S there is a function & in JZ that satisfies 41 < h and Ay < h. Note that if JZ is
directed upward and if &1, ..., h, belong to 57, then there is a function 4 in ¢ that
satisfies h; < hfori=1, ..., n.

Proposition 7.4.5. Let X be a locally compact Hausdorff space, let </ be a G-
algebra on X that includes 9(X), and let U be a regular measure on (X, /).
Suppose that f: X — [0,+o0] is lower semicontinuous and that 7 is a family of
nonnegative lower semicontinuous functions that is directed upward and satisfies

f(x) =sup{h(x): h € A} (2)
at each x in X. Then

/fd,u:sup{/hd,u:hejf}.



210 7 Measures on Locally Compact Spaces

Proof. Certainly [hdp < [ fdu holds whenever & belongs to .7#. Thus we need
only show that for each real number A that satisfies A < [ fdu there is a function
h that belongs to . and satisfies A < [hdy. So let A be a real number (which we
will hold fixed) that satisfies A < [ fdu.

We begin by approximating f with simple functions in the following way. For
each positive integer n define open sets U, ;, i =1, ..., n2", by

Uni={xeX: f(x)>i/2"},
and then define a function f,: X — R by

1 n2"

fn = ﬁ;xUn,i'

Each f, is Borel measurable and hence «/-measurable. It is easy to check that
fa(x) =0 if f(x) =0, that f,,(x) = i/2" if 0 < f(x) < n and i is the integer that
satisfies i/2" < f(x) < (i+1)/2", and that f,(x) =nif n < f(x). Consequently { f, }
is a nondecreasing sequence of nonnegative functions for which f(x) = lim, f,(x)
holds at each x in X, and so the monotone convergence theorem (Theorem 2.4.1)
implies that | fdu = lim, [ f, du. Hence we can choose a positive integer N such
that A < [ fydu. The plan now is to choose a function g that satisfies A < [gdu
but is a bit more convenient than fy and then to choose a function 4 in 7 that is at
least as large as g.

Since [ fvdu = (1/2V)3;u(Uy;), we can use the regularity of u to get
compact subsets K; of Uy, i = 1, ..., N2V, such that A < (1/2V)3,; u(K;). Let
8= (I/ZN)ZiZKi'

Note that g(x) < fiy(x) < f(x) holds at each x for which f(x) > 0 and hence at
each x in UIIVZNKi. Thus (see also (2)) for each x in UIIVZNKi there is a function /,
in 7 such that g(x) < h(x). Since A, is lower semicontinuous and g is a positive
multiple of a finite sum of characteristic functions of compact (and hence closed)
sets, we can choose an open neighborhood U, of x such that g(z) < h.(¢) holds at
each 7 in U,. Carrying this out for each x in UN2" K; gives an open cover of UM K;;

since UL 2V K; is compact, we can get first a finite subcover Uy, ..., Uy, of UY Mg
and then a function / in .77 such that hxj. < hholds for j =1, ..., m (recall that 57
is directed upward). The function 4 satisfies g < h and so satisfies

1
A< Z—NZIJ(Ki):/gle S/hdlL

Thus we have produced the required function %, and the proof is complete. a
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Exercises
1. Let {a,} be a sequence of positive real numbers such that >, a, < +oo, let

10.

{xx} be an arbitrary sequence of real numbers, and let u be the measure on
(R, %(R)) defined by u = ¥, a, 8, . Find supp(u).

. Construct a finite signed regular Borel measure {t on R such that supp(u™) and

supp(u ) are both equal to R.

. Let X be a locally compact Hausdorff space, and let u be a regular Borel

measure on X. Show that a point x in X belongs to supp(ut) if and only if every
nonnegative function f in ¢ (X) that satisfies f(x) > 0 also satisfies [ fdu > 0.

. Let X be an uncountable space that has the discrete topology (and so is locally

compact), and let X* be the one-point compactification of X. Show that there is
no regular Borel measure ¢t on X* such that supp(u) = X*.

. Let X and Y be as in Exercise 7.1.10.

(a) Show that there is no regular Borel measure i on X such that supp(p) =X.
(b) Is there a regular Borel measure i on Y such that supp(u) =Y?

. Give a proof of Lusin’s theorem that does not depend on the Tietze extension

theorem. (Hint: Construct real-valued .<7-measurable functions fi, f>, ... such
that each f,, has only countably many values and such that | f, (x) — f(x)| < 1/2"
holds for each n and x. Show that by applying part of the argument in the first
paragraph of the proof of Theorem 7.4.4 to the functions fi, f> — fi, f3 — fa,

. and then using Proposition 7.1.12, we can construct functions gy, g2, ...
in Z (X) such that Y, g, belongs to Cp(X) and agrees with f on a suitably
large compact subset of A. Then modify Y, g, so that it belongs to .7 (X) and
satisfies inequality (1).)

. Let X be a topological space and let A be a subset of X. Show that x4 is lower

semicontinuous if and only if A is open.

. Let X be a topological space and let f: X — (—co, o] be lower semicontinu-

ous. Show that if K is a nonempty compact subset of X, then
(a) f is bounded below on K, and
(b) there is a point xg in K such that f(xo) = inf{f(x) : x € K}.

. Let X be a locally compact Hausdorff space, and let f be a nonnegative lower

semicontinuous function on X. Show that

f(x) =sup{g(x):g€ #(X)and 0 < g < f}

holds at each x in X.

Show by example that in Proposition 7.4.5 we can not replace the assumption
that the functions in 7 are lower semicontinuous with the assumption that they
are Borel measurable. (Hint: Let X = R, let u be Lebesgue measure, let f be
the constant function 1, and choose 77 in such a way that [ 2du = 0 holds for
each hin J7.)



212 7 Measures on Locally Compact Spaces

7.5 The p*-Measurable Sets and the Dual of L'

Let X be a locally compact Hausdorff space, and let I be a positive linear functional
on J¢(X). In Sect.7.2 we constructed an outer measure y* on X by using the
equation

w*(U)=sup{I(f): f € #(X)and f < U}, (1)
to define the outer measure of the open subsets of X, and then using the equation
u*(A) =inf{u*(U):U isopenand A CU} (2)

to extend u* to all the subsets of X. Let .#;+ be the c-algebra of *-measurable
sets. We showed that Z(X) C .+ and that the restrictions u and y; of u* to A(X)
and to ./« are regular measures such that

[rau= [ ram=1s)

holds for each f in J# (X).

Although the Borel measure u is appropriate for most purposes, its extension L
is occasionally useful (see Theorem 7.5.4 and Exercise 2). In this section we will
study a few of the properties of iy and of .#Z),+.

Proposition 7.5.1. Let X be a locally compact Hausdorff space, and let u* and
My be as in the introduction to this section. If B is a subset of X, then the
conditions

(a) Be %y*,
(b) BNU € M+ whenever U is an open subset of X for which u*(U) is finite, and
() BNK € .#,+ whenever K is a compact subset of X

are equivalent.

Proof. Since the open subsets of X and the compact subsets of X belong to .+,
condition (a) implies conditions (b) and (c).

Next assume that condition (b) holds. According to the discussion preceding
Proposition 1.3.5, we can prove that B is g*-measurable by showing that

pH(A) = u (ANB) +u (AN BY) 3)

holds for each subset A of X that satisfies 1*(A) < 4. So let A be such a set, and
let U be an open set that includes A and satisfies *(U) < 4. Then condition (b)
says that U N B is i*-measurable, and so

' U)=p"(UNB)+u"(UNB) = u*(ANB)+u*(ANB°).

Since U can be chosen so as to make p*(U) arbitrarily close to t*(A), inequality (3)
follows. With this the proof that (b) implies (a) is complete.
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Finally, suppose that condition (c) holds. We will show that condition (b) follows.
Let U be an open set such that u*(U) < +-eo, and choose a sequence {K,} of
compact subsets of U such that u*(U) = sup, u*(K,). Then on the one hand,
condition (c) says that each BN K, belongs to .+, while on the other hand,
BN (U —U,K,), as a subset of U — U, K,, has y*-measure 0 and so belongs to
AMy+. Since BN U is the union of these sets, it also belongs to .+ and condition
(b) follows. a

The following lemma is needed for our proof of Proposition 7.5.3, which is an
important technical fact about the o-algebra .#),~ of u*-measurable sets.

Lemma 7.5.2. Let X be a locally compact Hausdorff space, let </ be a 6-algebra
on X that includes HB(X), and let | be a regular measure on (X, ). If K is a
compact subset of X such that (K) > O, then there is a compact subset Ky of K
such that n(Ky) = w(K) and such that each open subset U of X that meets K
satisfies (U NKp) > 0.

Proof. The proof here is very similar to that of Proposition 7.4.1: here we let U
be the union of the open sets V such that u(V NK) = 0, and we check that every
compact subset of U N K has measure zero. It then follows from Proposition 7.2.6
that (U NK) =0, and so we can let Ky be KNU*. O

Proposition 7.5.3. Let X be a locally compact Hausdorff space, and let u*, M+,
and U be as in the introduction to this section. Then there is a disjoint family 6y of
compact subsets of X such that

(a) ifK € 6, then ;1 (K) >0,

(b) if U is open, if K € 6y, and if U NK # @, then ) (UNK) > 0,

(c) ifA € My and if Ui (A) < 4o, then ANK # @ for only countably many sets K
in 6o, and

m(A) =Y m(ANK),
K

(d) a subset A of X belongs to .#~ if and only if for each K in €y the set ANK
belongs to M)+, and

(e) a function f: X — R is .M y+-measurable if and only if for each K in €y the
function fyg is M y~-measurable.

Proof. Let E be the collection of all families 6 of compact subsets of X such that

(i) the sets in ¢ are disjoint from one another,
(ii) if K € €, then y;(K) > 0, and
(iii) if U is open, if K € €, and if UNK # &, then u;(UNK) > 0.

Note that Z contains & and so is nonempty, and that Z is partially ordered
by inclusion. Furthermore, if =y is a linearly ordered subcollection of =, then
UZo belongs to Z and so is an upper bound for Zy. Hence Zorn’s lemma (see
Theorem A.13) implies that = has a maximal element.
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Let %, be a maximal element of Z. We will check that % satisfies properties (a)
through (e). Properties (a) and (b) are immediate.

We turn to property (c). Suppose that A belongs to .#,,+ and satisfies u;(A) <
+oo, and use (2) to choose an open set U such that A C U and p(U) < +eo.
Then each set K in % that meets A also meets U and so, by property (b), satisfies
11 (UNK) > 0. Since 1 (U) < +eo and the sets in %) are disjoint from one another,
there can for each n be only finitely many sets K in 4 such that y;(UNK) > 1/n
and hence only countably many sets K in % such that i; (UNK) > 0. Since A C U,
it follows that only countably many of the sets in % meet A.

Now consider the second half of (c). To prove that iy (A) =Yg 1 (ANK), where
K ranges over those sets in 4 that meet A, we need only show that A — (Ux(ANK))
has pj-measure zero. But if that set had positive measure, then according to
Proposition 7.2.6 and Lemma 7.5.2, it would include a compact subset K that would
satisfy p; (K) > 0 and p; (UNK) > 0 for each open set U such that U NK # &. Such
a set K would be disjoint from all the sets in 6p. This cannot happen, however, since
it would contradict the maximality of the family %,. With this the proof of property
(c) is complete.

To begin the proof of property (d), suppose that A is a set such that ANK € .4+
holds for each K in 4. According to Proposition 7.5.1, it is enough to show that
ANL € .#+ for an arbitrary compact subset L of X. So let L be such a set. Part (c) of
the current proposition says that L meets only countably many of the sets in % and
that p; (L —U,K,) =0, where {K,} is the collection of sets in % that meet L. Thus
ANLis the union of the countable collection of sets of the form AN K, NL, together
with a subset of the p;-null set L — U,Kj,. Since all these sets are y*-measurable,
the measurability of A follows and half of property (d) is proved. The converse half
is immediate.

Property (e) follows from property (d), since for each Borel subset B of R and
each K in 6 we have f~!(B)NK = (fyx) '(B)NK. O

Let us turn to an application of the preceding result. Suppose that (X,.<7, 1) is an
arbitrary measure space and that T is the map from L™ (X,.7, ) to (L' (X,.o/, u))*
that associates to each (g) in L (X, o, 1) the functional 7}, defined by

T (1)) = [ fedu @

(see Sect.3.5). Recall that 7 is an isometric isomorphism of L*(X,.«/, 1) onto a
subspace of (L'(X,,u))* (Proposition 3.5.5). Recall also that T is surjective
if (X,<7,u) is o-finite but fails to be surjective in some other situations (see
Theorem 4.5.1 and the example at the end of Sect.4.5). We now use Proposi-
tion 7.5.3 to show that the map T is surjective for a large class of not necessarily
o-finite spaces.

Theorem 7.5.4. Let X be a locally compact Hausdorff space, and let u*, #+, and
1 be as in the introduction to this section. Then the map T given by Tio((f)) =

[ fgdu is an isometric isomorphism of L™ (X, My, 1) onto (L' (X, My, 101))*.
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Proof. In view of the preceding discussion, only the surjectivity of T needs to be
checked. Let F belong to (L'(X,.#y~,11))*, and let %, be a disjoint family of
compact subsets of X for which properties (a) through (e) of Proposition 7.5.3 hold.
For each K in %4 consider the measure space (K, #x, k), where .#x is the o-
algebra consisting of those subsets of K that belong to .#,+ and Lk is the restriction
of ty to M. Let Fx be the functional on L!(K,.#k, k) defined by Fx((f)) =
F({f")), where f’ is the function on X that agrees on K with f and that vanishes
outside K. Since Lk is a finite measure, there is (Theorem 4.5.1) an .#x-measurable
function g; on K such that

sup{lex (x)] : x € K} = [|Fg || < [|F| ®)

and such that Fx ((f)) = [x fex dLik holds for each (f) in L' (K, #, ux). For each
K in 6y choose such a function gg. Let g be the function on X that vanishes outside
U% and that for each K in % agrees with gx on K. It follows from part (e) of
Proposition 7.5.3 and inequality (5) that g € £ (X, A+, 11).

Let us check that F' = T . It is clear that if f is a member of LYX, My, 111)
that vanishes outside some K in 6o, then F((f)) = T(y)((f)). If f is an arbitrary
function in £ (X, Mg+, M), then f vanishes outside the union of a sequence of sets
of finite measure (Corollary 2.3.11); thus according to part (c) of Proposition 7.5.3,
there is a sequence {K,} of sets in %, such that f vanishes almost everywhere
outside U, K. Since the functionals F' and T, agree on each (fxx,) and since
limy || f — 3N, fxx, |1 =0, it follows that F((f)) = Tio)({f))- Thus F = T},), and
the proof is complete. O

It is natural to ask whether in Theorem 7.5.4 the measure space (X, #+, 1)
can be replaced with (X, 2(X), it). This change can of course be made if u; and u
are o-finite and can also be made in certain other situations (see Theorem 9.4.8); it
cannot be made in general (see Fremlin [47]).

We are now in a position to sketch the relationship of the treatment of integration
on locally compact Hausdorff spaces given here to that given by Bourbaki (see [18]).

Let X be a locally compact Hausdorff space and let .#, (X) be the set of all
[0, +ec]-valued lower semicontinuous functions on X. Suppose that [ is a positive
linear functional on ¢ (X) (in Bourbaki’s terminology, I is a positive Radon
measure on X). Bourbaki defines a function I*: ., (X) — [0, 4] by

I'(f) = sup{l(g) : g € A (X) and 0 < g < f}
and then uses the formula
I'(f) =inf{I"(h): h e S (X) and f < h}
to extend I* to the set of all [0, +oo]-valued functions on X. He checks that I* satisfies

F(f+g) <I(f)+1'(g) (6)
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and
I'(af) =al*(f) (7

for all f,g: X — [0,4c] and all a in [0, +ee). Of course, /*(0) = 0. It follows that
the set .#! of functions f: X — R for which I*(|f|) < 4o is a vector space over
R and that the function Ny : .#! — R defined by Ny (f) = I*(|f|) is a seminorm on
Z'. Bourbaki then defines .#’! (X, 1) to be the closure of # (X) in® .Z! (of course
Z!is given the topology determined by N;), and extends / from .# (X) to £ (X,I)
by letting

1(f) = im1(f,) 8)

hold whenever { f,, } is a sequence of functions in .2 (X) for which lim, N, (f,, — f) =
0 (check that the limit in (8) exists and depends only on f). He calls the functions
that belong to ' (X,I) I-integrable, and he calls the extension of I to £ (X,I)
the integral; he often writes’ [ fdI in place of I(f). He calls a function f: X — R
I-measurable if for each compact subset K of X and each positive number € there is
a compact subset L of K that satisfies I (yx_1) < € and is such that the restriction
of f to L is continuous. Furthermore, he calls a subset A of X I-integrable if y, is
I-integrable and I-measurable if }, is I-measurable.

The following theorem shows how these concepts are related to those treated
earlier in this chapter.

Theorem 7.5.5. Let X be a locally compact Hausdorff space, let I be a positive
linear functional on ¥ (X), let ' (X ,I) be as defined in the preceding paragraphs,
and let W*, M+, and |11 be as defined at the beginning of this section. Then

(a) ZYX, 1) =LY X, My, 11, R),

() [fdl = [ fduy holds for each f in L' (X,I),

(c) a subset A of X is I-measurable if and only if it belongs to M)+, and

(d) afunction f: X — R is I-measurable if and only if it is .#+-measurable.

Proof (A Sketch). It follows from Proposition 7.4.5 and Exercise 7.4.9 that

Nﬁ:/ﬂm )

holds for each f in #;(X) and then from (9), together with the additivity and
homogeneity of the integral, that (6) and (7) hold for all f,g: X — [0,+co] and

SNote that I* (| f|) = I(|f|) < +oo holds for each f in #"(X) and hence that ¢ (X) is included in
T

7 Actually, he usually calls his positive linear functional u, and he writes u(f) and [ fdu, rather
than /(f) and [ fdI; such notation will not be used in this book, since we have been using g to
denote a measure.
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all a in [0, +e0).8 Consequently .#! is a vector space and N; is a seminorm on it.
The reader should check that

r ()= [ 1f1dwm (10)

holds for each f in .Z l(X My, 11, R) (use (9) and an appropriate extension of
Lemma 6.3.12 to the case of functions on locally compact Hausdorff spaces).

In view of (10), Proposition 7.4.3 implies that Jl(X,///,l*,ul,R) is included
in Z1(X,I) and that [ fdu = [ fdI holds for each f in LV(X, .-, 11, R).
The reverse inclusion is left to the reader (use (9) to show that if f € & 1(X ),
then there is a sequence {f,} in J#(X) that converges to f almost everywhere
with respect to u; and satisfies lim, Ny (f — f,) = 0; then use the completeness of
L! (X, Ay, 11, R)). With this parts (a) and (b) of the theorem are proved.

Part (d) follows from Lusin’s theorem (Theorem 7.4.4) and Exercise 2. Finally,
part (c) is a special case of part (d). O

Note that if / is a positive linear functional on ¢ (X), then

for each compact subset K of X there is a number ck such
that |7(f)| < ck|| || holds whenever f belongs to J# (X) (11)
and satisfies supp(f) C K

(choose a function g that belongs to .# (X)) and satisfies yx < g, and let cx be I(g)).
Bourbaki calls a (not necessarily positive) linear functional 7 on J# (X) a Radon
measure on X if it satisfies (11). Since each difference of positive linear functionals
on J# (X) satisfies (11), each such difference is a Radon measure. The proof of
Lemma 7.3.7 can be modified so as to show that every Radon measure on X is the
difference of positive Radon measures on X (that is, of positive linear functionals
on J# (X)). Thus the set of Radon measures on X is the vector space generated by
the set of positive linear functionals on % (X).
Note that the formula

1= [ rera) - [ rna

defines a Radon measure on R; this Radon measure cannot be represented in terms
of integration with respect to a signed measure on (R, #(R)) (recall that the positive
and negative parts of a signed measure cannot both be infinite). See, however,
Exercise 6.

8Bourbaki develops integration theory without first developing measure theory; his proofs, for
example, of (6) and (7) are therefore quite different from those given here.
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Exercises

1. Show that the assumption that A € .#,+ can be omitted from part (c) of
Proposition 7.5.3; that is, show that if u*(A) < 4o, then ANK # & holds for
only countably many of the sets K in %y, and

W(A) = Y u(ANK).
K

2. Let X, u*, and u; be as in the introduction to this section, and let f be a real-
valued function on X. Suppose that for each compact subset K of X and each
positive € there is a compact subset L of K such that

(i) wm(K—L)<e, and
(i1) the restriction of f to L is continuous.

Show that f is .#)+-measurable. (Note that this is a sort of converse to
Lusin’s theorem and that it explains one of the remarks following the proof of
Theorem 7.4.4.)

3. Let X be a locally compact Hausdorff space, let < be a c-algebra on X that
includes #(X), and let v be a regular measure on (X,.<”). Define a positive
linear functional 7 on J¢ (X) by I(f) = [ fdv. Show that if u*, .4, and u;
are associated to / as in this section, then &7 C .#),~ and v is the restriction of
Uy to .

4. Show by example that the assumption of o-finiteness can not be omitted in
Exercise 7.2.3. (Hint: See Exercise 7.2.4.)

5. Let X, I, u*, #yu~, u, and y; be as in the introduction to this section. Suppose
that 1 < p < oo,

(a) Show that if f € £P(X,. Ay, 1), then there is a function that belongs to
LP(X,B(X),u) and agrees with f p-almost everywhere.

(b) Conclude that L” (X, .#y+, 11) and LP (X, (X ), 1) are isometrically isomor-
phic to one another.

6. Show that if / is a Radon measure on the locally compact Hausdorff space X,
then there are regular Borel measures (t; and y; on X such that I(f) = [ fdu, —
J fdus holds for each f in # (X).

7.6 Products of Locally Compact Spaces

This section is devoted to the study of products of regular Borel measures on
locally compact Hausdorff spaces. In Chap. 5 we proved that if y and v are o-finite
measures on measurable spaces (X, /) and (¥, %), then there is a unique measure
U Xxvon (X xY,o x B) such that (1 x V)(A x B) = u(A)v(B) holds for each A
in o/ and each B in . Now assume that X and Y are locally compact Hausdorff
spaces. Then X x Y is a locally compact Hausdorff space, and it would be convenient
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if for each pair of regular Borel measures on X and Y, the constructions in Chap. 5
gave a regular Borel measure on X x Y. However, two problems arise. First, regular
Borel measures can fail to be o-finite, and so the earlier theory can fail to apply.
Second, the product c-algebra Z(X) x (Y ) can fail to contain all the Borel subsets
of X x Y (see Exercise 5.1.8), in which case no measure on Z(X) x #(Y) can
be regular.

We will begin by proving that these difficulties cannot arise if the spaces X
and Y have countable bases for their topologies; then we will turn to a theory of
product measures that is suitable for Borel measures on arbitrary locally compact
Hausdorff spaces. Lemma 7.6.1 and Proposition 7.6.2 suffice for most applications.
The remaining parts of this section will be used only in Chap.9 and should be
skipped by most readers.

Let us recall some notation. Suppose that X and Y are sets and that E is a subset
of X x Y. For each x in X and each y in Y the sections Ey and E” are the subsets of
Y and X given by

Ex:{er: ('xay) GE}
and
EY={xeX:(x,y) €E}.

Likewise, if f is a function whose domain is X x Y, then for each x in X and each y
in Y the sections f; and f” are the functions on Y and X defined by

f(y) = f(x,y)
and
(%) = fxy).
The following lemma summarizes some useful elementary facts.

Lemma 7.6.1. Let X andY be Hausdorff topological spaces, and let X X Y be their
product. Then

(a) the product c-algebra B(X) x B(Y) is included in B(X xY),

(b) if E € B(X XY), then for each x in X the section Ex belongs to B(Y), and for
eachyinY the section E¥ belongs to B(X), and

©) iff: X xY — Ris B(X xY)-measurable, then for each x in X the section f; is
B(Y )-measurable, and for each'y in Y the section f7 is B(X)-measurable.

Proof. The projection ) of X x Y onto X is continuous and so is measurable with
respectto (X xY) and #(X) (Lemma 7.2.1). Likewise, the projection m, of X x Y
onto Y is measurable with respect to (X x Y) and A(Y). Note that if A C X and
B CY, then

AxB=(AxY)N(X xB)=n"(A) N, '(B).
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Hence if A € #(X) and B€ B(Y), then A x B€ B(X xY). Since B(X) x B(Y)
is the o-algebra generated by the collection of all such rectangles A x B, it follows
that B(X) x B(Y) C B(X x Y). Thus part (a) is proved.

To check the first assertion in part (b), suppose that x belongs to X, and define
g:Y = X xY by g(y) = (x,y). Then g is continuous and so is measurable with
respect to Z(Y) and (X x Y). Each subset E of X x Y satisfies E, = g~ ' (E);
hence if E € #(X xY), then Ex € Z(Y). The second assertion in part (b) is proved
in the same way.

Part (c) follows from part (b) and the fact that if B C R, then (f;)~'(B) =

(/' (B))x and (/) (B) = (/" (B))"- O

Now we prove that the difficulties mentioned in the introduction to this section
do not occur if each of the spaces X and Y has a countable base.

Proposition 7.6.2. Let X and Y be locally compact Hausdorff spaces that have
countable bases for their topologies. Then B(X xY) = B(X) x B(Y). Further-
more, if L and v are regular Borel measures on X andY, respectively, then [l and v
are O-finite, and L X V is a regular Borel measure on X x Y.

Proof. Lemma 7.6.1 implies that (X)) x B(Y) C B(X xY). We turn to the reverse
inclusion. Let %7 and ¥ be countable bases for X and Y, and let % be the collection
of rectangles of the form U x V, where U € %/ and V € . Then # is a countable
base for X x Y and is included in A(X) x Z(Y). Each open subset of X X Y is
the union of a (necessarily countable) subfamily of the base 7 and so belongs to
B(X) x B(Y). Since (X xY) is generated by the open subsets of X x Y, it follows
that Z(X xY) C B(X) x B(Y). Thus B(X xY)=B(X) x B(Y).

Now suppose that ¢ and v are regular Borel measures on X and Y, respectively.
Then u and v are o-finite (Proposition 7.2.5), and so the constructions of Chap. 5
provide a unique product measure L X v on Z(X) x B(Y). Since B(X) x B(Y) =
PB(X xY), the measure i x v is a Borel measure. If K is a compact subset of X x Y
and if K| and K are the projections of K on X and Y, respectively, then K; and K,
are compact, and so

(1 x V)(K) < (ux V)(Ki x K) = p(K1)v(K2) < +ee.

Thus pt x v is finite on the compact subsets of X x Y. Since there is a countable base
for X x Y (for example, the base % defined above), Proposition 7.2.3 implies that
U x v is regular. a

Now let X and Y be arbitrary locally compact Hausdorff spaces, and let u and v
be regular Borel measures on X and Y, respectively. As we noted in the introduction
to this section, p and v can fail to be o-finite, and the c-algebra Z(X) x B(Y)
can fail to contain all the sets in Z(X x Y). Suppose, however, that we could prove
that for each f in JZ (X x Y) the iterated integrals [y [, f(x,y) v(dy) u(dx) and
Iy Jx f(x,y) 1(dx) v(dy) exist and are equal. We could then proceed in two steps,
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first defining a positive linear functional 7 on ¥ (X X Y) by letting I(f) be the
common value of these iterated integrals and then using the Riesz representation
theorem to obtain the corresponding regular Borel measure on X x Y. This is indeed
the course that we will follow. The following propositions contain the necessary
details.

Lemma 7.6.3. Suppose that S and T are topological spaces, that T is compact, and
that f: S x T — R is continuous. Then for each so in S and each positive number
€ there is an open neighborhood U of sy such that |f(s,t) — f(so,t)| < € holds for
eachsinU and eachtinT.

Proof. Suppose that sy belongs to S and that € is a positive number. For each ¢ in
T choose open neighborhoods U; of s and V; of ¢ such that if (s,1') € U, x V,, then
|f(s,2") — f(s0,2)| < €/2. It follows that if s € U, and ¢’ € V;, then

£ (s,8) = f(s0,6)] < |f(s,2") = f(s0,0) [+ | £ (50,8) = f(s0,1")]

<gf2+e/2=¢.
Since T is compact, we can choose a finite collection ¢, ..., t, of points in T
such that the neighborhoods V;,, ..., V;, cover T. Then MU, is the required
neighborhood of sg. a

Proposition 7.6.4. Let X and Y be locally compact Hausdorff spaces, let L and v
be regular Borel measures on X and Y, respectively, and let f belongto # (X XY).
Then

(a) for each x in X and each y in 'Y the sections f, and f> belong to ¢ (Y) and
K (X), respectively,
(b) the functions

m+Aﬂmwww>
and

v [ )

belong to # (X) and J# (Y), respectively, and
© Jx Jy fOoy) vidy) pldx) = Jy Jx f(x,y) p(dx) v(dy).

Proof. Let f belong to J# (X x Y), let K be the support of f, and let K; and K, be
the projections of K on X and Y, respectively. Then K; and K, are compact.

If x € X, then the section f is continuous, since it results from composing the
continuous function y — (x,y) with the continuous function f. The support of f; is
included in K, and so is compact. Thus f; € 2 (Y). A similar argument shows that

e (X).
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It follows that the integrals in part (b) exist. We now check that the function
x— [y f(x,y)v(dy) is continuous. Let xo belong to X and let € be a positive
number. According to Lemma 7.6.3, applied to the space X X Kj, there is an open
neighborhood U of xq such that if x € U and y € K, then |f(x,y) — f(x0,y)| < €.
Hence if x € U, then

[ vian = [ oy vidy)
Y Y
< [ 17) = Fla0.9) V) < eviKo).

Since € was arbitrary, the continuity of x — [, f(x,y) v(dy) follows. In addition this
function vanishes outside K, and so it belongs to J# (X ). A similar argument shows
that the function y — [y f(x,y) u(dx) belongs to # (Y).

We turn to part (c). Parts (a) and (b) imply that the integrals involved here exist.
We prove that they are equal by approximating f with simpler functions. Let € be
an arbitrary positive number. For each x in K| choose a neighborhood U, of x such
that if X' € Uy and y € K, then |f(x',y) — f(x,y)| < € (see Lemma 7.6.3). The set
K is compact, and so there exist points xi, ..., X, in Kj such that the sets Uy,, ...,
U,, cover K;. Now use these sets to construct disjoint Borel sets Ay, ..., A, such
that K1 = U;A; and such that A; C Uy, holdsfori=1, ..., n. Define g: X xY — R
by g(x,y) = ¥, xa,(x)f(xi,y). The functions f and g vanish outside K; x K> and
satisfy | f(x,y) — g(x,y)| < € at each (x,y) in K] X K»; hence they satisfy

Py () vidy) — [ | gley) p(dx) vidy)| < ep(ki)v(Ks)
\/Y/X /Y/X |
and
Fley)vidy) ) — [ [ g(ey) vidy) udn)| < en(i)v(Ks).

The two iterated integrals of g are both equal to X tt(A;) [ f(xi,y) v(dy); thus they
are equal to each other, and so

[ [ renm@ivian - [ [ reey) viay uin| < 2en(m)vike).

Since ¢ is arbitrary, the proof is complete. O

Let X and Y be locally compact Hausdorff spaces, and let u and v be
regular Borel measures on X and Y, respectively. As promised earlier, we define
I: (X xY)— R by letting I(f) be the common value of the iterated integrals
Jx Jy f(x,y) v(dy) u(dx) and [, [y f(x,y) 1(dx) v(dy). The regular Borel product
of 1 and v is the regular Borel measure on X x Y induced by the functional / via the
Riesz representation theorem. This measure will be denoted by p x v.
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Proposition 7.6.5. Let X and Y be locally compact Hausdorff spaces, let L and v
be regular Borel measures on X and Y, respectively, and let |t X v be the regular
Borel product of L and v. If U is an open subset of X X Y, then

(a) the functions x — v(Uy) and y — u(U?) are lower semicontinuous and hence
Borel measurable, and

(b) (1 xv)(U) =[x v(Ux) u(dx) = [y u(U”) v(dy).
Proof. Of course Uy, and U” are open sets and therefore Borel sets. Let
F = e XxY):0< <}
and for each x in X and y in Y define sets .%, and .#” by
Fr={fr:f€F}and
F={f . feF}.

Then %, and %Y are included in #(Y) and % (X), respectively, are directed
upward, and have Yy, and )p» as their suprema. Since these characteristic functions
are lower semicontinuous, Proposition 7.4.5 implies that

v(Uy) = Sup{/fxdv (fi € %} (1)
holds for each x in X and that
H(Uy):sup{/fydu:fyeﬁy} (2)

holds for each y in Y. Thus the functions x — v(U,) and y — p(U”) are suprema
of collections of continuous functions (see part (b) of Proposition 7.6.4), and so are
lower semicontinuous.

The first half of part (b) will follow, once we check the calculation

(wx )W) =sup [ [ 7ley)viay) ua)

feFz

:/X (;gg/‘fde) 1 (dx)

= [ v uldx;
X

here the first equality is a consequence of Lemma 7.2.7 and the definition of
the functional /, the second a consequence of Proposition 7.4.5, and the third a
consequence of Eq. (1). The other half of part (b) is proved in a similar way. O
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Corollary 7.6.6. Let X, Y, U, v, and [L X V be as in Proposition 7.6.5. If E is a
Borel subset of X x Y that is included in a rectangle whose sides are Borel sets that
are O-finite under |1 and v, respectively, then

(a) the functions x — V(E,) and y — W(E>) are Borel measurable, and
(b) (uxV)(E) = [y V(Ex) u(dx) = [y W(E”) v(dy).

Proof. We begin with Borel sets that are included in rectangles whose sides are
Borel sets of finite measure. So let A and B be Borel subsets of X and Y that satisfy
1(A) < 4o and v(B) < +oe. Use the regularity of 4 and v to choose open sets U
and V that include A and B and satisfy t(U) < +ecand v(V) < 4oo. Let W =U x V
and let . consist of those Borel subsets D of X x Y for which the functions x —
v((DNW)y) and y — p((DNW)”) are Borel measurable and for which the identity

(1 xv)(ONW) = [ v(@AW))(a

= [m@nwy)viay

holds (according to Lemma 7.6.1, the sections (DNW ), and (DNW ) are Borel sets,
and so these formulas make sense). According to Proposition 7.6.5, .% contains all
the open subsets of X x Y. It is easy to check that

if D{,D, € . and if D C D5, then D, — Dy € ., and 3)
if D{,D,,---€ ¥ andif Dy C D, C ..., thenU,D, € .7. @

Thus . is a d-system (see Sect. 1.6) that includes the 7-system made up of the open
subsets of X x Y, and so Theorem 1.6.2 implies that Z(X x Y) C.#. Thus if E is a
Borel set that is included in A X B, then E satisfies the conclusions of the corollary.
Since a Borel set that is included in a rectangle with o-finite sides is the union of an
increasing sequence of Borel sets that are included in rectangles with sides of finite
measure, the corollary follows. a

Theorem 7.6.7. Let X and Y be locally compact Hausdorff spaces, let |l and v be
regular Borel measures on X and Y, respectively, and let |1 X v be the regular Borel
product of w and v. If f belongs to LV (X xY,B(X xY),uu x v) and vanishes
outside a rectangle whose sides are Borel sets that are oO-finite under |l and Vv,
respectively, then

(@) fr € LYY, B(Y),v) for u-almost every x, and f € LV (X, B(X),u) for v-
almost every y,
(b) the functions
: 1
X = ffxd\/ lffxeg (YW@(Y)?‘/)’
0 otherwise,

and
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yes {ffydu i € 2 X A1),

0 otherwise,

belong to L (X, B(X),u) and L (Y, B(Y), V), respectively, and
© [fd(uxv)=Jx [y foy)v(dy)u(dx) = fy [x f(x.y) p(dx)v(dy).

Proof. Let .Z be the collection of all functions in .Z'(X x Y, B(X x Y),u x v)
that vanish outside a rectangle with o-finite sides. Corollary 7.6.6 implies that if
f is a characteristic function that belongs to .%#, then f satisfies the conclusions of
the theorem (the finiteness of [ fydv and [ f*du for almost all x and y follows
from Corollary 2.3.14). The linearity of the integral and the monotone convergence
theorem imply that the same is true first for nonnegative simple functions in .%#, then
for nonnegative functions in .%, and finally for arbitrary functions in .#. a

See Exercises 3 and 4 for some techniques for computing [ |f]|d(u x v) and
hence for determining whether f is (it x v)-integrable.

The reader should note several things about the hypotheses of Corollary 7.6.6
and Theorem 7.6.7:

(a) Corollary 7.6.6 would fail if E were only assumed to be a Borel subset of X x Y;
see Exercise 1.

(b) Corollary 7.6.6 would also fail if the Borel set E were only assumed to be o-
finite (or even of finite measure) under i x v; see Exercise 2.

(c) We will see that if  and v are Haar measures on locally compact groups X and
Y, then each Borel subset E of X x Y that satisfies (U X V)(E) < +oo is included
in arectangle with o-finite sides, and each integrable function on X x Y vanishes
outside a rectangle with o-finite sides (this follows from Lemma 9.4.2, applied
to the group X x Y).

(d) See Exercise 6 for an alternate version of Corollary 7.6.6 and Theorem 7.6.7.

Exercises

1. Show that the conclusions of Corollary 7.6.6 can fail if E is an arbitrary Borel
(or even closed) subset of X x Y. More precisely, show that part (a) can fail and
that part (b) can fail even in cases where part (a) holds. (Hint: Let X be R with its
usual topology, let Y be R with the discrete topology, let tt be Lebesgue measure
on (X,%(X)), let v be counting measure on (¥, %(Y)), and let E be a suitable
subset of {(x,y) : x=y}.)

2. Let X be R with its usual topology, let Y be R with the discrete topology, let
U be a point mass on (X, %(X)), and let v be counting measure on (¥, Z(Y)).
Suppose that A is a non-Borel subset of R, and define E to be the set of all pairs
(x,x) for which x € A. Show that E is a Borel subset of X x Y that has finite
measure under (U X v, but for which the conclusion of Corollary 7.6.6 fails.
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3. LetX,Y, i, v, and u x v be as in Proposition 7.6.5. Show thatif f: X xY —
[0, +o0] is lower semicontinuous, then
(@) x— [ f(x,y)v(dy) and y — [ f(x,y) (dx) are Borel measurable, and
(b) [fd(uxv)=[]flxy)v(dy)u(dx) = [ [f(x.y)u(dx)v(dy).

4. Show that the conclusions of Exercise 3 also hold if f is a nonnegative Borel
measurable function that vanishes outside a Borel rectangle with o-finite sides.

5. Show that the Baire o-algebras on compact Hausdorff spaces (see Exercise
7.2.8) behave “properly” under the formation of products, in the sense that
Bo(X xY)=RBy(X) x Bo(Y). (Hint: Use the Stone—Weierstrass theorem (Theo-
rem D.22) to show that each function in C(X x Y) can be uniformly approximated
by functions of the form (x,y) — ¥, fi(x)gi(y), where the sum is finite, each f;
belongs to C(X), and each g; belongs to C(Y).)

6. Let X, Y, u, v, and u x v be as in Proposition 7.6.5, and consider the outer
measures U, v¥, and (4 x v)* and measures p;, v, and (i X v); that are
associated to U, v, and i X v as in Sect. 7.5.

(a) Show that if E belongs to .#(, - and satisfies (1 x v);(E) = 0, then
v*(Ex) = 0 holds for u;-almost every x in X and u*(E”) = 0 holds for v;-
almost every y in Y. (Note that E is not assumed to be included in a rectangle
with o-finite sides.)

(b) Prove modifications of Corollary 7.6.6, Theorem 7.6.7, and Exercise 4 that
apply to .#,«y)--measurable, rather than Borel measurable, functions. Your
modification of Theorem 7.6.7 should not contain the assumption that f
vanishes outside a rectangle with o-finite sides. (Hint: Replace (X, Z(X), 1)
and (Y,4(Y),v) with (X, 4+, 1) and (Y,.#\+,v1); see Exercises 7.2.3
and 5.2.6.)

7.7 The Daniell-Stone Integral

There is an alternate approach to integration theory, due to Daniell [32] and Stone
[114], in which one does not begin with a measure but rather with a positive
linear functional on a vector space of functions. One extends this functional to a
larger collection of functions, proves analogues of the monotone and dominated
convergence theorems for the extended functional, and finally shows that the
extended functional can be viewed as integration with respect to a measure.

Exercises 3 through 36 at the end of this section contain an outline of these
classical results. I hope that I have arranged these exercises in such a way that
the student can supply the missing details without too much trouble. In the body
of this section we simply give an argument due to Kindler [70] (see also Zaanen
[130]) that shows that the functionals considered by Daniell and Stone in fact
correspond to integration with respect to measures. This theorem does not, of course,
give the entire Daniell-Stone theory, but it does provide what is needed for many
applications.
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We turn to some basic definitions. Let X be a nonempty set. Recall that for
real-valued (or [—oe, 4-oo]-valued) functions f and g on X, the functions fV g and
f A g are defined by

(f Vg)(x) = max(f(x),g(x))
and
(f Ag)(x) = min(f(x),g(x)).

A vector lattice on X is a vector space V of real-valued functions on X that is closed
under the operations A and V. A vector lattice V satisfies Stone’s condition if

fA1€V whenever f V. @8

(Here 1 is the constant function whose value is 1 at every point in X. Note that the
constant function 1 may or may not belong to V)

A linear functional L on a vector lattice V is an elementary integral if it is positive
(that is, L(f) > 0 holds for every nonnegative function f in V) and satisfies

limL(f,) = O for every sequence {f,} in V that decreases pointwise to 0.  (2)
n

We have the following basic facts about elementary integrals.

Lemma 7.7.1. Suppose that L is an elementary integral on the vector lattice V and
that f and fi, f>, ..., are nonnegative functions in'V.

(@) If the sequence { f,} increases to f, then L(f) = lim, L(f;).
(b) If f =% f, then L(f) = 2, L(f2).
(©) If f <3 fo, then L(f) < 3, L(fn).

Proof. Part (a) follows from condition (2), applied to the sequence {f — f.}7_;.
Then parts (b) and (c) are consequences of part (a), applied to the sequences

(X fidpmy and {(Z2 ) A FYL- =
The following lemma is often useful for verifying condition (2).

Lemma 7.7.2 (Dini’s Theorem). Suppose that X is a closed bounded subinterval
of R (or, more generally, a compact Hausdor{f space). Let {f,} be a sequence of
nonnegative continuous functions on X that decreases to 0 (in the sense that { f,,(x)}
decreases to 0 for each x in X). Then the sequence { f,} converges uniformly to 0.

Proof. We need to show that for each positive € there is a positive integer N such
that || ;|| < € holds whenever n > N.

So suppose that € is a positive number. For each x in X choose a positive integer
ny such that f, (x) < &, and then use the continuity of f, to choose an open
neighborhood Uy of x such that f;, (¢) < € holds for all ¢ in Uy. The family {U, }rex
is an open cover of X, and so the compactness of X gives a finite subcover Uy,
where i =1, ..., k, of X. Let N be the maximum of n,,, fori =1, ..., k. If x € X,
then x € U,, for some i, and so

0 < ful) < fu(x) <e
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holds for all n that satisfy n > N. Since this estimate is valid for every x in X, we
have || ]| < € and the proof is complete. O

Examples 7.7.3.

(a) Let [a,b] be a closed bounded subinterval of R and let C([a, b]) be the set of all
continuous real-valued functions on [a,b]. Then C([a,b]) is a vector lattice that
satisfies Stone’s condition. Suppose we define a functional L: C([a,b]) — R by
letting L be the Riemann integral: L(f) = || ab f. Dini’s theorem implies that L
satisfies condition (2) and so is an elementary integral.

(b) Let X be a locally compact Hausdorff space, and (as in Sect.7.1) let ¢ (X)
be the set of all continuous functions f: X — R for which the support of f is
compact. Then ¢ (X) is a vector lattice that satisfies Stone’s condition. (Note
that the constant function 1 does not belong to J#(X) if X is not compact.) If L
is a positive linear functional on .# (X), then L is an elementary integral (again
use Dini’s theorem to check that L satisfies condition (2)).

(c) The set of all differentiable real-valued functions on R is a vector space, but not
a vector lattice.

(d) Let V be the set of all constant multiples of the function f: [0,1] — R defined
by f(x) =x. Then V is a vector lattice, but it does not satisfy Stone’s condition.

(e) Let V be the set of all continuous functions f: [0,+o0) — R such that
limy_, o f(x) exists, and define L: V — R by L(f) =limy_,+« f(x). ThenV is a
vector lattice that satisfies Stone’s condition, and L is a positive linear functional
that does nor satisfy condition (2)—consider, for example, the sequence {f,}
defined by

0 if x <n,
faxX)=<x—n ifn<x<n+1,and

1 otherwise. O

Before we look at the main theorem of this section, it will be convenient to look
at a slight generalization of the concept of a ¢-algebra. So let X be a set. A collection
Z of subsets of X is a o-ring on X if

(a) @ belongs to Z,

(b) for all sets A, B that belong to %, the set A — B belongs to %,

(c) for each infinite sequence {A;} of sets that belong to Z, the set U;* | A; belongs
to #, and

(d) for each infinite sequence {A;} of sets that belong to Z, the set N7, A; belongs
to Z%.

Of course, every c-algebra is a o-ring. If X is an uncountable set, then the set of
all countable subsets of X is a o-ring but not a ¢-algebra. It is sometimes useful to
deal with o-rings when one wants to deal only with sets that are in some sense not
too large.
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Here are a few properties of o-rings; their proofs are left for the reader:

(a) If .7 is a collection of subsets of a set X, then there is a smallest 6-ring on X
that includes .%.

(b) If Z is a o-ring on a set X, then the collection of subsets A of X such that either
A or A€ belongs to # is a o-algebra on X; it is in fact the o-algebra 6(%)
generated by Z.

(c) Suppose that [ is a measure on a o-ring Z (i.e., a countably additive [0, 4-co]-
valued function on & such that ty(2) = 0). Let o7 be the 5-algebra generated
by %. Then the function u: & — [0, +oo| defined by

A) ifAeZ, and
u(ay = o
o0 ifAeof — X

is a measure on <.

Now suppose that X is a set and that V is a vector lattice on X. Let .% be the
collection of sets of the form {x € X : f(x) > B}, where f ranges over V and B
ranges over the positive reals. Let Z be the smallest o-ring on X that includes .%,
and let o7 be the smallest o-algebra on X that includes .%. It is easy to check that
4/ is the smallest o-algebra on X that makes each function in V measurable.

The following theorem is the main result of this section.

Theorem 7.7.4. Let X be a set, let V be a vector lattice on X that satisfies Stone’s
condition, let L be an elementary integral on V, and let # and </ be as defined
above. Then there is a measure U on (X, /) such that L(f) = [ fdu holds for each
f in V. The restriction of this measure to % is unique, in the sense that if [ and
Uy are measures on (X, /) such that [ fduy = L(f) = [ fdu, holds forall f inV,
then Uy (A) = Uz (A) holds for all A in %.

The uniqueness assertion in this theorem may seem rather weak, since it involves
only sets in Z. Note, however, that if u is a measure on <7 that represents L, if f
is a nonnegative function in V, and if we let A,; = {x:i/2" < f(x) < (i+1)/2"}
for each 7 and i, then the sequence {4 X2~ £ x4 1= | increases pointwise to f,
and so

n2"—1 - n2"—1 -

. l . 1
L) = [ fau=tim [T o, du=lim ¥, ().
i=0 i=0

211
Thus the sets in % are the only ones needed for computing [ fdu. Also see
Exercise 2.

For functions f and g in V let [f,g) be the subset of X x R given by

[f:8) ={(x1) eX xR: fx) <t <g(x)}

(be careful: we are not assuming that f < g). Note that if f is a nonnegative function
in V, then [0, f) can be interpreted as the region under the graph of f. Let .# be the
collection of all such sets [f, g), and let £ to be the smallest o-algebra on X x R that
includes .#. We will begin the proof of Theorem 7.7.4 by constructing a measure
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v on (X xR, %) such that v([f,g)) = L(g — f) holds whenever f and g belong
to V and satisfy f < g. Next we will define a measure ¢t on (X,./) that satisfies
1(A) = v(A x [0,1)) for each A in #, and finally we will show that u satisfies
L(f)= [ fdu foreach finV.

Here are a few basic facts about ..

Lemma 7.7.5. Suppose that V is a vector lattice of functions, that L is a positive
linear functional on'V, and that .7 is as defined above.

(a) If 1 € .7, then there exist functions f and g in V such that f < gand I =[f,g).

(b) If the member I of & can be written in the form [fi,g1) and in the form
[f2,82), where f1 < g1 and f> < g, then g1 — f1 = g2 — f2, and so L(g1 — f1) =
L(g2— f2).

(¢) If I} and I belong to .7, then I} NI, also belongs to .#.

(d) If I} and I, belong to .#, then there are disjoint sets I' and I" in .% such that
NI =1'UI" and hence such that I} = (I N\L)UI' UI".

Proof. For part (a), note that if fy,go € V and if we let f = fy A go and g = go, then
f<gand|[f,g) = [fo,80)- For part (b), note that if the section I, is nonempty, then
f1(x) = f2(x) and g (x) = g2(x), while if the section Iy is empty, then f; (x) = g (x)
and f>(x) = g2(x). In either case we have g;(x) — f1(x) = g2(x) — f2(x), and so
L(g1 — f1) = L(g2 — f»). Part (c) follows from the calculation [f1,g1) N [f2,82) =
[fl V .81 /\gz). Finally, if I}, = [fl,gl) and I, = [f27g2), where f, < g5, then
LN =[f1,81 A f)U[fi Vg2,g1), from which part (d) follows. O

In view of part (b) of Lemma 7.7.5, we can define a function L s : .¢# — R by
Ly(I)=L(g—f)
where f and g are elements of V such that f < g and I = [f,g).
Lemma 7.7.6. Suppose thatI and Iy, I, ... are members of 7.
(a) Ifthe setsI,, n=1, 2, ..., are disjoint and if = Uply,, then L s (I) =Y., L # (I,).
() If I CUpl,, then Ly (1) <3, Ly (Iy).

Proof. Suppose that I = Uyl,, and letI = [f,g) and I, = [fn,8n),n=1,2, ..., where
f<gand f, <g,n=1,2,....Foreachxin X the sections of these sets at x satisfy
I, = U, (I,)x, and so the countable additivity of Lebesgue measure implies that

8(x) = f(x) = A(Ly) = X A((In)x) = X(8n(x) = fu(x))-

It follows from Lemma 7.7.1 that L »(I) = 3, L. (I,,), and so the proof of part (a) is
complete. Part (b) can be proved with a similar argument. O

Proof of Theorem 7.7.4. We define a function v* on the subsets of X x R by letting
v*(A) be the infimum of the set of sums of the form YL s (I;), where {[;} is a
sequence in .# such that A C U;l;. (Of course, v*(A) = +oo if there is no sequence
{Ii} such that A C U;l;.)
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Lemma 7.7.7. Let v* be as defined above. Then

(a) v* is an outer measure on X,
(b) every set in .7 is v*-measurable, and
(¢) if I € F, then v:(I) = L y(I).

Proof. Itis immediate that v* is an outer measure. Now suppose that / € .#. We can
show that 7 is v*-measurable by checking that

Vi(A) > v (ANT) + Vv (ANT)

holds for each subset A of X x R such that v*(A) < +eo (see Sect. 1.3 and, in
particular, the discussion of inequality (1) in that section). So suppose that A is
such a set, that € is a positive number, and that {I,} is a sequence of sets in .# such
that A C U,I, and

ViA) +e> D Ly ().

According to part (d) of Lemma 7.7.5, for each n there are sets I, and I}/ such that
I,NI, I, and I are disjoint and have I, as their union. Thus

Ly(I)=Lys(I,NI)+Ly(I)+Ls(1));
since ANI C U, (I, 1) and ANI¢ C U, (I UI)), we have

ViA) +e> D Ly(I)

=S LN+ Y (La (1) +Ls(Il))

n

> Vi (AN 4+ VvI(ANI).

Thus 7 is measurable. Each I in .# certainly satisfies v*(I) < L #(I). The reverse
inequality follows from part (b) of Lemma 7.7.6, and with that the proof of
Lemma 7.7.7 is complete. a

We return to the proof of Theorem 7.7.4. Let f be a nonnegative function in V,
let B be a positive real number, and for each n define f, by

fo=1An(f=(fAB)).

Since V is a vector lattice that satisfies Stone’s condition, each f, belongs to V. For
each positive number C, the sequence {Cf, } is increasing and converges pointwise
to Cxyr>py» and the sets [0,Cf, ) increase to the set { f > B} x [0,C). Let us consider
three consequences of this.

First, for each f in V and each positive number B we have {f > B} x [0,1) € #
(recall that 4 is the o-algebra generated by the family .#). It follows that each A
in Z satisfies A x [0,1) € 8 and hence that u(A) = v(A x [0, 1)) defines a measure
on Z. As we noted earlier in this section, we can extend p to a measure on the
o-algebra o7 by letting 11(A) = 4o if A belongs to </ but not to Z.
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Second, the fact that the sets [0,Cf;) increase to {f > B} x [0,C) implies that
v({f > B} x[0,€)) = limv([0,Cf,)) = limL(Cf,)
= ClimL(f,) = Climv([0, f,))
=Cv({sf > B} x[0,1));
that is,

v({f > B} x[0,C)) = Cu({f > B}). 3)

Finally, for each n we have f, < x(s-p)y < f/B and so L(f,) < L(f)/B. Since
v({f > B} x[0,C)) =lim, CL(f,) < CL(f)/B, it follows that the values in (3) are
finite.

Now let n and i range over the positive integers. If we apply (3) twice, once with
B=1i/2" and C = i/2" and once with B = (i+1)/2" and C = i/2", we find that

V<{2i,,<f§ i;l}X[O,i/Z”)> =;¥nu<{2in<f§ i;})

and hence that

n2" . i+ 1 . nn . . i+ 1
v(U{zin<f§’2—n}><[o,z/2))zzzinu({zl—n<f§lzn }) @

i=1 i=1

The countable additivity of v implies that the left side of (4) approaches v ([0, f))
as n approaches infinity, while the monotone convergence theorem implies that the
right side approaches [ f du. With this we have

LU = v(0.1) = [ fau.

Since each f in V can be separated into its positive and negative parts, we have
L(f) = [ fdu foreach f in V, and the construction of u is complete.

We turn to the uniqueness. Let 111 and p, be measures on o such that [ fdu; =
L(f) = [ fduy, holds for all f in V. Suppose that fi, ..., fx belong to V, that By,
..., By are positive numbers, and that A = N;{f; > B;}. For each n let

gn = N (LAn(fi = (fiABY)-

Then each g, belongs to V and is nonnegative, and the sequence {g,} increases to
x4- Hence

() =tim [ g,dpy =timL(g,) = lim [ gudiiz = po(4).
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Now fix fi and By, and let .%, p, be the collection of all subsets of {f; > B} that
have the form M;{f; > B;}. Then u; and y, agree on the 7-system .%, g, , and so it
follows from Corollary 1.6.3 that y; and L, agree on the o-algebra on {f; > By}
that %y, p, generates. However, it is easy to check that this o-algebra is just the
collection of all subsets of {f; > B;} that belong to Z. Finally, every set in £ is
included in a countable union of sets of the form {f > B}, and so y; and y, agree
onZ. O

Exercises

1. (a) Let X be the interval [—1, 1]. Find (i.e., describe precisely) the smallest vector
lattice V on X that contains the function x — x.
(b) Does V satisfy Stone’s condition?
2. Let X =R and let V be the set of those continuous functions f: X — R whose
support is compact and included in (0, +eo). Define L on V by letting L(f) be the
Riemann integral of f, and let &/ and & be as in Theorem 7.7.4.

(a) What sets do .7 and % contain? (Your answer should relate these families
of sets to the Borel or the Lebesgue measurable subsets of R.)
(b) Give two measures on </ that represent the functional L.

The following exercises contain an outline of the usual development of the
Daniell-Stone integral. As noted at the beginning of this section, this development
is not based on measure theory. Thus solutions to Exercises 3 through 32 should
not contain any references to the earlier chapters of this book. Sigma-algebras,
measurable functions, measures, and the Lebesgue integral appear first in Exercises
33-36

Suppose that V is a vector lattice of functions on a set X, that V satisfies Stone’s
condition, and that L is an elementary integral on V (i.e., it is a positive linear
functional on V that satisfies relation (2)). Let V* be the set of all (—eo, +oo]-valued
functions on X that are pointwise limits of increasing sequences of functions in V,
and define L*: V® — (—eo, 4-o0] by L*(f) = lim,, L(f;,), where {f,} is an increasing
sequence of functions in V that converges pointwise to f (see Exercise 3). Likewise,
let V, be the set of all [—oo, 4-o0)-valued functions on X that are pointwise limits
of decreasing sequences of functions in V, and define Lo: Vo — [—o0,+o0) by
Lo(f) = lim, L(f,), where {f,} is an decreasing sequence of functions in V that
converges pointwise to f.

3. Show that L* and L, are well defined on V* and V,. For example, to show that
L* is well defined, one needs to show that if f € V* and if {f,} and {g,} are
sequences of functions in V that increase to f, then lim, L(f,) = lim, L(g,).
(Hint: Start by showing that if g € V and if {,,} is an increasing sequence in V
such that g(x) < lim,, f,(x) holds for each x, then L(g) < imL(f,).)

4. Show that f €V, if and only if there is a function g in V* such that f = —g and
that in this case Lo (f) = —L*(g).
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5. Suppose that fi, f> € V* and that o is a nonnegative real number. Show that
@ fAinf,ivRevs,
) fi+freVeand L (fi+f2) =L*(f1) +L°(f2), and
(c) Otfl € V*® and L.(Otfl) =oal® (fl)

6. Show that if f, /> € V* and fi < f», then L*(f1) < L*(f>).

7. (a) Show thatif g€V, and h € V*, then h— g€ V® and L*(h—g) = L*(h) —
Lo(g). In particular, all the differences involved here are defined (that is,
neither 4o or —e is ever subtracted from itself here).

(b) Conclude that if g € Vo, h € V*, and g < h, then Lo (g) < L*(h).

8. Show that if {f,} is a sequence of functions in V* and if {f,} increases to f,
then f € V* and L*(f) = lim, L*(f,). (Hint: Use some ideas from the proof of
Theorem 2.4.1.)

Suppose that f is an arbitrary [—co, +oo]-valued function on X. Define L(f) and
L(f) by

L(f) =inf{L*(h) :h€ V* and f < h}
and
L(f) =sup{Le(g): g € Ve and g < f}

(of course, L(f) = +oo if there is no 2 in V*® such that f < h, and L(f) = —eo if there
is no g in Vi such that g < f). For each f we have L(f) < L(f) (see Exercise 9).
A function f: X — [—oo, +o0] is L-summable, or simply summable, if L(f) and L(f)
are finite and equal. We define L on the collection of summable functions by letting
Ly (f) be the common value of L(f) and L(f).

9. Show that each f: X — [—oo, 40| satisfies L(f) < L(f).

10. Show that f: X — [—eo,4o0] is L-summable if and only if for every positive £
there exist g in V, and & in V* such that g < f < h and L*(h—g) < €. (Hint:
See Exercise 7.)

11. Show that if f € V, then f is summable and L;(f) = L(f). Thus L; is an
extension of L.

12. Show that if f; and f, are R-valued summable functions and o € R, then
(a) f1+ f»is summable and L (f1 + f>) = L1(f1) + L1(f2), and
(b) of} is summable and L; (et f;) = oLy (f1).

13. Show that if f and f, are [0, 4oo]-valued summable functions, then f + f5 is
summable and L; (fi + f2) = L1 (f1) + Li(f2)-

14. Show that if f; and f, are [—eo,+ec]-valued summable functions, then fj A f>
and f] V f, are summable.

15. (a) Generalize part (a) of Exercise 12 to the case where fi and f, are summable
[—e0, +oo]-valued functions such that fj (x) + f2 (x) is defined for each x (i.e.,
such that for no x is this sum of the form oo + (—oo) or —eo 4 (+e9)).

(b) Show that a function f: X — [—oco, 4] is summable if and only if f* and
f~ are summable and that in such cases Li (f) = L (f ") — L1 (7).
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16.

17.

18.

19.
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Show that if {f,} is a sequence of [0, +co|-valued summable functions, if {f,}
increases pointwise to f, and if sup, L;(f,) < oo, then f is summable and
Li(f) =lim, L;(f,). (Hint: It might be useful to verify and use the fact that
if fi and f, are nonnegative summable functions such that f| < f>, if £ and
& are positive numbers, and if g; and g, belong to V* and satisfy f; < g; and
L*(g)) <Li(fi)+e&fori=1,2,then L*(g, Vg2) < Li(f2)+ & +&.)
Suppose that {f,} is a sequence of R-valued summable functions, that f(x) =
lim,, f,, (x) holds for all x, and that A is a [0, +eo)-valued summable function such
that |f,(x)| < k(x) holds for all n and all x. Show that f is summable and that
Ly (f) =lim, L, (fn)

Show that if f is a [—eo,4eo]-valued summable function, then f A1 is
summable. (Hint: See Exercise 10.)

Show that if f is a [0,4cc]-valued summable function, if & is a positive real
number, and if A = {x € X : f(x) > o}, then y4 is summable and L; (ays) <
Li(f). (Hint: Use Exercise 18. Reduce the question to one involving only
[0, 4o0)-valued functions. Check that if f is [0, +oo)-valued, then the sequence
{fua}, where f,, = a An(f — (f Aa)), increases to o))

A subset A of X is L-negligible or L-null if x4 is summable and L;(x4) = 0.

A property of points x in X is said to hold L-almost everywhere if the set of points
at which it fails is an L-negligible set.

20.

21.
22.

23.

24.

25.

Show that a subset A of X is L-negligible if and only if for every € there is a
function f in V* such that y4 < f and L*(f) < €.

Show that each subset of an L-negligible set is L-negligible.

Show that the union of a countable collection of L-negligible sets is L-
negligible.

Suppose that f; and f, are [—co, +ec]-valued functions that are equal L-almost
everywhere. Show that if one of these functions is summable, then both are
summable and L; (f1) = L1 (f>).

Show that if f is a [—eo,+eo]-valued summable function, then {x € X :
|f(x)| = +eo} is L-negligible.

Reformulate Exercises 16 and 17 by allowing the appropriate hypotheses to
hold only L-almost everywhere and (in the case of Exercise 17) by allowing
the functions involved to have infinite values on L-negligible sets. Prove your
reformulated versions.

A function f: X — [—oe, 40| is called L-measurable, or simply measurable, if

(g V f) A h is summable for every choice of functions g and %, where g is a non-
positive summable function and / is a nonnegative summable function. A subset A
of X is L-measurable if )4 is a measurable function. Let .# be the collection of all
L-measurable subsets of X.

26.

Show that every summable function is measurable.
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217.

28.
29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

7 Measures on Locally Compact Spaces

Show that

(a) a [0,+eo]-valued function f is measurable if and only if for each nonnega-
tive summable £ the function f A & is also summable, and

(b) a [—oo, +eo]-valued function f is measurable if and only if f and f~ are
measurable.

Show that the constant function 1 is measurable.

Let f; and f, be [—oo,+oo]-valued functions that are equal L-almost every-
where. Show that f] is measurable if and only if f, is measurable.

Show that if f; and f, are [—oo, +ec]-valued measurable functions, then fi A f>
and f] V f, are measurable.

Show that if {f,} is a sequence of [—eo, 4-o0]-valued measurable functions and
if f(x) =lim, f,(x) holds for almost every x in X, then f is measurable.

Show that if fi and f, are R-valued measurable functions and if o € R, then
f1+ f> and o f] are measurable.

Show that the collection .# of L-measurable sets is a ¢-algebra.

Show that a function f: X — [—oo,4o0] is L-measurable if and only if it is
measurable (in the sense of Chap. 2) with respect to the o-algebra .Z .

Define a function y: .# — [0, +o0| by

Li(xa) if x4 is summable, and
u(A) = L
o0 if 4 is measurable but not summable.

Show that u is a measure on ..

Show that a function f: X — [—oco, 40| is L-summable if and only if it is . -
measurable and -integrable and that then L (f) = [ fdu.

Let [a,b] be a closed bounded interval and let L be the Riemann integral on
Cla,b], as in Example 7.7.3(a). Show that the L-summable functions on [a, D]
are exactly the Lebesgue measurable functions on [a,b] that are Lebesgue
integrable, and that L (f) = [ f dA holds for each such function f.

Let V and L be as in Exercise 2. Characterize the set of L-summable functions
in terms of concepts from the Lebesgue theory. Be very precise.

Notes

The historical notes in Chapter III of Hewitt and Ross [58] contain a nice summary
of the history of integration theory on locally compact Hausdorff spaces.

The reader who wants to see another elementary treatment of integration on
locally compact Hausdorff spaces might find Halmos [54], Hewitt and Stromberg
[59], Rudin [105], or Hewitt and Ross [58] useful. He or she would also do well to
look up the paper of Kakutani [67].
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The definition given here for the collection of Borel subsets of X agrees with
that given by Hewitt and Ross [58], Hewitt and Stromberg [59], and Rudin [105];
it agrees with that given by Halmos [54] only when X is o-compact. The definition
given in Exercise 7.2.8 for the o-algebra %)(X) of Baire subsets of a compact
Hausdorff space X is a special case of that given by Halmos (Halmos considers o-
rings, in addition to o-algebras, and so is able to give a definition of % (X) that can
reasonably be applied to an arbitrary locally compact Hausdorff space X).

Bourbaki [18] and Hewitt and Ross [58] deal with the pu*-, v*-, and (i x v)*-
measurable sets, rather than with the Borel sets, when considering product measures.
Proposition 7.6.5, Corollary 7.6.6, and Theorem 7.6.7 were suggested by de Leeuw
[34]. (See also Godfrey and Sion [51] and Bledsoe and Wilks [13].) Point (b) in the
discussion at the end of Sect. 7.6, and also Exercise 7.6.2, come from suggestions
made by Roy Johnson.

See Loomis [84], Riesz and Nagy [99], Royden [102], or Taylor [116] for more
details on the Daniell-Stone version of integration theory. Taylor’s exposition is
especially clear and detailed. The Daniell treatment of integration theory can also
be used to prove a version of the Riesz representation theorem; this is done, for
instance, by Loomis [84] and Royden [102].



Chapter 8
Polish Spaces and Analytic Sets

The Borel subsets of a complete separable metric space have a number of interesting
and useful characteristics. For example, if A and B are uncountable Borel subsets of
complete separable metric spaces, then A and B are Borel isomorphic—that is, there
is a bijection f: A — B such that f and f~! are both Borel measurable. A related
result says that if A is a Borel subset of a complete separable metric space, if ¥ is a
complete separable metric space, and if f: A — Y is injective and Borel measurable,
then f(A) is a Borel subset of Y. If the function f is not injective, then f(A) may
not be a Borel set, but it will be u-measurable for every finite Borel measure ¢ on
Y (that is, there will be Borel subsets By and B of Y such that B; C f(A) C B, and
u(Br—B1) =0).

This chapter is devoted to proving such results and to showing the context in
which they arise.

8.1 Polish Spaces

A Polish space is a separable topological space that can be metrized using a
complete metric. This section contains a number of elementary properties of Polish
spaces. In Sects. 8.3 through 8.6 we will use these properties, plus the concept of
an analytic set (defined in Sect. 8.2), to derive some deep and useful results about
measurable sets and functions.

There are many topological spaces that are Polish, but have no complete metric
that is particularly natural or simple. Furthermore, many constructions and facts of
interest in measure theory depend on the existence of a complete metric, but not on
the choice of a particular metric. It has thus become rather common to deal with
the class of Polish spaces, rather than with the class of complete separable metric
spaces.

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 239
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 _8,
© Springer Science+Business Media, LLC 2013
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Examples 8.1.1.

(a) For each d the space R¢, with its usual topology, is Polish.

(b) More generally, each separable Banach space, with the topology induced by its
norm, is Polish.

(c) Each compact metrizable space is Polish (see Theorem D.39 and
Corollary D.40). It amounts to the same thing to say that each compact
Hausdorff space that has a countable base is Polish (see Proposition 7.1.13).

O

We need the following results before we look at some additional examples.

Proposition 8.1.2. Each closed subspace, and each open subspace, of a Polish
space is Polish.

Proof. Let X be a Polish space. According to D.33, every subspace of X is separable.
Hence we need only check that the closed subspaces and the open subspaces of X
can be metrized by means of complete metrics.

Let d be a complete metric for X. If F is a closed subspace of X, then the
restriction of d to F is a complete metric for . Hence each closed subspace of
X is Polish.

Now suppose that U is an open subspace of X. We can assume that U # X . Recall
that d(x,U¢), the distance between x and U¢, is defined by

d(x,U°) =inf{d(x,z): z€ U}
(see D.27). It is easy to see that

1 1
d(x,U¢)  d(y,U°)

do(x,y) =d(x,y) +

defines a metric dy on the set U; we will check that dy metrizes the topology that U
inherits as a subspace of X and then that U is complete under d.

The function x — d(x,U¢) is continuous (again see D.27), from which it follows
that if x and x, xp, ... belong to U, then the sequence {x,} converges to x with
respect to d if and only if it converges to x with respect to dy. Thus dy metrizes the
topology of U.

We turn to the completeness of U under dy. A sequence {x, } that is Cauchy under
dp is also Cauchy under d, and so converges under d to a point x of X. The point
x belongs to U, since otherwise we would have lim, d(x,,U¢) = 0, which would
imply that

mdO(xm,xn) = oo,

m,n
contradicting the assumption that {x, } is Cauchy under dy. It now follows that {x; }
also converges to x under dy, and the completeness of U under d follows. a
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For the next results we need to recall a technique for constructing bounded
metrics. Suppose that d is a metric on a set X. It is easy to check that the formula

dO(xvy):min(lvd(xay)) (D

defines a metric on X and that d(x,y) = do(x,y) holds whenever x and y are such
that d(x,y) (or do(x,y)) is less than 1. It follows that d and dy determine the same
topology on X and that X is complete under dj if and only if it is complete under d.

Recall that the disjoint union Y., X4, of an indexed collection {X,, } of topological
spaces is defined by letting the underlying set ¥, X, be the disjoint union' of the
X¢’s and then declaring that a subset of Y, X, is open if and only if for each ¢ its
intersection with Xy, is an open subset of Xy,.

Proposition 8.1.3. The disjoint union of a finite or infinite sequence of Polish
spaces is Polish.

Proof. Let X, X», ... be Polish spaces, and let Y, X;, be their disjoint union. For
each n let D, be a countable dense subset of X, and let d,, be a complete metric on
X,,. We can assume that d,,(x,y) < 1 holds for each n and for all x and y in X,, (see
Eq. (1)). Then Y, D, is a countable dense subset of Y, X,,, and

d(x,) dy(x,y) if x,y € X, for some n,
XY) =
1 ifx€ X,, and y € X,,, where m # n

defines a complete metric that metrizes Y, X,,. O

Proposition 8.1.4. The product of a finite or infinite sequence of Polish spaces is
Polish.

Proof. Let X1, X», ... be a finite or infinite sequence of Polish spaces. We can
assume that no X, is empty. For each n let d,, be a complete metric that metrizes
X, and satisfies d,,(x,y) <1 for all x and y in X,, (see Eq. (1)). For points x and y in
I1, X,, with coordinates xy, x2, ... and yy, y2, ..., respectively, let

1
d(x,y) = 2 z_ndn(xn»yn)-

It is easy to check that this defines a metric d on [],, X, that d metrizes the product
topology on [], X,,, and that [, X,, is complete under d.

ILet {Y,} be an indexed collection of sets such that

(a) for each « the set Yy, has the same cardinality as the set X, and
(b) Yy, and Yy, are disjoint if o) # o

(for instance, one might let Y, be X, x {o}). The disjoint union of the X,’s is defined to be the
union of the Y,’s. (One generally thinks of the Y,’s as being identified with the corresponding
Xo's.)
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To prove the separability of [],, Xj,, it is enough to construct a countable base for
[1, X, (see D.10). For each n choose a countable base %, for X, (see D.32). Then
the collection of subsets of [, X,, that have the form

Uy X+ XUy X Xny1 X Xny2 X ...

for some N and some choice of sets U, in %,,n =1, ..., N, is the required base for
L, X.- O

Proposition 8.1.5. Let X be a Polish space. Then a subspace of X is Polish if and
onlyifitisa Ggin X.

Proof. Firstlet {U,} be a sequence of open subsets of X and let Y = N, U,. Each U,
is Polish (Proposition 8.1.2), as is the product [, U, (Proposition 8.1.4). Let A be
the subset of [], U, defined by

A= {{un}EHU,,:uj:uk forallj,k}.
n

Then A is a closed subset of [],, U,, and so is Polish. Furthermore Y is homeomor-
phic to A via the map that takes an element y of Y to the sequence each term of
which is y. Hence Y is Polish.

We turn to the converse. So suppose that Y is a subspace of X that is Polish. Let
d be a metric for the topology of X, and let dy be a complete metric for the topology
of Y. For each n let V,, be the union of those open subsets W of X that have diameter
at most 1 /n under d and for which WNY is nonempty and has diameter at most 1/n
under dyp. Since d and d induce the same topology on Y, every point in ¥ belongs
to each V,,. Let us show that

Y =YN(NV,). )

We just noted that ¥ C V,, holds for each n, and so, we have Y C Y N (N,V,). We
turn to the reverse inclusion. Suppose that x € Yn (NuVa). Since x € N,V,, we can
choose a sequence {W, } of open neighborhoods of x such that for each n the sets W,
and Y N'W, have diameters (under d and dy, respectively) at most 1/n. Since x € Y,
our sets W, satisfy W, NY # & for each n. Thus we can form a sequence {x,} by
choosing (for each n) a point x,, in W, NY. Our conditions on the diameters of the
sets W, under d and dy imply that {x, } converges to x with respect to d and that it
is a Cauchy sequence (in Y) with respect to dy. Thus there is a point y in Y to which
{xn} converges under dy. Since d and dj metrize the same topology on Y, it follows
{x,} also converges to y under d and hence thatx =y € Y. Thus Y N (N,V,) C Y and
the proof of (2) is complete. Since each closed subset of X (in particular, Y) is a G
in X (see D.28), relation (2) implies that Y is a G5 in X. a

Examples 8.1.6.

(a) Let X be a locally compact Hausdorff space that has a countable base for
its topology. Its one-point compactification X* also has a countable base
(Lemma 7.1.14) and so is Polish (Example 8.1.1(c)). Proposition 8.1.2 now
implies that X, as an open subset of X*, is Polish.
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(b) The space NI is, according to Proposition 8.1.4, Polish. We will often denote
this space by /. Its elements are, of course, sequences of positive integers.
A typical such sequence will generally be denoted by {n;} or by n (the boldface
n is a useful substitute for {n;} in complicated expressions).

For positive integers k and ny, ..., n; we will denote by .4 (ny,...,n;) the
set of those elements {m; } of A4 that satisfy m; = n; fori =1, ..., k. It is easy to
check that the family of all such sets is a countable base for .4". It is also easy
to check that the collection of those elements {m;} of .4 that are eventually
constant (that is, for which there is a positive integer k such that m; = my holds
whenever i > k) is a countable dense subset of .4,

(c) Next consider the space .# of irrational numbers in the interval (0, 1), together
with the topology it inherits from R. The complement of .# in R is an Fg, and
so . is a Gg; thus Proposition 8.1.5 implies that .# is Polish. It can be shown
that .# is homeomorphic to .4 (see Exercise 3 in Sect. 8.2).

(d) The space Q of rational numbers is not Polish (see Exercise 2).

(e) The space {0, 1}N, which consists of all sequences of zeroes and ones, is Polish
(Proposition 8.1.4 or Example 8.1.1(c)). It can be shown that this space is
homeomorphic to the Cantor set (see Exercise 1). a

The spaces .4 and {0, 1}" turn out to be very important in the development of
the theory of Polish spaces and analytic sets.

We turn to some basic facts about the Borel subsets of Polish spaces.

Let (X1,9), (Xa,9%), ... be measurable spaces. The product of these measura-
ble spaces is the measurable space (IT, Xy, [1, %%,) where [],, <, is the o-algebra on
1, X, that is generated by the sets that have the form

A1XAQX"'XANXXN+1XXN+2X... (3)

for some positive integer N and some choice of A, in «7,, n =1, ..., N. For each i
let ; be the projection of [],, X,, onto X;. Then
nfl(A) =Xy XXX XAxXjp 1 X...

1

holds for each subset A of X;, and so m; is measurable with respect to [], <7, and
. The set in display (3) is equal to ﬁf’: l77:1.’1(A,~); hence [], <, is the smallest
o-algebra on [], X,, that makes all the projections 7; measurable.

Proposition 8.1.7. Let X|, Xo, ... be a finite or infinite sequence of separable
metrizable spaces. Then B([1,X,) =1, B (Xn).

Proof. For each i consider the projection 7; of [], X, onto X;. Each such projection
is continuous and so is measurable (Lemma 7.2.1) with respect to %([],X,) and
PB(X;). Since [1, #(X,) is the smallest o-algebra on [T, X,, that makes these projec-
tions measurable (see the remarks above), it follows that [T, Z(X,) C Z(I1, X»)-
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We turn to the reverse inclusion. For each n choose a countable base %, for X,
(see D.32), and then let % be the collection of sets that have the form

Uy X+ XUy X Xny1 X ...

for some positive integer N and some choice of sets U, in %, forn=1, ..., N.
Then % is a countable base for [T, X,,, and % C I, #B(X,). Since each open subset
of 1, X, is the union of a (necessarily countable) subfamily of %/, it follows that
B, Xn) C I, B(X,). Thus B([1, X)) = I1, B(X,), and the proof is complete.

O

Let X and Y be sets, and let f be a function from X to Y. The graph of f, denoted
by gr(f), is defined by

gr(f) ={(xy) eX xY:y=f(x)}.

Proposition 8.1.8. Let X and Y be separable metrizable spaces, and let f: X — Y
be Borel measurable. Then the graph of f is a Borel subset of X X Y.

Proof. Let F: X XY — Y X Y be the map that takes (x,y) to (f(x),y). The Borel
measurability of f implies that if A,B € Z(Y), then F~'(A x B) € #(X) x B(Y);
hence F is measurable with respect to B(X) x #(Y) and B(Y) x B(Y) (Propo-
sition 2.6.2) and so with respect to Z(X xY) and (Y x Y) (Proposition 8.1.7).
Let A= {(y1,y2) €Y XY :y; =y}. Then A is a closed subset of ¥ x Y and
gr(f) = F~1(A). It follows that gr(f) is a Borel subset of X x Y. O

Lemma 8.1.9. Ler (X,o/) be a measurable space, and let Y be a metrizable
topological space. Then a function f: X — Y is measurable with respect to </ and
PB(Y) if and only if for each continuous function g: Y — R the function go f is
of -measurable.

Proof. If f is measurable with respect to o/ and (Y ), then the measurability of
go f for each continuous g follows from the measurability of g (Lemma 7.2.1),
together with Proposition 2.6.1.

Now assume that for each continuous g: ¥ — R the function go f is /-
measurable, and let d be a metric that metrizes Y. Suppose that U is an open subset
of Y. Then there is a continuous function gy : ¥ — R such that

U={yeY:gu(y)>0}

(if U #£Y, define gy by gy (y) = d(y,U°); otherwise, let gy be the constant function
1). The set £~ (U) is equal to

{xeX:(guof)(x)>0}

and so belongs to .«7. Since U was an arbitrary open subset of X, the measurability
of f follows (Proposition 2.6.2). O
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Proposition 8.1.10. Let (X,o/) be a measurable space, let Y be a metrizable
topological space, and for each positive integer n let f,: X — Y be measurable
with respect to &/ and B(Y). If lim,, f,(x) exists for each x in X, then the function
f: X =Y given by f(x) = limy, f,,(x) is measurable with respect to o/ and B(Y).

Proof. Note that if g: ¥ — R is continuous, then g(f(x)) = lim, g(f,(x)) holds for
each x in X. The proposition is now an immediate consequence of Lemma 8.1.9 and
Proposition 2.1.5. O

Proposition 8.1.11. Let (X,<7) be a measurable space, let Y be a Polish space,
and for each positive integer n let f,: X — Y be measurable with respect to </
and B(Y). Let C = {x € X : lim, f,(x) exists}. Then C € <. Furthermore, the map
f: C—Y defined by f(x) =lim, f,(x) is measurable with respect to </ and B(Y ).

Proof. Let d be a complete metric for Y. Then C is the set consisting of those x
in X for which {f,(x)} is a Cauchy sequence in Y. For each positive integer n the
set {(y1,y2) €Y xY :d(y1,y2) < 1/n} is an open subset of ¥ x Y and so belongs
to B(Y) x B(Y) (Proposition 8.1.7). Thus for each i, j, and n the set C(i, j,n)
defined by

C(i,j,n) = {x eX :d(fix),fi(x) < %}

belongs to .o7. Since

c=NUN(CGjn),

n ok i>kj>k

it follows that C € /. The measurability of f is now a consequence of
Proposition 8.1.10, applied to the spaces (C,<%) and Y (here <7 is the trace
of @7 on C; see Exercise 1.5.11). O

We conclude this section with the following useful fact about measures on Polish
spaces.

Proposition 8.1.12. Every finite Borel measure on a Polish space is regular.

Proof. Let X be a Polish space, let d be a complete metric for X, and let it be a finite
Borel measure on X. We can assume that X is not empty. Since each open subset
of X is an Fs in X (see D.28), Lemma 7.2.4 implies that each Borel subset A of X
satisfies

1(A) =inf{u(U): A C U and U is open} 4)
and
W(A) =sup{u(F): F CAandF is closed}. 5)
We will strengthen (5) by showing that each Borel subset A of X satisfies

w(A) =sup{u(K): K C A and K is compact}. (6)
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First consider the case where A = X. Let {x;} be a sequence whose terms form
a dense subset of X, and let € be a positive number. For each positive integer n use
Proposition 1.2.5 and the fact that X is the union of the open balls B(x;, 1/n), k=1,
2, ..., to choose a positive integer k,, such that

kn
u( U Bx, 1/n)> > pu(X)—e/2".
k=1

Let K =N, Ulli”: | B(x,1/n). Then K is complete and totally bounded under the
restriction of d to K, and so is compact (Theorem D.39). Furthermore

kn

(k) < Tu((UBG1/m) ) < Te/2 =e,
NS -

and so 1 (K) > u(X) — €. Since ¢ is arbitrary, (6) follows in the case where A = X.
Now let A be an arbitrary Borel subset of X, and let £ be a positive number.
Choose a compact set K such that p(K) > p(X) — €, and use (5) to choose a closed
subset F of A such that u(F) > u(A) — €. Then K NF is a compact subset of A, and

W(KNF)> u(A)—2e. Since ¢ is arbitrary, A must satisfy (6). Thus g is regular.
O

Exercises

1. Show that the map that takes the sequence {rn;} to the number ¥, 21, /3 is a
homeomorphism of {0, 1}" onto the Cantor set.

2. Show that the set Q of rational numbers, with the topology it inherits as
a subspace of R, is not Polish. (Hint: Use the Baire category theorem,
Theorem D.37.)

3. Let (X, o) be a measurable space, let Y be a separable metrizable space, and
let f,g: X — Y be measurable with respect to o7 and (Y ). Show that {x € X :
f(x) =g(x)} belongs to .

4. Suppose that {X, } is a sequence of nonempty separable metrizable spaces and
that, for each n, D), is a countable dense subset of X,,. Give (rather explicitly) a
countable dense subset of [], Xj,.

5. Let X be a Polish space, let {U,} be a sequence of open subsets of X, and
let d be a complete metric for X. Construct a complete metric for N,Up;
show directly that it has the required properties. (Hint: Examine the proofs of
Propositions 8.1.2, 8.1.4, and 8.1.5.)

6. Let C[0,+0) be the set of all continuous real-valued functions on the interval
[0, 4-c0).
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(a) Show that the formula

d(f;g) = sup{IA[f(t) —g(t)| :1 € [0, )}

defines a metric on C[0, +).

(b) Suppose that f and f1, f>, ... belong to C[0,+e). Show that { f; } converges
to f with respect to the metric in part (a) if and only if it converges to f
uniformly on [0, +-0).

(c) Show that C[0,+<), when endowed with the topology determined by the
metric in part (a), is not separable and hence not Polish.

7.(a) Show that the formula

a(1,8) = 3 o supl 1A LF(1) —(0)| 1 € [0.n]}
n
defines a metric on the set C[0,+oo) (see Exercise 6).

(b) Suppose that f and f1, f>, ... belong to C[0,+e). Show that { f; } converges
to f with respect to the metric in part (a) if and only if it converges to f
uniformly on each compact subset of [0, +eo).

(c) Show that C[0,+eo) is complete and separable under the metric defined in
part (a). (Hint: See Exercise 7.1.9.)

. Prove Proposition 8.1.10 directly, without using continuous functions.

9. Suppose that in Proposition 8.1.11 the space Y were only required to be
separable and metrizable. Show by example that the set C would not need to
belong to <7

10. Show that every finite Borel measure on QQ is regular. (Recall that Q is not
Polish; see Exercise 2.)

11. Show by example that a finite Borel measure on a separable metrizable space
can fail to be regular. (Hint: Suppose that X is a subset of R that satisfies
A*(X) < 4o but is not Lebesgue measurable. Consider the measure on
(X,2%(X)) that results when the construction of Exercise 1.5.11 is applied to
Lebesgue measure.)

12. Show that every separable metrizable space is homeomorphic to a subspace of
the product space [0, 1] and that every Polish space is homeomorphic to a G
in [0,1]. (Hint: Let d be a metric for the separable metrizable space X, and
let {x,} be a sequence whose terms form a dense subset of X. Consider the
map from X to [0, 1]V that takes the point x to the sequence whose n™ term is
min(1,d(x,x,)).)

13. Let (X,.<7) be a measurable space, let ¥ be a Polish space, let A be a subset
of X that might not belong to <7, and let 74 be the trace of &/ on A
(see Exercise 1.5.11). Show that if f: A — Y is measurable with respect to .o74
and ZA(Y), then f has an extension F: X — Y that is measurable with respect
to &7 and A(Y).

e}
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14. Give a counterexample that shows that the metrizability of ¥ cannot be omitted
in Proposition 8.1.10. (Hint: Let (X,<7) be ([0,1],.2([0,1])) and let Y be
[0, 1]1%1] with the product topology. For each n let f,: X — Y be the function
that takes x to the element of ¥ (i.e., to the function from [0, 1] to [0, 1]) given
by t — max (0,1 —nlr—x]|).)

8.2 Analytic Sets

Let X be a Polish space. A subset A of X is analytic if there is a Polish space Z and
a continuous function f: Z — X such that f(Z) = A.

We will soon see that every Borel subset of a Polish space is analytic, but that
there are analytic sets that are not Borel.

Analytic sets are useful tools for the study of Borel sets and Borel measurable
functions (see Sect.8.3); they also possess measurability properties that make
them useful in their own right (see Sects.8.4 and 8.5). This section contains a
few elementary properties of analytic sets, some techniques for constructing those
continuous maps that will be needed later in this chapter, and a construction
that provides an analytic set that is not Borel. The reader might well skip from
Proposition 8.2.9 to Sect. 8.3 at a first reading, returning for the remaining results as
they are needed.

Proposition 8.2.1. Let X be a Polish space. Then each open subset, and each closed
subset, of X is analytic.

Proof. This is an immediate consequence of Proposition 8.1.2, together with the
continuity of the standard injection of a subspace of X into X. O

Proposition 8.2.2. Let X be a Polish space, and let Ay, Ay, ... be analytic subsets
of X. Then UAy and N Ay are analytic.

Proof. For each k choose a Polish space Z; and a continuous function f;: Z; — X
such that f(Z;) = Ag. Let Z be the disjoint union of the spaces Z;, Z, ..., and
define f: Z — X so that for each k it agrees on Z; with f;. Then Z is a Polish space
(Proposition 8.1.3), f is a continuous function, and f(Z) = U;Ax; hence U Ay is
analytic.

Next form the product space []; Z;, and let A consist of those sequences {z;} in
[1x Z such that fi(z;) = fj(z;) holds for all i and j. Then A is a closed subspace
of [ Zx and so is Polish (Propositions 8.1.2 and 8.1.4). The set NzAy is the image
of A under the continuous function that takes the sequence {z;} to the point f;(z1);
hence it is analytic. O

It should be noted that the complement of an analytic set is not necessarily
analytic. In fact, the complement of an analytic set A is analytic if and only if A
is Borel (see Proposition 8.2.3 and Corollary 8.3.3).

Proposition 8.2.3. Let X be a Polish space. Then each Borel subset of X is analytic.
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The proof will depend on the following lemma. Because of later applications,
this lemma is given in a slightly stronger form than is needed here.

Lemma 8.2.4. Let X be a Hausdor{f topological space. Then 98(X) is the smallest
family of subsets of X that

(a) contains the open and the closed subsets of X,
(b) is closed under the formation of countable intersections, and
(¢) is closed under the formation of countable disjoint unions.

Note that closure under complementation is not one of the conditions listed in
Lemma 8.2.4.

Proof. Let . be the smallest collection of subsets of X that satisfies conditions
(a), (b), and (c) of the lemma (why does such a smallest collection exist?), and
let /o={A:A€ .7 and A° € ./} It is clear that %) C .¥ C H(X). Thus if we
show that .} is a o-algebra that contains each open subset of X, it will follow that
S =% = PB(X), and the proof will be complete.

It is immediate that . contains the open subsets of X and is closed under
complementation. Now suppose that {A,} is a sequence of sets in .. Then U,A,
is the union of the sets

Al,Aﬁ ﬁAz,Ai ﬁAEﬁA3, s

these sets are disjoint and belong to .%, and so U,A, must also belong to .¥.
Furthermore (U,A,)¢ is the intersection of a sequence (namely {AS}) of sets in
., and so belongs to .. Consequently U,A,, belongs to .#. It follows that .7 is
closed under the formation of countable unions. With this we have shown that .
is a o-algebra that contains the open subsets of X, and the proof of Lemma 8.2.4 is
complete. O

Proof of Proposition 8.2.3. Since the collection of analytic subsets of X satisfies
conditions (a), (b), and (c) of Lemma 8.2.4 (see Propositions 8.2.1 and 8.2.2), it
must include ZA(X). O

Proposition 8.2.5. Let X1, X5, ... be a finite or infinite sequence of Polish spaces,
and for each k let Ay be an analytic subset of Xy. Then [],Ax is an analytic subset

of Tk Xi-

Proof. 1f some Ay, is empty, then [T, Ay is empty and so is an analytic set. Otherwise
for each k choose a Polish space Z; and a continuous function f;: Z; — X; such
that f;(Z;) = Ay. Define a function f: [1x Zx — [T Xk by f({zc}) = {fx(z)}. Then
1k Zi is Polish, f is continuous, and f(IT; Zi) = [Tx Ak. Thus [T Ay is analytic. O

Proposition 8.2.6. Let X and Y be Polish spaces, let A be an analytic subset of X,
and let f: A —Y be Borel measurable (that is, measurable with respect to 5B(A)
and B(Y)). IfA| and A, are analytic subsets of X and Y, respectively, then f(ANA})
and f~'(A,) are analytic subsets of Y and X, respectively.
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Proof. Let my be the projection of X x Y onto Y. Proposition 8.1.8 implies that
gr(f) € #B(A xY), and Lemma 7.2.2 then implies that there is a Borel subset B of
X x Y such that gr(f) = BN (A xY). Hence gr(f) N (A; X Y) is an analytic subset
of X x Y (Propositions 8.2.2, 8.2.3, and 8.2.5) and so is the image of a Polish space
(say Z) under a continuous map (say &). It follows that f(ANA}), since it is the
projection of gr(f)N(A; xY) onY, is the image of Z under the continuous map 7y o
h and so is analytic. A similar argument shows that f~!(A;) is analytic (note that it
is the projection of gr(f) N (X x A3) on X). O

‘We turn to the construction of some continuous functions that are useful in the
study of Borel and analytic sets.

Proposition 8.2.7. Each nonempty Polish space is the image of AN under a
continuous function.

Proof. Let X be a nonempty Polish space, and let d be a complete metric for X. We
begin by constructing a family {C(n1,...,n;)} of subsets of X, indexed by the set
of all finite sequences (ny,...,n;) of positive integers, in such a way that

(a) C(ny,...,n) is closed and nonempty,

(b) the diameter of C(ny,...,n;) is at most 1/k,
(c) C(nl,... ,nk,l) = UnkC(nl,... ,nk), and

(d) X =Up,C(ny).

We do this by induction on k.

First, suppose that k = 1, and let {x;,, }:71:1 be a sequence whose terms form a
dense subset of X. For each n; in N define C(n;) to be the closed ball with center
Xn, and radius 1/2. Certainly each C(n;) is closed and nonempty and has diameter
at most 1. Furthermore, X = U, C(n;).

Now suppose that k > 1 and that C(ny,...,n;_1) has already been chosen.
It is easy to use a modification of the construction of the C(n1)’s, now applied to

C(ny,...,n;_1) rather than to X, to produce sets C(ny,...,n), iy = 1, 2, ..., that
satisfy conditions (a) through (c). With this, the inductive step in our construction is
complete.

We turn to the construction of a continuous function that maps 4" onto X.
Let n = {n;} be an element of 4. It follows from (a), (b), and (c) above that
C(n1), C(ny,n3), ... is a decreasing sequence of nonempty closed subsets of X
whose diameters approach 0. Thus there is a unique element in the intersection of
these sets (see Theorem D.35), and we can define a function f: .4~ — X by letting
f(n) be the unique member of N;C(ny,...,n;). Note that if m and n are elements
of 4 such that m; = n; holds fori =1, ..., k, then d(f(m), f(n)) < 1/k. It follows
that f is continuous. Finally, (c) and (d) above imply that for each x in X there is an
element n = {n;} of .4 such that x € N,C(ny,...,n;) and hence such that x = f(n);
thus f is surjective. a

Corollary 8.2.8. Each nonempty analytic subset of a Polish space is the image of
N under some continuous function.
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Proof. If A is the image of the Polish space Z under the continuous function f and
if Z is the image of .#” under the continuous function g (Proposition 8.2.7), then A
is the image of .4 under fog. O

Proposition 8.2.9. Let X be a Polish space. A subset A of X is analytic if and only
if there is a closed subset of /N x X whose projection on X is A.

Proof. The projection on X of a closed subset of .4 x X is the image of a Polish
space (see Propositions 8.1.2 and 8.1.4) under a continuous function (the projec-
tion), and so is analytic.

Now suppose that A is an analytic subset of X. If A is empty, then it is the
projection of the empty subset of .4#” x X. Otherwise there is a continuous function
f: A — X such that f(4") = A (Corollary 8.2.8). Then gr(f) is a closed subset of
A x X whose projection on X is A. O

While the preceding material is fundamental, the following results will be used
only occasionally in this book. The reader who does Exercises 1 and 5 and replaces
the proof for Theorem 8.3.6 given below with the one sketched in Exercise 8.3.5
can skip everything from here through Corollary 8.2.14.

We need to recall a definition and a few facts before proving Proposition 8.2.10.
A topological space is zero dimensional if its topology has a base that consists of
sets that are both open and closed. Among the zero-dimensional spaces are the space
of all rational numbers, the space of all irrational numbers, and each space that
has a discrete topology. Note that a subspace of a zero-dimensional space is zero
dimensional, that a product of zero-dimensional spaces is zero dimensional, and that
the disjoint union of a collection of zero-dimensional spaces is zero dimensional.
In particular, the spaces .4 and {0, 1} are products of zero-dimensional spaces,
and so are zero dimensional.

Proposition 8.2.10. Each Borel subset of a Polish space is the image under a
continuous injective map of some zero-dimensional Polish space.

Proof. We begin by showing that each Polish space is the image under a continuous
injective map of some zero-dimensional Polish space. First consider the interval
[0,1]. Tt is the image of the space {0,1}" under the map F: {0,1} — [0, 1] that
takes the sequence {x;} to the number ¥ (x;/2¥). Each number in [0, 1) that has
two binary expansions (that is, each number in (0,1) that is of the form /2" for
some m and n) is the image under F of two elements of {0,1}!; the remaining
members of [0, 1] are images of only one element of {0, 1}!Y. Thus if we remove a
suitable countably infinite subset from {0, 1}", the remaining points form a space
Z such that the restriction of F to Z is a bijection of Z onto [0, 1]. Note that F
is continuous, that Z is zero dimensional (it is a subspace of the zero-dimensional
space {0, 1}!), and that Z is Polish (its complement in {0, 1}V is countable, and so
itis a Gz in {0,1}Y). Hence [0, 1] is the image of a zero-dimensional Polish space
under a continuous injective map.

It follows that [0, 1] is the image of the zero-dimensional Polish space Z under
a continuous injective map.
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Now suppose that X is an arbitrary Polish space. Recall (see Exercise 8.1.12)
that there is a homeomorphism G of X onto a G in [0,1]". Let H be a continuous
injective map of ZN onto [0,1]N. Since G(X) is a Gg in [0,1]Y, it follows that
H ' (G(X)) is a Gg in ZN, and so is Polish. Let Hy be the restriction of H to
H~'(G(X)). Then X is the image of the zero-dimensional Polish space H~!(G(X))
under the continuous injective map G~ o H.

We turn to the Borel subsets of X. Let .% consist of those Borel subsets B of
X for which there is a zero-dimensional Polish space Y and a continuous injective
map f: Y — X such that f(Y) = B. According to the first part of this proof, .#
contains the open and the closed subsets of X (see Proposition 8.1.2), and an easy
modification of the proof of Proposition 8.2.2 shows that .% is closed under the
formation of countable intersections and under the formation of countable disjoint
unions. Thus Lemma 8.2.4 implies that .% = Z(X). O

See Theorem 8.3.7 for a rather powerful result that implies the converse of
Proposition 8.2.10.

Let us make some preparations for the proof of our next major result,
Proposition 8.2.13.

Lemma 8.2.11. Let X be a zero-dimensional separable metric space, let U be an
open and non-compact subset of X, and let € be a positive number. Then U is the
union of a countably infinite family of disjoint sets, each of which is nonempty, open,
closed, and of diameter at most €.

Proof. Since U is open and not compact, there is a family % of open sets whose
union is U, but that has no finite subfamily whose union is U. Let ¥ be the collection
of all subsets of X that are open, closed, of diameter at most €, and included in some
member of %/. Since X is zero dimensional, the set U is the union of the family 7.
According to D.11, there is a countable subfamily %4 of ¥ whose union is U. List
the sets in ¥ in a sequence Vi, V3, ..., and consider the nonempty sets that appear
in the sequence

Vi, VENV, VENVENV;, ...

These sets are open, closed, disjoint, and of diameter at most €, and their unionis U.
There are infinitely many of them, since otherwise there would be a finite subfamily
of % that would cover U. O

Let X be a topological space and let A be a subset of X, possibly the entire space
X. A point x of X is a condensation point of A if every open neighborhood of x
contains uncountably many points of A.

Lemma 8.2.12. Let X be a separable metrizable space, and let C be the set of
condensation points of X. Then C is closed, and C€ is countable.

Proof. Let % be a countable base for X (see D.32). Then x fails to belong to C if
and only if there is a countable open set that belongs to %/ and contains x. Hence
C¢ is the union of a countable collection of countable open sets, and so C¢ itself is
countable and open. O
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Proposition 8.2.13. Let X be a Polish space, and let B be an uncountable Borel
subset of X. Then there is a continuous injective map f: N — X such that
f(A) C B and such that B— f(A") is countable.

Proof. According to Proposition 8.2.10, there exist a zero-dimensional Polish space
Z and a continuous injective map g: Z — X such that g(Z) = B. Thus it will suffice to
construct a continuous injective map 4: .4~ — Z such that Z — h(.4") is countable,
and then to define f to be goh.

Let Zj be the collection of all points in Z that are condensation points of Z. Then
Zy is Polish (Lemma 8.2.12) and zero dimensional. Since Zj is countable, every
point in Zj is a condensation point of Zj (and not just a condensation point of Z).

Suppose that d is a complete metric that metrizes Zy. For each k we construct a
family of sets, indexed by N, as follows. Let us begin with the case where k = 1.
Apply Lemma 8.2.11 to the space Z, letting € be 1 and letting U consist of the
points that remain when one point is removed from Z; (this is to guarantee that U
is not compact). The sets provided by Lemma 8.2.11, say A(n;), n; =1, 2, ..., are
disjoint, nonempty, open, closed, and of diameter at most 1, each of them consists
entirely of condensation points of itself, and the union of these sets is Z less a single

point. We can repeat this construction over and over, for each k and ny, ..., nx_|
producing sets A(ny,...,ng), np = 1,2, ..., that are disjoint, nonempty, open, closed,
and of diameter at most 1/k, and are such that U, A(ni,...,nx) is A(ni,...,m_1)

less a single point.

Define h: .4 — Z by letting h(n) be the unique point in MA(ny,...,nk)
(Theorem D.35). It is easy to check that % is continuous and injective and that
Zy — h(./") is the countably infinite set consisting of the points removed from
Zy during the construction of the sets A(ny,...,n;). It follows that Z — h(.4") is
countable. Thus the construction of %, and so of f, is complete. O

The following is an interesting and well-known consequence of Proposi-
tion 8.2.13 (see also Exercise 1).

Corollary 8.2.14. Each uncountable Borel subset of a Polish space includes a
subset that is homeomorphic to {0, 1}".

Proof. Let X be a Polish space, and let A be an uncountable Borel subset of
X. Proposition 8.2.13 provides a continuous injective map f: .4 — X such that
f(A) C A TIf we regard {0, 1} as a subspace of .4 in the natural way, then the
restriction of f to {0, 1}V is a homeomorphism of {0, 1} onto the subset £({0,1})
of A (see D.17). O

Let X be a set, and let .# be a family of subsets of X. A subset A of A4 x X is
universal for Z if the collection of sections {Ap : n € 4} is equal to &.

Our goal now is to show that if X is Polish, then there is an analytic subset of
A x X that is universal for the class of analytic subsets of X. We will use such a
universal set to construct an analytic set that is not a Borel set.

Lemma 8.2.15. Let X be a separable metrizable space. Then there is an open
subset of N x X that is universal for the collection of open subsets of X and a
closed subset of N x X that is universal for the collection of closed subsets of X.
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Proof. Let % be a countable base for X, and let {U,, } be an infinite sequence whose
terms are the sets in %, together with the empty set (the sequence may have repeated
terms). Define a subset W of /" x X by

W = {(n,x) : x € Uy, for some k}

(recall that n is an abbreviation for {n;}). For each n and each k the set W (k,n)
defined by

W(k,n) ={ne€ N :n=n} xU,

is open, and so W, since it is equal to U, U, W (k,n), is also open. For each n in .4
the section W, is given by

Wa = JUn:
k
hence W is universal for the collection of open subsets of X (recall the definition of
the sequence {U, }).
The complement of W is a closed subset of .4#” x X and is universal for the class
of closed subsets of X. a

Proposition 8.2.16. Let X be a Polish space. Then there is an analytic subset of
N x X that is universal for the collection of analytic subsets of X.

Proof. Use Lemma 8.2.15, applied to the space .4 X X, to choose a closed subset
F of & x 4 x X that is universal for the collection of closed subsets of .4 x X.
Let A be the image of F under the map (m,n,x) — (m,x). Then A is analytic,
and it is easy to check that for each m in .4 the section A is the projection on
X of the corresponding section Fy, of F. Since F is universal for the collection of
closed subsets of .4 x X, Proposition 8.2.9 implies that the analytic subsets of X are
exactly the projections on X of the sections Fy,. Thus A is universal for the collection
of analytic subsets of X. a

Corollary 8.2.17. There is an analytic subset of A that is not a Borel set.

Proof. According to Proposition 8.2.16, there is an analytic subset A of A" x A~
that is universal for the collection of analytic subsets of 4. Let S={n¢€ A4 :
(n,n) € A}. Then S is analytic, since it is the projection on .4 of the intersection
of A with the diagonal {(m,n) € 4" x .4 : m = n}. Now suppose that S is a Borel
set. Then S¢ is a Borel set, and so is analytic (Proposition 8.2.3). Thus, since A is
universal, there is an element ny of .4 such that ¢ = Ay,,. Let us consider whether
ng belongs to S or to §¢. If ng € S, then by the definition of S we have (ng,ng) € A and
song € Ay, =S¢, which is impossible. A similar argument shows that if ng € ¢, then
ng € S. In either case we have a contradiction, and so we must reject the assumption
that S is a Borel set. O

One can use Corollary 8.2.17 to show that each uncountable Polish space has an
analytic subset that is not a Borel set; see Exercise 6.
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Exercises

1.(a) Let A be an uncountable analytic subset of the Polish space X. Show that
A has a subset that is homeomorphic to {0, 1}, (Hint: Let f: .4 — X be
a continuous function such that f(.4") = A. Choose a subset S of .4” such
that the restriction of f to § is a bijection of S onto A (why does such a
set exist?), and let Sy consist of the points in S that are condensation points
of S. Modify the proof of Proposition 8.2.7 so as to produce a continuous
function g: {0,1}N — _# such that fog: {0,1}Y — X is injective.)
(b) Conclude that each uncountable analytic subset of a Polish space has the
cardinality of the continuum.

2. Let X be an uncountable Polish space. Show that the collection of analytic
subsets of X and the collection of Borel subsets of X have the cardinality of
the continuum. (Hint: Use Proposition 8.2.9 or 8.2.16.)

3.(a) Let X be a nonempty zero-dimensional Polish space such that each

nonempty open subset of X is uncountable and not compact. Show that
X is homeomorphic to .4#". (Hint: Modify the proof of Proposition 8.2.7,
and use Lemma 8.2.11.)

(b) Conclude that the space .# of irrational numbers in the interval (0,1) is
homeomorphic to 4.

4. Show that each nonempty Polish space is the image of .4 under a continuous
open” map. (Hint: Modify the construction of the sets C(ny,...,n) in the proof
of Proposition 8.2.7, replacing condition (a) with the requirement that each
C(ny,...,n;) be nonempty and open and adding the requirement that for each
ni, ..., Mg, Ny the closure of C(ny,...,ngy1) be included in C(ny,. .., ng).)

5. Show that if the phrase “zero-dimensional” is omitted from the statement
of Proposition 8.2.10, then a much simpler proof can be given. (Hint: Use
Lemma 8.2.4.)

6. Show that if X is an uncountable Polish space, then there is an analytic subset
of X that is not a Borel set. (Hint: Use Proposition 8.2.13 and Corollary 8.2.17.
One can avoid Proposition 8.2.13 by using Theorem 8.3.6.)

7. In this and the following two exercises, we study a generalization of the
sequences %, Fs, Fgs, ... and 4, b5, Yss, ... introduced in Sect. 1.1.
Suppose that X is a metrizable space. For each countable ordinal o we define
collections .#(X) and ¥, (X) of subsets of X as follows. Let .%y(X) be the
collection of all closed subsets of X, and let % (X ) be the collection of all open
subsets of X. Once %, (X) and ¥, (X) are defined, let %1 (X) and %y (X)
be given by?

ZSuppose that X and Y are topological spaces. A function f: X — Y is open if for each open subset
U of X the set f(U) is an open subset of Y.
3Recall that each ordinal o can be written in a unique way in the form o =  +n, where j is either

zero or a limit ordinal and where 7 is finite. The ordinal « is called even if n is even and odd if n is
odd.
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(Za(X))s if aiseven,

9a+l(x)_{(§a(x))5 if o 1s Odd,

and

Gy 1(X) = (Ya(X))s if oriseven,
S (94(X))s if o is odd.

Finally, if o is a limit ordinal, let %4 (X) be (Ug<4-#p(X))s and let %, (X) be
(Up<a@B(X))o-

(a) Show that for each o the sets that belong to &, (X) are exactly those whose
complements belong to % (X).

(b) Show that for each o and each A in ¥, (X) (orin % (X)) the set A belongs
t0 Yy 11(X) (or to Fy41(X)).

(c) Show that B(X) = Ug%u(X) = UgFa(X).

(d) Suppose that Y is also a metrizable space and that f: X — Y is continuous.
Show that for each o and each A in %, (Y) (or in Z(Y)) the set f~!(A)
belongs to ¥ (X) (or to Fo(X)).

. Suppose that X is an uncountable Polish space. We already know that the

collection of Borel subsets of X has the cardinality of the continuum (see

Exercise 2). Here you are not to use that result, but rather to use transfinite

induction to show that each %, (X) has the cardinality of the continuum, that

each .Z(X) has the cardinality of the continuum, and that Z(X) has the
cardinality of the continuum.

(a) Show that if X is a Polish space, then for each countable ordinal « there
is a set in ¥, (A x X) (or in Fo (A x X)) that is universal for ¥y (X)
(or for #4(X)). (Hint: Use transfinite induction. Lemma 8.2.15 provides a
beginning. Next suppose that o > 0. Let ¢: .4 — 4N be a continuous
surjection, and let ¢ (n), k =1, 2, ..., be the components (in .#") of the
element @(n) of .4#N. If ¢ is a limit ordinal, let {oy} be an enumeration
of the ordinals less than o; otherwise, let {oy} be the sequence each of
whose terms is the immediate predecessor of . For each k choose a set Ay,
in 9, (/" x X) that is universal for &%, (X); then define sets By, B>, ... by

B, = {(n,x) eN xX: ((pk(n),x) GAk}.
Show that the set B defined by
B_ UrBr  if o is even,
i Br if o is odd,

belongs to ¥, (.4 x X) and is universal for ¢, (X). Finally, use part (a) of
Exercise 7.)

(b) Show that there is no set in (.4 x .4") that is universal for (.#"). (Hint:
Modify the proof of Corollary 8.2.17.)



8.3 The Separation Theorem and Its Consequences 257

(c) Suppose that X is an uncountable Polish space and that there is a bijection
F: .# — X such that both F and F ! are Borel measurable (such a bijection
always exists; see Theorem 8.3.6). Show that there is no set in (4" x X)
that is universal for Z(X). Also show that no two of the sets % (X ), %y (X),

Y (X), Fau(X), ..., B(X) are equal.

10. Let X be a Polish space, and let Y be a metrizable space. Show thatif A € Z(X)
and if f: A — Y is Borel measurable, then f(A) is separable. (Hint: Let d be a
metric for ¥, and suppose that f(A) is not separable. Choose a positive number
€ and an uncountable subset C of f(A) such that d(x,y) > € holds for each pair
x, y of points in C; then choose a function g: C — A such that y = f(g(y)) holds
for each y in C (check that C and g exist). Show that each subset of g(C) is
analytic, and then use Exercises 1 and 2 to derive a contradiction.)

8.3 The Separation Theorem and Its Consequences

This section is devoted to a fundamental technical fact about analytic sets (Theorem
8.3.1) and to some of its applications. The reader should take particular note of
Theorems 8.3.6 and 8.3.7.

Let X be a Polish space, and let A; and A, be disjoint subsets of X. Then A; and
A, can be separated by Borel sets if there are disjoint Borel subsets B and B, of X
such that A C By and A, C B;.

Theorem 8.3.1. Let X be a Polish space, and let A; and A, be disjoint analytic
subsets of X. Then A1 and A, can be separated by Borel sets.

Proof. Let us begin by showing that

(a) if Cy, Gy, ..., and D are subsets of X such that for each n the sets C,, and D can
be separated by Borel sets, then U,C,, and D can be separated by Borel sets, and

(b) if Eq, Ey,...,and Fy, F,, ... are subsets of X such that for each m and n the sets
E,, and F;, can be separated by Borel sets, then U, E,,, and U, F,, can be separated
by Borel sets.

First consider assertion (a). For each n choose disjoint Borel sets G,, and H,, such
that C, C G,, and D C H,,. Then U, G,, and N, H, are disjoint Borel sets that include
U,C, and D, respectively. Hence assertion (a) is proved.

Next consider assertion (b). Assertion (a) implies that for each m the sets E,,
and U, F; can be separated by Borel sets. Another application of assertion (a) now
implies that U, E,,, and U, F,, can be separated by Borel sets.

We turn to the proof of the theorem itself. So suppose that A| and A, are disjoint
analytic subsets of X. Since the empty set can clearly be separated from an arbitrary
subset of X by Borel sets, we can assume that neither A|; nor A; is empty. Thus
there are continuous functions f,g: .4~ — X such that f(.#") =A; and g(A") = A,
(Corollary 8.2.8). Suppose that A; and A, cannot be separated by Borel sets; we will
derive a contradiction.
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Recall (see Example 8.1.6(b)) that for positive integers k and ny, ..., ny the set
A (ny,...,n;) is defined by

JV(nl,...,nk):{meﬂ:mi:nifori:1,...,k}.

Since A = Uy, f(A (m1)) and Ay = U, g(# (n1)), assertion (b) above implies
that there are positive integers m; and n; such that f(.4"(m;)) and g(# (n))
cannot be separated by Borel sets. Likewise, since f(A (m1)) = Up, f(A (m1,m2))
and (A (n1)) = Un,&(A (n1,n2)), there are positive integers m, and ny such that
f(A (my,my)) and g(A (ny,n,)) cannot be separated by Borel sets. By continuing
in this manner we can construct sequences m = {m;} and n = {n;} such that for
each k the sets f(A (my,...,my)) and g(A (ny,...,n;)) cannot be separated by
Borel sets. The points f(m) and g(n) must be equal, since otherwise they could
be separated with open sets, which, by the continuity of f and g, would separate
f(A (my,...,mg)) and g(A (ny,...,n;)) for all large k. However, since f(m) € A;
and g(n) € Ay, the equality of f(m) and g(n) contradicts the disjointness of A; and
A,. So we must conclude that A| and A can be separated with Borel sets, and with
this the proof is complete. O

Corollary 8.3.2. Let X be a Polish space, and let Ay, Ay, ... be disjoint analytic
subsets of X. Then there are disjoint Borel subsets By, B, ... of X such that A,, C B,
holds for each n.

Proof. For each positive integer n the set U,,.,A,, is analytic, and so we can use
Theorem 8.3.1 and the disjointness of A, and U,,.,A,, to choose a Borel set C, such
that A, C C, and U,,,A, C C;,. Now define the Borel sets By, Ba, ... by letting By,
be equal to C;, — (UpznCir)- O

Corollary 8.3.3. Let X be a Polish space, and let A be a subset of X. If both A and
A€ are analytic, then A is Borel.

Proof. According to Theorem 8.3.1 there are disjoint Borel subsets B; and B, of X
such that A C By and A¢ C Bj. It follows immediately that A = By and A° = B,, and
hence that A is Borel. a

Proposition 8.3.4. Let X and Y be Polish spaces, let A be a Borel subset of X, and
let f be a function from A to'Y. Then f is Borel measurable if and only if its graph
is a Borel subset of X X Y.

Proof. Proposition 8.1.8 implies that if f is Borel measurable, then gr(f) is a Borel
subset of A X Y and hence (Lemma 7.2.2) of X x Y. Now consider the converse.
Suppose that gr(f) is a Borel subset of X x ¥ and that B is a Borel subset of Y.
Then gr(f) N (X x B) and gr(f) N (X x B) are Borel, and hence analytic, subsets
of X x Y. Thus the projections of these sets on X are analytic. But these projections
are f~!(B) and f~!(B¢), respectively. Furthermore the sets f~!(B) and f~!(B¢) are
disjoint, and so, by Theorem 8.3.1, there are Borel sets By and B; that separate them.
It is easy to check that f~!(B) is equal to AN B; and so is a Borel set. Since B was
an arbitrary Borel subset of Y, the measurability of f follows. a
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Proposition 8.3.5. Let X and Y be Polish spaces, let A be a Borel subset of X, let
f: A—Y be Borel measurable, and let B= f(A). If f is injective and if * B € B(Y),
then f~! is Borel measurable.

Proof. Note that gr(f~!) is the image of gr(f) under the homeomorphism (x,y)
(v,x) of X x Y onto ¥ x X; hence gr(f~') is a Borel subset of ¥ x X if and only
if gr(f) is a Borel subset of X x Y. Now apply Proposition 8.3.4 twice, once to
conclude that gr(f) is a Borel subset of X x ¥ and once to conclude that f~! is
Borel measurable. O

Let (X,4/) and (Y,#) be measurable spaces. A bijection f: X — Y is an
isomorphism if f is measurable with respect to .7 and % and f~! is measurable
with respect to % and .</. Equivalently, the bijection f is an isomorphism if the
subsets A of X that belong to .o are exactly those for which f(A) belongs to 4.
The spaces (X, o) and (Y, %) are isomorphic if there exists such an isomorphism.
We will also call subsets Xy and Yy of X and Y isomorphic if the spaces’ (Xo, 2, )
and (Yo, %y,) are isomorphic. In case (X, %(X)) and (Y, %(Y)) are Polish spaces,
together with their Borel o-algebras, we will often use the term Borel isomorphism
instead of isomorphism.

The concept of a Borel isomorphism is a natural one; it is especially important
because of the following easy-to-state but nontrivial result.®

Theorem 8.3.6. Let A and B be Borel subsets of Polish spaces. Then A and B
are Borel isomorphic if and only if they have the same cardinality. Furthermore,
the cardinality of each uncountable Borel subset of a Polish space is that of the
continuum.

Proof. If A and B are isomorphic, then they certainly have the same cardinality.
We turn to the converse.

Suppose that A and B have the same cardinality. If these sets are finite or
countably infinite, then each of their subsets is a Borel set, and each bijection
between them is an isomorphism; hence A and B are isomorphic.

Now suppose that A and B are uncountable. Note that we are simply assuming
that A and B are uncountable; we are not assuming that they have the same cardi-
nality. Proposition 8.2.13 says that there are continuous injective maps f: .4/~ — A
and g: .4 — B such that A — f(.4") and B — g(.#") are at most countably infinite.
Since they are countable, the sets A — f(.4#") and B — g(./#") are Borel sets; thus
f(A) and g(/4") are also Borel sets, and (see Proposition 8.3.5) f and g are Borel
isomorphisms of .#" onto f(.#") and g(.#"), respectively. Thus go f~! is a Borel
isomorphism of f(.#") onto g(.#"). Now let I be a countably infinite subset of
f(A), and let h be a bijection of the countably infinite set /U (A — f(.4")) onto

“We will see (Theorem 8.3.7) that the injectivity and measurability of f imply that B € Z(Y).
SOf course o7, and %y, are the traces of o7 and % on X, and ¥, (see Exercise 1.5.11).

6See Exercise 5 for a proof of Theorem 8.3.6 that does not depend on Proposition 8.2.13 or 8.3.5.
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the countably infinite set g(f~'(I)) U (B — g(.#)). It is easy to check that the map
that agrees with go f~! on f(.#") —I and with h on U (A — f(.#")) is a Borel
isomorphism of A onto B.

In particular, each uncountable Borel subset of a Polish space is Borel isomorphic
to R, and so has the cardinality of the continuum. a

It follows from Theorem 8.3.6 that a Borel subset of a Polish space is Borel
isomorphic to R, to the set N of all positive integers, to the set {1,2,...,n} for some
positive integer n, or to &.

We now show that the hypothesis that f(A) belongs to (Y ) can be removed
from Proposition 8.3.5.

Theorem 8.3.7. Let X andY be Polish spaces, let A be a Borel subset of X, and let
f: A=Y be Borel measurable and injective. Then f(A) is a Borel subset of Y.

The proof of this result will depend on the following lemma.

Lemma 8.3.8. Ler X and Y be Polish spaces, let A be a nonempty Borel subset
of X, and let f: A — Y be Borel measurable and injective. Then there is a Borel
measurable function g: Y — X such that g(Y) C A and such that g(f(x)) = x holds
at each x in A.

Proof. Let d be a metric for X, and let X be an element of A (we will hold X fixed
throughout this proof). For each positive integer n we define a function g,: ¥ — X
as follows. Choose a finite or countably infinite partition {A,, x }  of A into nonempty
Borel subsets of diameter at most 1/n, and in each A, 4 choose a point x,, ;. The sets
f (A,,,k), k=1, 2, ..., are disjoint and analytic (Proposition 8.2.6), and so we can
choose disjoint Borel sets B, x, k =1, 2, ..., such that f(A, x) C B, holds for each
k (Corollary 8.3.2). Now define g,: ¥ — X by letting g,(y) = x, 4 if y € B,x and
letting g, (y) =Xif y ¢ (UgB, ). It is easy to check that each g, is Borel measurable.
Define g: Y — A by letting g(y) = lim,, g, (y) if the limit exists and belongs to A and
letting g(y) = X otherwise. Proposition 8.1.11 implies that g is Borel measurable.
If x € A, then d(x,g,(f(x))) < 1/n holds for each n, and so g(f(x)) = x. Thus g is
the required function. O

Proof of Theorem 8.3.7. We can certainly assume that A is not empty. According to
Lemma 8.3.8 there is a Borel measurable function g: ¥ — X such that g(Y) C A and
such that g(f(x)) = x holds at each x in A. It is easy to check that

fA)={yeY: f(gly) =y}

Thus Exercise 8.1.3, applied to the functions y — f(g(y)) and y — y, implies that
f(A) e B(Y). O
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Exercises

1. Let X and Y be Polish spaces, and let f: X — Y be a function whose graph is an
analytic subset of X x Y. Show that f is Borel measurable.

2. Let X and Y be uncountable Polish spaces. Show that the cardinality of the
collection of Borel measurable functions from X to Y is that of the continuum.

3. Show that there is a Lebesgue measurable function f: R — R such that no
real-valued (as opposed to [—oo,4oo]-valued) Borel measurable function f;
satisfies f(x) < fi(x) at each x in R. Thus the [—co, +oeo]-valued functions f; and
/1 in Proposition 2.2.5 cannot necessarily be replaced with real-valued functions,
even if the function f is real-valued. (Hint: Let K be the Cantor set. According
to the preceding exercise, we can choose a bijection x — g, of K onto the set of
real-valued Borel functions on K. Define f: R — R by

) = {gx(x)—Fl ifxek,

0 otherwise,

and check that f meets the requirements above.)

4. Let X be a Polish space, let i be a Borel measure on X such that p(X) =1, and
let A be Lebesgue measure on the Borel subsets of [0,1]. Show that there is a
Borel measurable function f: [0, 1] — X such that u = A f~!. (Hint: This is easy
if X is finite or countably infinite. Otherwise use Theorem 8.3.6, together with
either Exercise 2.6.6 or Proposition 10.1.15.)

5. Give an alternate proof of the isomorphism theorem for Borel sets (Theorem
8.3.6) by supplying the details missing from the following outline. (This
proof depends neither on the separation theorem and its consequences nor on
Proposition 8.2.13.)

(a) Show that every Borel subset of a Polish space is Borel isomorphic to a Borel
subset of {0,1}". (Hint: Begin by showing that the interval [0, 1] is Borel
isomorphic to a Borel subset of {0, 1} (consider binary expansions). From
this conclude that [0, 1] is Borel isomorphic to a Borel subset of ({0, 1}N)N
and hence to a Borel subset of {0, 1}, Finally, use Exercise 8.1.12.)

(b) Show that each uncountable Borel subset of a Polish space has a Borel subset
that is Borel isomorphic to {0, 1}Y. (Hint: Use Corollary 8.2.14 or, to avoid
Proposition 8.2.13, Exercise 8.2.1.)

(c) (A version of the Schroder—Bernstein theorem for Borel sets—see item A.7
in Appendix A.) Suppose that X and Y are Polish spaces, that A and B are
Borel subsets of X and Y, respectively, that A is Borel isomorphic to a Borel
subset of B, and that B is Borel isomorphic to a Borel subset of A. Show
that A and B are Borel isomorphic to one another. (Hint: Let f and g be
Borel isomorphisms of A and B onto Borel subsets of B and A, respectively.
Define sequences {A,}_, and {B,},_, inductively by A9 = A, By = B,
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Apy1=g(Bn), and B, 1 = f(A,). Show that

hx) = f(x) if x € NGA, or x € UJ (A2 — Aont1),
g ' (x) ifx € US(Ams1 —Aoia)

gives a Borel isomorphism i#: A — B. See the proof of Proposition G.2
in Appendix G for a more detailed description of the construction of the
function A.)

8.4 The Measurability of Analytic Sets

Let (X, 7) be a measurable space, and let i be a measure on (X, <7 ). Recall that in
Sect. 1.5 we defined the completion of <7 under u to be the collection 7, of subsets
A of X for which there are sets E and F that belong to <7 and satisfy the relations
E CACF and u(F — E) =0. The sets in .27, are often called p1-measurable.

We also defined the outer measure t*(A) and the inner measure . (A) of an
arbitrary subset A of X by

w(A)=inf{u(B):ACBand B € o/} (1)

and
Wi(A) =sup{u(B):BCAand B € &/ }. )

We saw that a set A such that p1*(A) < +oo belongs to <7, if and only if u.(A) =
[*(A), that <7, is a o-algebra on X, and that the restriction of u* (or of i) to .27,
is a measure on 7, which is called the completion of 1 and is denoted by 1. It is
easy to see that [I is the only measure on .7, that agrees on &7 with L.

We can now state the main result of this section.

Theorem 8.4.1. Let X be a Polish space, and let [ be a finite Borel measure on X.
Then every analytic subset of X is |[L-measurable.

For the proof we need the following lemma.

Lemma 8.4.2. Let (X,o/) be a measurable space, let |l be a finite measure on
(X, 47), and let 1* be defined by Eq. (1). If {A, } is an increasing sequence of subsets
of X, then

(UA >—11mu n)-

Proof. The monotonicity of p* implies that the limit lim,, t*(A,,) exists and satisfies
lim, u*(A,) < u*(U,A,). We need to verify the reverse inequality. Let € be a
positive number, and for each positive integer n use (1) to choose a set B, that
belongs to 7, includes A,, and satisfies u(B,) < u*(A,) + €. By replacing B,
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with N7, B, we can assume that the sequence {B,} is increasing. Proposition 1.2.5
1mphes that w(U,B,) =lim, u(B,), and so we have

,u*(UAn> </.1<UB ) = limp(B,) <limp*(4,) +e.

Since ¢ is arbitrary, the proof of the lemma is complete. O

Proof of Theorem 8.4.1. Let A be an analytic subset of X. We will show that A is
u-measurable by showing that p,(A) = u*(A), and we will do this by producing,
for an arbitrary positive €, a compact subset K of A such that u(K) > u*(A) —

We can certainly assume that A is nonempty. Thus we can choose a continuous
function f: 4" — X such that f(.4#") = A (Corollary 8.2.8). We need some notation.

For positive integers k and ny, ..., ng let £ (ny,...,n;) be the set of those elements
m of A that satisfy m; < n; fori =1, ..., k. We will construct an element n = {n;}
of .4 such that

W (f(ZL(n1,...om))) > u*(A) —e 3)

holds for each k. We begin by choosing the first term n; of the sequence n.
Note that {.Z(ny)};; m=1 is an increasing sequence of sets whose union is .#", and
so {f(£(n1))}, —; is an increasing sequence of sets whose union is A. Thus
u*(A) =lim,, u*(f(Z(n1))) (Lemma 8.4.2), and so we can pick a positive integer
ny such that u*(f(Z(n1))) > u*(A) — €. Since Z(ny) = Up,-Z (n1,nz), a similar
argument produces a positive integer np such that u*(f(Z(ny,n2))) > u*(A) —
Continuing in this way we obtain a sequence n = {n;} of positive integers such
that (3) holds for each k. Now let L = N.Z(ny,...,n;). Then L is equal to

{m € A : m; <n; for each i}

and so is compact (see D.20 or D.42); it follows that the set K defined by K = f(L)
is a compact subset of A. We will show that u(K) > u*(A) —
Let us begin by showing that

K=f(&)", 4)
k

where for each k we have abbreviated £ (ny,...,n;) by %. Since it is clear that
K CMif (%), we turn to the reverse inclusion. Let d be a metric for the topology
of X. Suppose that x is a member of Ny f(-%;) . For each k we can choose an element
my of % such that d(f(my),x) < 1/k. Note that for each i the ith components of
the terms of {my} form a bounded subset of N; hence the terms of {m;} form a
relatively compact’ subset of ./, and we can choose a convergent subsequence of
{my }. Let m be the limit of this subsequence. It is easy to check that m € N;..%; and
that f(m) = x. Hence N (%)~ C K, and (4) is proved.

7 A subset of a Hausdorff space is relatively compact if its closure is compact.



264 8 Polish Spaces and Analytic Sets

For each k the set (%)~ is closed and includes f(.%;); hence (see (3))
L (L)) = 1w (f(Z)) > p'(A) —e. ®)

Furthermore the sequence { (%)} is decreasing, and so (4), (5), and Proposi-
tion 1.2.5 imply that

H(K) =limu(f(Z)") = u'(A4) —e. (6)

Thus (1. (A) > u*(A) — € and so, since € was arbitrary, the proof is complete. O

Let (X, /) be a measurable space. A subset of X is universally measurable (with
respect to (X, o)) if it is y-measurable for every finite measure 1 on (X, o). Let 7,
be the family of all universally measurable subsets of X. Then <7, = Ny .27, where
U ranges over the family of finite measures on (X,.27); hence 7 is a o-algebra. It
is easy to check that for each finite measure it on (X,.<7) there is a unique measure
on (X, <) that agrees on o7 with L.

Now assume that X is a Polish space. The universally measurable subsets of X
are those that are universally measurable with respect to (X, #(X)).

Theorem 8.4.1 can now be reformulated as follows.

Corollary 8.4.3. Every analytic subset of a Polish space is universally measurable.
Proof. This corollary is simply a restatement of Theorem 8.4.1. O

Let X be an uncountable Polish space. Corollary 8.4.3 implies that the o-
algebra of universally measurable subsets of X includes the c-algebra generated
by the analytic subsets of X. These o-algebras contain the complements of the
analytic sets, and so contain some nonanalytic sets; thus the collection of universally
measurable subsets of X is larger than the collection of analytic subsets of X, which
in turn is larger than A(X).

Suppose that X and Y are Polish spaces. Note that if C is a Borel (or even analytic)
subset of X x Y, then the projection of C on X is analytic and so is universally
measurable. This fact has the following useful generalization, in which the space X
is not required to be Polish.

Proposition 8.4.4. Ler (X,.7) be a measurable space, let Y be a Polish space, and
let C be a subset of X X Y that belongs to the product 6-algebra </ x B(Y). Then
the projection of C on X is universally measurable with respect to (X, o).

The proof depends on the following two lemmas; they will allow us to replace X
with a suitable Polish space.

Lemma 8.4.5. Let (X,./), Y, and C be as in Proposition 8.4.4, and let Z = {0, 1}".
Then there exist a function h: X — Z and a subset D of Z X Y such that

(a) h is measurable with respect to </ and B(Z),
(b) De B(ZxY), and
(c) C=H (D), where H: X xY — Z x Y is the map that takes (x,y) to (h(x),y).
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Proof. Recall that &/ x Z(Y) is generated by the family of all rectangles A x B
such that A € &/ and B € #(Y). It follows from Exercise 1.1.7 that this family of
rectangles has a countable subfamily % such that C € 6(%). Let A| x By, Ay X By,
... be the rectangles belonging to %', and define h: X — Z by letting h(x) be the
sequence {xa,(x)}. Since the subsets E}, Ex, ... of Z defined by

Ek:{{n,'}EZ:nkzl}

generate %(Z) (see Proposition 8.1.7) and since h~!(E;) = A holds for each k,
Proposition 2.6.2 implies that 4 is measurable with respect to <7 and %(Z). Define
H:XXY—ZxYbyH(x,y)=(h(x),y), and let

F={H '(D):DecBZxY)}.

Then .7 is a 6-algebra on X x Y that contains each A; X B;. Hence 0(%") C .%, and
so C € .%. With this the lemma is proved. O

Lemma 8.4.6. Ler (X, /) and (Y, %) be measurable spaces, and let f: X —Y be
measurable with respect to </ and 9B. Then f is measurable with respect to the
o-algebras of, and B, of universally measurable sets.

Proof. Suppose that B, € %,.. We need to show that f~!(B.) € <. Let u be a
finite measure on .o7. Recall that (£~ is the measure on % defined by uf~!(B) =
u(f~1(B)). Since B. belongs to 4., it belongs to B, -1, and so there are sets
By and B; in % that satisfy By C B, C By and uf '(B; — Bg) = 0. Then the
sets f~1(By) and f~!(B;) belong to .7 and satisfy f~!(Bo) C f~'(B.) C f~1(By)
and u(f~'(B1) — f~'(By)) = 0. Hence f~!(B.) € «/,. Since u was arbitrary, we
conclude that f~!(B.) belongs to .7, and the proof is complete. O

Proof of Proposition 8.4.4. Let (X,«/), Y, and C be as in the statement of
Proposition 8.4.4, and construct s, H, and D as in Lemma 8.4.5. Let my be
the projection of X x Y onto X, and let 7z be the projection of Z x Y onto Z.
Corollary 8.4.3 implies that mz(D) is a universally measurable subset of Z, and
so Lemma 8.4.6 implies that 4~ !(7z(D)) is a universally measurable subset of X.
Thus, in view of the easily verified relation

nx(C) = nx (H ' (D)) = h™! (mz(D)),

7y (C) is universally measurable. O

Exercises

1. Let (X, <) be a measurable space.

(a) Show that a function f: X — [—oo,+eo] is o%-measurable if and only if
for each finite measure i on (X, <) there are .o/-measurable functions
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Jo,f1: X — [—oeo,+oo] that satisfy fy < f < fi everywhere on X and
are equal to one another p-almost everywhere on X. (Hint: See Proposi-
tion 2.2.5.)

(b) Show thatif f: X — [—eo,+oo] is @7 -measurable and if the functions f; and
/1 in part (a) can be chosen independently of i, then f is .«/-measurable.

2. Let (X, <) be a measurable space.

(a) Show that (& ), = .
(b) Show that if u is a finite measure on (X, .¢7), then (.27 )+ = ;.

3. Show that there is a Lebesgue measurable subset of R that is not universally
measurable.

4. Show that each uncountable Polish space has a subset that is not universally
measurable. (Hint: Use Theorem 8.3.6.)

5. Show by example that Lemma 8.4.2 would not be valid if u* were allowed to be
an arbitrary outer measure on X.

6. Let (X, /) and (Y, %) be measurable spaces, and let K be a kernel from (X, /)
to (Y,%) such that sup{K(x,Y) : x € X} is finite (see Exercise 2.4.7). For
each x in X let B — K(x,B) be the restriction to %, of the completion of the
measure B — K(x,B). Finally, for each finite measure pt on (X,.o) let uK be
the measure on (Y, %) defined by (uK)(B) = [K(x,B) t(dx) (see part (a) of
Exercise 2.4.7).

(a) Show that (x,B) — K(x,B) is a kernel from (X,.7) to (¥,%.). (Hint: Use
Exercise 1. Let B belong to ., and let u be a finite measure on (X, %).
Choose sets By and B that belong to % and satisfy the conditions By C B C
B; and (uK)(B; — By) = 0; then consider the functions x — K(x,Bp) and
x+— K(x,B1).)

(b) Suppose that u is a finite measure on (X, <) and that @ and uK are the
restrictions to <7 and %, of the completions of ¢t and uK. Show that ukK =
[K (that is, show that

AR (B) = [ RwB)T(dx)
holds for each B in %,.)

7. Let X be a Hausdorff space. A capacity on X is a function I: & (X) — [—oo, +o0]
such that

(i) if A C BCX, then I(A) <I(B),
(ii) each increasing sequence {A,} of subsets of X satisfies 1(U,A,) =
lim, I(A,), and
(iii) each decreasing sequence {K, } of compact subsets of X satisfies 7(N,K,) =
lim, I(K,).

A subset A of X is I-capacitable if

I(A) = sup{I/(K) : K C A and K is compact}.
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Show that if the Hausdorff space X is Polish and if [ is a capacity on X, then

every relatively compact analytic subset of X is /-capacitable. (Hint: Modify the

proof of Theorem 8.4.1.)

8.(a) Show that the space .# of irrational numbers in the interval (0, 1) is not o-

compact.

(b) Let X be a Polish space that is not o-compact, and define 1: Z(X) —
[—eo, 4] by letting I(A) be 0 if A is included in some o-compact set and
letting I(A) be 1 otherwise. Show that

(1) 1 is a capacity on X, and
(ii) there is an analytic subset of X that is not /-capacitable.

8.5 Cross Sections

Let X and Y be Polish spaces, let A be a Borel or analytic subset of X x Y, and let
Ay be the projection of A on X. It is sometimes useful to have a measurable function
from Ag to Y whose graph is a subset of A. Of course, the axiom of choice guarantees
the existence of a function from Ay to Y whose graph is a subset of A, but it asserts
nothing about the measurability of that function. We will see below, however, that
the theory of analytic sets allows one to construct such a function in a way that
makes it measurable with respect to the o-algebra of universally measurable subsets
of X.

One should note that this construction does not always produce a Borel measur-
able function. In fact, there is a Borel subset A of [0,1] x [0, 1] such that

(a) the image of A under the projection (x,y) — x is all of [0,1], and
(b) there is no Borel function from [0, 1] to [0, 1] whose graph is a subset of A

(see Blackwell [10] or Novikoff [94]).

We will need a few more facts about .4 for our proof of Theorem 8.5.3. Let <
be lexicographic order on .4". In other words, we define a relation < on .4/ by
declaring that m < n holds if

(a) m #n and
(b) mij, < nj,, where iy is the smallest of those positive integers i for which m; # n;;

then we declare that m < n means that m < n or m = n. It is easy to check that < is
a linear order on 4.

Recall also (see Example 8.1.6(b)) that .4 (ny,...,n) is the set of all elements
of ¥ whose first k elements are ny, ..., n.

Lemma 8.5.1. Each nonempty closed subset of A" has a smallest element.

Proof. Let C be a nonempty closed subset of ./4". We define a sequence {n;} of
positive integers as follows. Let

ny = inf{k € N: k = m, for some m in C}.
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Next suppose that ng, ..., n; have been chosen, and let
njr1 =inf{k e N:k=mj forsome min CN.A (ny,...,nj)}.

It is easy to check that the sequence n = {n;} produced by continuing in this way is
the required element of C. O

Lemma 8.5.2. Each subset of A that has the form
{me ./ :m<n} (1

for somenin AN is open. The collection of all subsets of N of the form (1) generates

Proof. Note that {m € 4" : m < n} is equal to Uy U<, A (1,1, ), and
s0, as the union of a collection of open sets, is open.

Let .# be the o-algebra generated by the sets of the form (1). Since each set of
the form (1) is open, .% is included in #(.#"). On the other hand, it is easy to check
that for each k and each ny, ..., ny the set A (ny,...,n;) is the intersection of

{me AV m< (ny,ng,....m_1,m+1,1,1,...)}
with the complement of

{me SV m< (ny,ny,...,m_1,n,1,1,..)}

and so belongs to .%. Since the sets .4 (ny,...,n;) form a countable base for ./
(see Example 8.1.6(b)), they generate H(.4"), and it follows that Z(A4") C Z.
Thus B(N) = F. O

For the following theorem we will, as usual, let #(X). denote the c-algebra of
universally measurable subsets of the Polish space X; we will also let <7 (X) denote
the ¢-algebra generated by the analytic subsets of X.

Theorem 8.5.3. Let X and Y be Polish spaces, let A be an analytic subset of X XY,
and let Ay be the projection of A on X. Then there is a function f: Ay — Y such
that

(a) the graph of f is a subset of A, and
(b) f is measurable with respect to </ (X) and B(Y) and with respect to B(X ).
and B(Y).

Proof. We can assume that A is not empty, and so we can choose a continuous
function g: 4" — X x Y such that g(.#") = A (Corollary 8.2.8). Let mx and 7y
be the projections of X x Y onto X and Y, respectively. Then mx og: A — X is
continuous, and (7 0 g)(4") = mx (A) = Ao. Hence if x € Ay, then (x 0 g) ! ({x})
is a nonempty closed subset of .4", and so has a smallest member (Lemma 8.5.1).
Define i: Ag — 4 by letting h(x) be this smallest member of (my og)~!({x}).
Let f = my ogoh. It is easy to check that f is a function from Aj to Y whose
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graph is included in A. Since g and 7y are continuous and since <7 (X) C Z(X).
(Corollary 8.4.3), the measurability of f will follow if we prove that / is measurable
with respect to o/ (X) and B(A4").

Note that if for each n in .4 we let

Up={mée ./ :m<n},

then h~!(Uy) is equal to (7 o g)(Un), and so, as the image of the open set Uy
under the continuous map 7y o g, is analytic. Since the sets U, generate %(.4")
(Lemma 8.5.2), the measurability of & with respect to </ (X) and ZB(.4") follows
(Proposition 2.6.2). Thus f is measurable, and the proof is complete. O

Theorem 8.5.3 implies the following result, in which X is no longer required to
be Polish. Recall that if (X, <) is an arbitrary measurable space, then 7 is the
o-algebra of sets that are universally measurable with respect to (X, 7).

Corollary 8.5.4. Let (X,<7) be a measurable space, let Y be a Polish space, let C
be a subset of X X Y that belongs to the 6-algebra o x B(Y), and let Cy be the
projection of C on X. Then there is a function f: Cy — Y such that

(a) the graph of f is a subset of C, and
(b) f is measurable with respect to <, and B(Y).

Proof. Let Z, h, H, and D be as in Lemma 8.4.5, and let D be the projection of
D on Z. Note that Cy = h~!(Dp). According to Theorem 8.5.3 there is a function
fo: Do — Y that is measurable with respect to #(Z), and (Y ) and whose graph
is a subset of D. Define f: Cy — Y by f(x) = fo(h(x)). The fact that C = H~'(D)
implies that the graph of f is included in C, and Lemma 8.4.6 implies that % is
measurable with respect to <% and %#(Z). and hence that f is measurable with
respect to 7% and A(Y). O

Exercises

1. Show by example that the Polish space Y in Proposition 8.4.4 and Corollary 8.5.4
cannot be replaced with an arbitrary measurable space (Y, %). (Hint: Let (X,.</)
be (R, Z(R)), let Y be a subset of R that is not Lebesgue measurable, and let %
be the trace of Z(R) on Y. For Proposition 8.4.4 consider the subset {(x,y) : x =
y}of X xY.)

2. Let (X,.<7) be a measurable space, let Y be a Polish space, and let C be a subset
of X X Y such that

(i) for each x in X the section C, is closed and nonempty, and
(ii) for each open subset U of ¥ the set {x € X : C,NU # &} belongs to <.

Show that there is a function f: X — Y such that
(a) f is measurable with respect to </ and (Y ), and
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(b) the graph of f is included in C.
(Hint: Let d be a complete metric for Y, and let D be a countable dense subset
of Y. Choose a sequence {f,} of «7-measurable functions from X to D such that
d(fn(x),Cy) < 1/2" and d(fy(x), fut+1(x)) < 1/2" hold for all n and x; then define
F by f(x) =1lim, f,(x).)

3. Let (X,47), Y, and C be as in Exercise 2. Show that there is a sequence {f; } of
functions from X to Y such that
(a) each f;, is measurable with respect to 2/ and #(Y ), and
(b) for each x in X the section C; is the closure of the set { f,(x) : n € N}.
(Hint: Let {U, } be an enumeration of the nonempty sets in some countable base
for Y. Define sets Xi, X», ... by letting X,, be the set of x’s for which C, N U,
is not empty; then use Exercise 2 to construct for each n a measurable function
&n: Xy, — U, whose graph is included in CN (X, x Uy). Construct the f,’s by
extending the g,’s to X in a suitable way.)

4. Let X be a Polish space, let (Y,.<7) be a measurable space, and let f: X — Y be
a function such that

(i) ify €Y, then f~!({y}) is a nonempty closed subset of X, and
(ii) if U is an open subset of X, then f(U) belongs to .«

Use Exercise 2 to show that there is a function g: Y — X that is measurable with
respect to &7 and (X ) and that satisfies y = f(g(y)) foreachyin Y.

5. Use Exercise 8.2.4, together with ideas from the proof of Theorem 8.5.3, to give
an alternate construction of the function g in Exercise 4.

8.6 Standard, Analytic, Lusin, and Souslin Spaces

A measurable space (X, /) is standard if there is a Polish space Z such that (X, )
is isomorphic to (Z, %(Z)), and is analytic if there is a Polish space Z and an analytic
subset A of Z such that (X,.27) is isomorphic to (A, Z(A)) (recall that Z(A) is the
Borel o-algebra of the subspace A, and so, according to Lemma 7.2.2, is the family
of subsets of A that have the form A N B for some Borel subset B of Z).

Of course, the earlier sections of this chapter contain a number of properties
of standard and analytic measurable spaces. (For example, Theorem 8.3.6 implies
that if (X,/) is a standard measurable space, then either X is countable and &7
contains all the subsets of X or else (X,.o) is isomorphic to (R, Z(R)).) This
section contains a few more such properties, plus some techniques for verifying
that a measurable space is standard or analytic.

We need to define a few more terms. Let (X,4/) be a measurable space.
A subfamily € of o/ generates o/ if 6(¢) = o/. The o-algebra o7, or the
measurable space (X,.«7), is countably generated if </ has a countable subfamily
that generates it. A family & of subsets of X separates the points of X if for each
pair x, y of distinct points in X there is a member of % that contains exactly one of x
and y. The space (X, &), or the o-algebra <7, is separated if o/ separates the points
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of X, and is countably separated if </ has a countable subfamily that separates the
points of X.

See Exercises 1, 2, and 4 for some information about the relationships among the
concepts just defined.

Let us begin with a couple of general facts about analytic measurable spaces
(Lemma 8.6.1 and Proposition 8.6.2), and then turn to ways of recognizing the ana-
lytic and standard spaces among the countably generated spaces (Propositions 8.6.5
and 8.6.6).

Lemma 8.6.1. Let (X, o) be an analytic measurable space, let Y be a Polish space,
and let f: X — Y be measurable with respect to o/ and B(Y). Then the images
under f of the sets in </ are analytic.

Proof. Since (X,.7) is an analytic measurable space, we can choose a Polish space
Z, an analytic subset Ap of Z, and an isomorphism g of (Ag, %(Ay)) onto (X,.o7).
Suppose that A € <7. Then g~ (A) € %(Ay), and so there is a set B in %(Z) such
that g~'(A) = BNAg (Lemma 7.2.2). Consequently f(A), as the image of g~ '(A)
under the measurable map f o g, is analytic (Proposition 8.2.6). ad

Proposition 8.6.2. Each bijective measurable map between analytic measurable
spaces is an isomorphism.

Proof. Suppose that (X,<7) and (Y,%8) are analytic measurable spaces and that
f: X —Y is ameasurable bijection. We need to show that if A € o7, then f(A) € B.
Since (Y, %) is analytic, there is a Polish space Z, an analytic subset A of Z, and an
isomorphism g of (¥, %) onto (A, #(Ap)). Of course g is measurable with respect
to # and #(Z) (Lemma 7.2.2). Now suppose that A € o7 . The measurability of go f
with respect to o and #(Z) implies that g(f(A)) and g(f(A°)) are analytic subsets
of Z (Lemma 8.6.1), while the injectivity of g o f implies that g(f(A)) and g(f(A€))
are disjoint; hence the separation theorem for analytic sets (Theorem 8.3.1) provides
a Borel subset B of Z such that g(f(A)) C B and g(f(A°)) C B¢. It is easy to check
that f(A) is equal to g~!(B), and so belongs to %. Since A was an arbitrary set in
47, the measurability of f~! follows. a

We need the following elementary construction for our proof of Proposi-
tion 8.6.5.

Lemma 8.6.3. Let (X,.o/) be a countably generated measurable space, and sup-
pose that the sets Ay, Aa, ... generate <. Define F: X — {0,1}N by letting F take
X to the sequence {)a,(x)}. Then

o ={BCX:B=F '(C) for some C in ({0,1}")}. (1)

Proof. Let us denote the set on the right-hand side of (1) by .<7r. Since the sets E1,

Ej, ... defined by N

Ep={{n} €{0,1} " :ne =1}
generate Z({0,1}") (Proposition 8.1.7) and since Ay = F~'(E}) holds for each k,
Proposition 2.6.2 implies that F is measurable with respect to .7 and Z({0, 1}),
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and hence that @7y C <. On the other hand, <7 is a c-algebra on X that contains

each Ay, and hence includes the o-algebra these sets generate, namely 7. Thus
o = oy, O

Corollary 8.6.4. Let (X, <) be a separated and countably generated measurable
space. Then there is a subset A of {0,1}N such that (X,</) is isomorphic to
(A, 2(A)).

Proof. Use Lemma 8.6.3 to construct a map F: X — {0, 1} such that
o/ ={BCX:B=F '(C) for some C in Z({0,1})}. 2)

Let A = F(X). Since &/ was assumed to separate the points of X, (2) implies first
that F is injective and then that F is an isomorphism between (X, .o7) and (A, %(A))
(note that if B= F~!(C), then F(B) = CNA; also see Lemma 7.2.2). O

Proposition 8.6.5. Let (X,%7) be an analytic measurable space, let (Y, ) be
a separated and countably generated measurable space, and let f: X — Y be
surjective and measurable. Then (Y, ) is analytic.

Proof. Use Corollary 8.6.4 to construct a function F: ¥ — {0, 1}" that induces an
isomorphism of (Y, %) onto (F(Y),Z(F(Y))). Lemma 8.6.1, applied to the map
F o f, implies that F(Y) is an analytic subset of {0, 1}". Thus (¥, %), since it is
isomorphic to (F(Y),#(F(Y))), is an analytic space. O

Proposition 8.6.6. Let (X, /) be a standard measurable space, let (Y, ) be a
separated and countably generated measurable space, and let f: X — Y be bijective
and measurable. Then (Y, A) is standard.

Proof. Proposition 8.6.5 implies that (¥, 98) is analytic, and Proposition 8.6.2 then
implies that (Y, %) is isomorphic to (X, <7). Since (X, .o/) is standard, (Y, %) must
also be standard. a

We turn to an important result due to Blackwell and to some of its consequences.
For this we need to define the atoms of a c-algebra. Let (X, <) be a measurable
space, and let x be an element of X. The atom of </ determined by x is the
intersection of those sets that belong to .27 and contain x. Note that a point y belongs
to the atom determined by x if and only if x and y belong to exactly the same sets
in 7. It is easy to check that the atoms of &7 form a partition of X, that an atom of
o/ does not necessarily belong to .o/ (see Exercise 5), and that an atom of <7 can
contain more than one point (see Exercise 3).

Theorem 8.6.7 (Blackwell). Let (X, o) be an analytic measurable space, and let
oy be a countably generated sub-c-algebra of <f. Then a subset of X belongs to
o if and only if it belongs to o and is the union of a family of atoms of <.

Proof. Certainly every set that belongs to .2 also belongs to ./ and is the union of
a family of atoms of o). We need to prove the converse.
Use Lemma 8.6.3 to choose a function F: X — {0,1}" such that
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y={BCX:B=F'(C) for some C in Z({0,1})}. 3)

Note that F is measurable with respect to 7% and Z({0,1}"Y) and so with respect
to o7 and 2({0,1}"), and that the atoms of <% are the nonempty subsets of X that
are inverse images under F of one-point subsets of {0,1}". Now suppose that A
belongs to 7 and is the union of a family of atoms of <%. Then F(A) and F (A¢) are
disjoint analytic subsets of {0, 1} (use Lemma 8.6.1 and the assumption that A is
the union of a collection of atoms of %). Hence the separation theorem for analytic
sets provides a Borel subset C of {0, 1}" such that F(A) C C and F(A¢) C C¢. Then
A is equal to F~!(C) and so in view of (3) belongs to .2%. With this the proof is
complete. a

Corollary 8.6.8. Let (X, /) be an analytic measurable space, and let <% be a
separated and countably generated sub-c-algebra of o7 . Then <ty = o .

Proof. Since 27 is separated, each of its atoms contains only one point, and so each
subset of X is the union of a family of atoms of 2%. Thus Theorem 8.6.7 implies
that a subset of X belongs to .o if and only if it belongs to .. O

The following strengthened versions of Propositions 8.6.5 and 8.6.6 now follow.
They will be useful for the study of Lusin and Souslin spaces later in this section.

Corollary 8.6.9. Let (X,</) be an analytic measurable space, let (Y,2) be a
countably separated measurable space, and let f: X — Y be surjective and
measurable. Then (Y, 2) is analytic.

Proof. We begin by showing that & is countably generated. Choose a countable
subfamily & of % that separates the points of Y. We will show that Z is equal
to the countably generated o-algebra o(%). Let B be an arbitrary element of 2,
and let ) = 0(%¢ U{B}). Then %, is separated and countably generated, and f is
measurable with respect to 2/ and %y; hence (Y, %) is analytic (Proposition 8.6.5).
Furthermore, 0 (%) is a separated and countably generated sub-c-algebra of A,
and so Corollary 8.6.8 implies that (%) = %y. Thus B € 6(%). Since B was an
arbitrary member of %, it follows that & = o(%).

Now that we have proved that % is countably generated, we can use Proposi-
tion 8.6.5 to conclude that (Y, %) is analytic. O

Corollary 8.6.10. Ler (X,<f/) be a standard measurable space, let (Y, ) be
a countably separated measurable space, and let f: X — Y be bijective and
measurable. Then (Y, ) is standard.

Proof. This follows from Corollary 8.6.9 in the same way that Proposition 8.6.6
follows from Proposition 8.6.5. O
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Let us turn to the study of some not necessarily metrizable topological spaces
that are closely related to the Polish spaces. A Lusin space is a Hausdorff space that
is the image of a Polish space under a continuous bijection, and a Souslin space is
a Hausdorff space that is the image of a Polish space under a continuous surjection.
Of course, every Lusin space is a Souslin space.

Examples 8.6.11.

(a) Itis clear that the Souslin subspaces of a Polish space X are exactly the analytic
subsets of X. Proposition 8.2.10 (or Exercise 8.2.5) and Theorem 8.3.7 imply
that the Lusin subspaces of a Polish space X are exactly the Borel subsets of X.

(b) Now suppose that X is a Polish space, and let X be constructed by replacing
the topology of X with a weaker Hausdorff topology. The function f: X — Xy
defined by f(x) = x is continuous, and so Xy is a Lusin space. In particular, if X
is a separable Banach space, then X with its weak topology® is a Lusin space.
Likewise, if the dual X* of the Banach space X is separable, then X* with its
weak™ topology is a Lusin space. Furthermore, if the Banach space X is infinite
dimensional, then the weak topology on X and the weak® topology on X* are
not metrizable.” Thus non-metrizable Lusin spaces arise in a natural way. O

The rest of this section is devoted to some basic measure-theoretic facts about
Lusin and Souslin spaces. We will prove that if X is a Lusin space, then (X, (X))
is a standard measurable space, that if X is a Souslin space, then (X, %(X)) is an
analytic measurable space, and that if X is a Souslin space, then every finite Borel
measure on X is regular.

Lemma 8.6.12. If X is a Souslin space, then B(X) is countably separated.

Proof. Choose a Polish space Z and a continuous surjection f: Z — X. Define
F:ZXxZ—XxX by F(z1,22) = (f(z1),f(z2)). Let A be the subset of X x X
defined by

A={(x;,x) EXXX:x1 =x2},

and let % be the collection of those open rectangles in X x X that are included in
the complement of A. Then F is continuous, A is closed, and A = U% . Hence

F A=\ J{F'w):veu},

8This example assumes more Banach space theory than is developed in this book.

9Suppose that X is an infinite-dimensional Banach space. If the weak topology on X is metrizable,
then there is an infinite sequence {f;} in X* such that each f in X* is a linear combination of fi,
..., fn for some n (choose { f;} so that for each weakly open neighborhood U of O there is a positive
integer n and a positive number € such that x € U holds whenever x satisfies | f;(x)| < € fori =1,
..., n; then use Lemma V.3.10 in [42]). Thus X* is the union of a sequence of finite-dimensional
subspaces of X*. Since this is impossible (use Exercise 3.5.6, Corollary IV.3.2 in [42], and the
Baire category theorem), we have a contradiction, and the weak topology on X is not metrizable.
A similar argument shows that the weak™ topology on X* is not metrizable.
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and D.11, applied to {F~'(U) : U € %}, implies that there is a countable
subcollection % of % such that

F YA = {F '(U): U € %}
This and the surjectivity of F imply that
A= %.

Thus for each pair x, y of distinct points in X there is a set V x W in % such that
(x,y) € V. x W and hence (recall that (V x W)NA = @) such thatx e V,y e W,
and VNW = @. Consequently the sides of the rectangles in %4 form a countable
subfamily of Z(X) that separates the points of X. O

Proposition 8.6.13. If X is a Souslin space, then (X, (X)) is an analytic measur-
able space, while if X is a Lusin space, then (X, % (X)) is a standard measurable
space.

Proof. Let X be a Souslin space, and choose a Polish space Z and a continuous
surjection f: Z — X. Since f is Borel measurable and %(X) is countably separated
(Lemma 8.6.12), Corollary 8.6.9 implies that (X,%(X)) is analytic. A similar
argument, based on Lemma 8.6.12 and Corollary 8.6.10, shows that if X is a Lusin
space, then (X, (X)) is standard. O

Theorem 8.6.14. Every finite Borel measure on a Souslin space is regular.

Proof. Let X be a Souslin space, and let u be a finite Borel measure on X. We will
show that

W1(B) = sup{u(K) : K C B and K is compact} 4)

holds for each B in #(X). This gives the inner regularity of . It also implies the
outer regularity of u, since for each B in %(X) we can use (4), applied to B¢, to
approximate B¢ from below by compact sets and hence to approximate B from above
by open sets.

So suppose that B belongs to Z(X ). We can assume that B is not empty. Let us
begin by producing a continuous function f: .4 — X such that f(.#") = B. For this
choose a Polish space Z and a continuous surjection g: Z — X, note that g~!(B) is
a Borel and hence analytic subset of Z, choose a continuous function #: A" — Z
such that h(.#") = g~ !(B), and let f = goh.

For each positive number € we can use the constructions in the proof of
Theorem 8.4.1 to choose sets Z(ny,...,n;) (to be abbreviated as %) such
that u*(f(%)) > u(B) — € holds for each k. Arguments used in the proof of
Theorem 8.4.1 show that the sets L and K defined by L = N;.%;, and K = f(L)
are compact, that 4 (N f (%)) > 1(B) — &, and that K C N f(-%) .

Our earlier proof of the reverse inclusion works only if X is metrizable; hence it
must be replaced. Suppose that x € N /(%)™ and that U is an open neighborhood
of x. For each k choose an element my of % such that f(my) € U. As before,
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the sequence {m;} has a convergent subsequence, say with limit m. Then m € L,
and the continuity of f implies that f(m) € U~ and hence that U~ meets K. Since
this is valid for each open neighborhood U of x, it follows that x € K (otherwise,
since K is compact, Proposition 7.1.2 would provide disjoint open sets Uy and Vj
such that x € Uy and K C Vj, and Uy would be an open neighborhood of x such
that Uy N K = @). Since x was an arbitrary element of N f (%), it follows that
Mef (%)~ C K and hence that K = N f(-%;)~. With this we have constructed a
compact subset K of B such that u(K) > pu(B) — €, and (4) is proved. O

Exercises

1. Let (X, ) be a measurable space. Show that if <7 is separated and countably
generated, then .o/ is countably separated.

2. Give a o-algebra on R that is included in #(R) and is separated but not
countably separated.

3. Let (X, <) be a measurable space. Show that each atom of 2 contains only
one point if and only if .27 separates the points of X.

4. Give an example of a measurable space that is countably separated but not
countably generated.

5. Let X = {0,1}¥ and let .o/ be the smallest c-algebra on X that makes each
coordinate projection of X onto {0, 1} measurable (of course, {0,1} is to have
the o-algebra consisting of all of its subsets).

(a) Show that for each A in .2/ there is a countable subset S of R such that if
x €A, if y € X, and if x(s) = y(s) holds at each s in S, then y € A. (Hint:
See Exercise 1.1.7.)

(b) Show that the atoms of .27 do not belong to ..

6. Show by example that the hypothesis that .27 is countably generated cannot be
removed from Theorem 8.6.7.

7. Show by example that the hypothesis that (X, o) is analytic cannot be removed
from Theorem 8.6.7. (Hint: Let X = R, let A be a subset of R that is not Borel,
and let & = o(B(R)U{A}).)

8. Let X be a Souslin space. Show that if % is a collection of open subsets of
X, then there is a countable subcollection % of % such that U%y = U% .
(Hint: Study the proof of Lemma 8.6.12.)

9. Show that if X and Y are Souslin spaces, then B(X xY) = B(X) x B(Y).
(Hint: Apply Exercise 8 to the space X x Y.)

10. Show that each compact Souslin space is metrizable.
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Notes

The classical theory of analytic sets was developed by the Polish and Russian
schools of mathematics between the First and Second World Wars. See, for example,
Kuratowski [77]. In the mid-1950s Blackwell [11] noted that the theory of analytic
sets can be applied profitably to probability theory, while Mackey [86] noted that
it is useful for the study of group representations; their work has done much to
stimulate interest in the subject. Rather thorough recent treatments of analytic sets
have been given by Kechris [68] and Srivastava [112]. See also [29,62,83,101,107].

Analytic and Borel subsets of non-separable spaces have been studied by A.H.
Stone and his students. See Stone [113] for a survey and for further references.

Exercise 8.1.14 is due to Dudley [39].

The reader who wants to see additional (and more explicit) examples of
analytic sets that are not Borel should see Mazurkiewicz [88] and Dellacherie
[35]. For example, Mazurkiewicz shows that the subset A of C[0,1] consisting of
the differentiable functions (that is, of the continuous functions on [0,1] that are
differentiable at each point in [0, 1]) is the complement of an analytic set, but is not
itself analytic (thus A€ is analytic but not Borel).

The proof of Theorem 8.3.6 given in the text was suggested by Kuratowski and
Mostowski [78], while that in Exercise 8.3.5 is taken from Parthasarathy [96]. The
proof given here for Theorem 8.3.7 is due to Dellacherie [36].

Theorems 8.4.1 and 8.5.3 are classical. That they imply Proposition 8.4.4
and Corollary 8.5.4 has been noticed (independently) by a number of people.
See Castaing and Valadier [26] and Wagner [121] (and of course [62,68,101, 112])
for further information and references. The concepts of capacity and capacitability
are due to Choquet [28].

The results in the first part of Sect. 8.6 are due to Blackwell [11] and Mackey [86].
Bourbaki (see Chapter IX of [17]) introduced the terms Lusin space and Souslin
space for metrizable spaces that are images of Polish spaces under continuous
bijections and surjections; Cartier [25] noted that the assumption of metrizability
is not needed.



Chapter 9
Haar Measure

We saw in Chap. 1 that Lebesgue measure on R is translation invariant, in the sense
that 2 (A +x) = A(A) holds for each A in Z(R?) and each x in R¢. Furthermore,
we saw that Lebesgue measure is essentially the only such Borel measure on R?:
if i is a nonzero Borel measure on R that is finite on the compact subsets of R¢
and satisfies t (A +x) = u(A) for each A in Z(R?) and each x in RY, then there is a
positive number ¢ such that p1(A) = cA(A) holds for every Borel subset A of R9.

It turns out that very similar results hold for every locally compact group
(see Sect.9.1 for the definition of such groups); the role of Lebesgue measure is
played by what is called Haar measure. This chapter is devoted to an introduction to
Haar measure.

Section 9.1 contains some basic definitions and facts about topological groups.
Section 9.2 contains a proof of the existence and uniqueness of Haar measure,
and Sect. 9.3 contains additional basic properties of Haar measures. In Sect. 9.4 we
construct two algebras, L' (G) and M(G), which are fundamental for the study of
harmonic analysis on a locally compact group G.

9.1 Topological Groups

A topological group is a set G that has the structure of a group (say with group
operation (x,y) — xy) and of a topological space and is such that the operations
(x,y) — xy and x +— x~ ! are continuous. Note that (x,y) > xy is a function from the
product space G x G to G and that we are requiring that it be continuous with respect
to the product topology on G x G; thus xy must be “jointly continuous” in x and y and
not merely continuous in x with y held fixed and continuous in y with x held fixed
(see Exercise 3). A locally compact topological group, or simply a locally compact
group, is a topological group whose topology is locally compact and Hausdorff. A
compact group is a topological group whose topology is compact and Hausdorff.

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 279
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8_9,
© Springer Science+Business Media, LLC 2013
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Examples 9.1.1.

(a) The set R, with its usual topology and with addition as the group operation, is
a locally compact group.

(b) Likewise, RY, Z, and Z¢ are locally compact groups.

(c) The set R* of nonzero real numbers, with the topology it inherits as a subspace
of R and with multiplication as the group operation, is a locally compact group.

(d) Let T be the set consisting of those complex numbers z that satisfy |z| = 1. Then
T, with the topology it inherits as a subspace of C and with multiplication as
the group operation, is a compact group.

(e) The set Q of rational numbers, with the topology it inherits as a subspace of R
and with addition as the group operation, is a topological group; it is not locally

compact.
(f) An arbitrary group G, with the topology that makes every subset of G open, is
a locally compact group; it is compact if and only if G is finite. O

See Exercises 9—11 for some additional examples.
Let X be a topological space, and let x belong to X. Recall that a family % of
subsets of X is a base for the family of neighborhoods of x if

(a) each member of % is an open neighborhood of x, and
(b) for each open neighborhood V of x there is a set that belongs to % and is
included in V.

Let G be a group. If a is an element of G and if B is a subset of G, then the
products aB and Ba are defined by
aB={ab:b <€ B}

and
Ba = {ba:b € B}.

Likewise, if B and C are subsets of G, then BC and B~! are defined by
BC={bc:becBandceC},

and
B '={pb':beB}.

The set B is symmetric if B= B~'. Thus B is symmetric if and only if the condition
x € B is equivalent to the condition x~! € B.

Proposition 9.1.2. Let G be a topological group, let e be the identity element of G,
and let a be an arbitrary element of G.

(a) The functions x — ax, x — xa, and x — x~ ' are homeomorphisms of G onto G.

(b) If % is a base for the family of neighborhoods of e, then {aU : U € % } and
{Ua:U € %} are bases for the family of neighborhoods of a.
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(¢) If K and L are compact subsets of G, then aK, Ka, KL, and K are compact
subsets of G.

Proof. The definition of a topological group, together with the continuity of the
maps x — (x,a) and x — (a,x), implies the continuity of the functions in part (a).
Since these functions have continuous inverses (namely the functions that take x to
a 1x,toxa™!, and to x’l), they are homeomorphisms of G onto G.

Part (b) is an immediate consequence of part (a).

Part (c) follows from the fact that the image of a compact set under a continuous
map is compact (as usual, the compactness of the subset K x L of G x G is given by
Tychonoff’s theorem, Theorem D.20). a

Proposition 9.1.3. Let G be a topological group, let e be the identity element of G,
and let U be an open neighborhood of e.

(a) There is an open neighborhoodV of e such that VV C U.
(b) There is a symmetric open neighborhood of e that is included in U.

Proof. Since the map (x,y) — xy is continuous, the set W defined by W = {(x,y) :
xy € U} is an open neighborhood of (e,e) in G x G, and so there are open
neighborhoods V| and V, of e that satisfy V| x V, C W. The set V defined by
V =V NV, is then an open neighborhood of e that satisfies VV C U.

We turn to part (b). The continuity of the map x — x~! implies that if U is an
open neighborhood of e, then U~ is also an open neighborhood of e. Thus U NU !
is a symmetric open neighborhood of e that is included in U. O

Proposition 9.1.4. Let G be a topological group, let K be a compact subset of
G, and let U be an open subset of G that includes K. Then there are open
neighborhoods Vg and Vi, of e such that KVg C U and Vi, K C U.

Proof. For each x in K choose open neighborhoods W, and V, of e such that xW,, C U
and V.V, C W, (see Propositions 9.1.2 and 9.1.3). Then {xV, }sck is an open cover
of the compact set K, and so there is a finite collection xy, . .., x, of points in K such
that the sets x;Vy,, i =1, ..., n, cover K. Let Vg =N}, V,,. If x € K, then there is an
index i such that x € x;V,;, and so

XVR g xiinin g x,-le. g U.

Since x was an arbitrary element of K, it follows that KVz C U. The construction of
V., is similar. O

Let G be a topological group, and let f be a real- or complex-valued function
on G. Then f is left uniformly continuous if for each positive number € there
is an open neighborhood U of e such that |f(x) — f(y)| < € holds whenever x
and y belong to G and satisfy y € xU. Likewise, f is right uniformly continuous
if for each positive number € there is an open neighborhood U of e such that
|f(x) = f(y)| < € holds whenever x and y belong to G and satisfy y € Ux. Note
that we can replace the neighborhoods of e appearing in this definition with smaller
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symmetric neighborhoods of e (Proposition 9.1.3) and that for such symmetric
neighborhoods U the condition x € yU is equivalent to the condition y € xU and
the condition x € Uy is equivalent to the condition y € Ux. Thus x and y do in fact
enter our definition symmetrically.

Proposition 9.1.5. Let G be a locally compact group. Then each function in % (G)
is left uniformly continuous and right uniformly continuous.

Proof. Let f belong to % (G), and let K be the support of f. Suppose that € is a
positive number. For each x in K choose first an open neighborhood U, of e such that
|f(x)— f(¥)| < €/2 holds whenever y belongs to xU, and then an open neighborhood
Vy of e such that V.V, C Uy (see Propositions 9.1.2 and 9.1.3). The family {xV, }rex
is an open cover of the compact set K, and so there is a finite collection xy, ..., x, of
points in K such that the sets x;Vy,,i=1, ..., n, cover K. Let V be a symmetric open
neighborhood of e that is included in N_, V, (Proposition 9.1.3). We will show that
if x and y belong to G and satisfy y € xV, then |f(x) — f(y)| < €.

This inequality certainly holds if neither x nor y belongs to K (for then f(x) =
f(y) =0). Now suppose that x € K and y € xV. Then there is an index i such that
x € x;V; and hence such that x and y belong to x;U,; (note that x € x;V,, C x;Uy; and
y € xV CxiVy, Vi, C x;Uy,). It follows that | f(x) — f(x;)] < &/2 and |f(y) — f(x:)| <
€/2 and hence that | f(x) — f(y)| < €. The remaining case to deal with is where y € K
and y € xV. Since V is symmetric, this is exactly the case where y € K and x € yV,
and the details we just looked at (with x and y interchanged) handle this. The left
uniform continuity of f follows. The right uniform continuity of f can be proved in
a similar way. O

Corollary 9.1.6. Let G be a locally compact group, let | be a regular Borel
measure on G, and let f belong to ¢ (G). Then the functions x — [ f(xy) 1(dy)
and x — [ f(yx) u(dy) are continuous.

Proof. We will check the continuity of x — [ f(yx) tt(dy) at an arbitrary point xq in
G; the proof for x — [ f(xy) 1(dy) is similar.

Let K be the support of f, and let W be an open neighborhood of xy whose
closure is compact. It is easy to check that for each x in W the function y — f(yx)
is continuous and vanishes outside the compact set K(W~)~!. Suppose that ¢ is a
positive number, choose a positive number &’ such that &'y (K(W~)~!) < &, and use
the left uniform continuity of f (Proposition 9.1.5) to choose an open neighborhood
V of e such that |f(s) — f(r)| < € holds whenever s and ¢ belong to G and satisfy
s € tV. Then for each x in WNx(V and each y in G we have yx € yxoV, and so

|[ 10~ [fomu@)] < [ 10— fimo) ()
<gu(kWw )" <e

Since ¢ is arbitrary, the proof is complete. O

The next two results will be used only in Sect. 9.4.
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Proposition 9.1.7. Let G be a topological group, and let H be an open subgroup of
G. Then H is closed.

Proof. The complement of H is the union of the left cosets xH, where x ranges
through the complement of H. Proposition 9.1.2 implies that each of these cosets is
open. It follows that the complement of H is open and hence that H itself is closed.

O

Proposition 9.1.8. Let G be a locally compact group. Then there is a subgroup H
of G that is open, closed, and c-compact.

Proof. Since G is locally compact, we can choose an open neighborhood U of
e whose closure is compact. Use Proposition 9.1.3 to choose a symmetric open
neighborhood V of e that is included in U. Of course V™~ is compact. Define sets V",
n=1,2, ..., inductively by means of the equations VI=Vand V" = V"1V and
then define H by H = U,V". If x € V" and y € V", then xy € V""" and x~! € V"
(recall that V is symmetric); hence H is a subgroup of G. It is clear that H is open
and so also closed (see Exercise 4 and Proposition 9.1.7). Since V™~ is compact and
H is closed, the closure of each V" is compact and included in H; the o-compactness
of H follows. a

Exercises

1. Suppose that G is a group and a topological space. Show that G is a topological
group if and only if the map (x,y) + xy~! from G x G to G is continuous.

2. Let G be R, with addition as the group operation and with the weakest topology
that makes each interval of the form (a,b] open. Show that (x,y) — x+y is
continuous, but that x — —x is not continuous. Thus G is not a topological
group.

3. Let G be R, with addition as the group operation and with the topology
for which the open sets are those that either are empty or have a countable
complement (check that these sets do form a topology on G). Show that

(a) x — —x is continuous,

(b) (x,y) — x+y is continuous in x when y is held fixed and continuous in y
when x is held fixed, and

(¢) (x,y) — x+yis not continuous.

Thus G is not a topological group.

4. Let G be a topological group, let U be an open subset of G, and let A be an
arbitrary subset of G. Show that AU and UA are open subsets of G. (Hint: Note
that AU = UgecpalU )

5. Show that if G| and G, are topological groups, then G| x G,, with the product
topology and with the operation defined by (x1,x)(y1,y2) = (x1y1,%2)2), is a
topological group.
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6. Let G be a topological group. Show that the following conditions are equiva-
lent:

(i) The topology of G is Hausdorff.
(i) For each a in G the set {a} is closed.
(iii) For some a in G the set {a} is closed.

7. Find all closed subgroups of R. In other words, find all subgroups of the additive
group R that are closed in the usual topology for R.
8. Let G be a Hausdorff topological group, and let E and F be subsets of G.

(a) Show that if E is compact and F is closed, then EF is closed.

(b) Show by example that if E and F are closed (but not compact), then EF
can fail to be closed. (Hint: Such examples can be found in the case where
G=R)

9. Let G consist of the 2 by 2 matrices of the form <?) I;) , where a is a positive

real number and b is an arbitrary real number. Show that G, with the operation
of matrix multiplication and with the topology it inherits as a subspace of R?,
is a locally compact group.

10. Let GL(d,R) be the collection of all invertible d by d matrices with real entries.
Show that GL(d,R), with the operation of matrix multiplication and with the

topology it inherits as a subspace of Rdz, is a locally compact group (it is called
the general linear group). (Hint: See Lemma 6.1.2, and recall how Cramer’s
rule for the solution of systems of linear equations gives an explicit formula for
the inverse of a matrix.)

11. Let O(d) be the collection of all orthogonal' d by d matrices. Show that O(d),
with the operation of matrix multiplication and with the topology it inherits as
a subspace of Rdz, is a compact group (it is called the orthogonal group).

12. Let G be the locally compact group introduced in Exercise 9. Construct a real-
valued function on G that is right uniformly continuous, but not left uniformly

continuous. (Hint: Consider
ab
— @b
(o 1) ¢ (b),

where ¢ is a suitable function from R to R.)
13. Derive Proposition 9.1.5 from Proposition 9.1.4. (Hint: Suppose that f belongs
to 2 (G). Consider the group G X G and the sets K and U defined by K =

{(xx) s x € supp(f)} and U = {(x,y) : |[f(x) = f(¥)] < €})

IRecall that a square matrix with real entries is orthogonal if the product of it with its transpose is
the identity matrix.
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9.2 The Existence and Uniqueness of Haar Measure

Let G be a locally compact group, and let u be a nonzero regular Borel measure on
G. Then U is a left Haar measure (or simply a Haar measure) if it is invariant under
left translations (or simply franslation invariant), in the sense that (1 (xA) = u(A)
holds for each x in G and each A in %(G). Likewise, U is a right Haar measure
if u(Ax) = u(A) holds for each x in G and each A in #(G). (Lemma 7.2.1 and
Proposition 9.1.2 imply that if x € G and if A is a Borel subset of G, then xA and
Ax are Borel subsets of G; hence the expressions t(xA) and p(Ax) appearing in the
preceding definition are meaningful.)

In this section we prove that there is a left Haar measure on each locally compact
group and that it is unique up to multiplication by a constant. A few properties of
Haar measures, plus the relationship between left and right Haar measures, will be
dealt with in Sect. 9.3. In Sect. 9.4 we will use these results to discuss some measure-
theoretic tools for harmonic analysis.

Examples 9.2.1.

(a) Lebesgue measure on R (or on R9) is a left and a right Haar measure; see
Proposition 1.4.4.

(b) If G is a group with the discrete topology (that is, with the topology that makes
every subset of G open), then counting measure on G is a left and a right Haar
measure; in particular, counting measure on the group Z of integers is a Haar
measure.

(c) Let T be the set of complex numbers z such that |z| = 1, made into a topological
group as in Example 9.1.1(d) in the previous section. Then linear Lebesgue
measure on T is a Haar measure. More precisely, if Ay is Lebesgue measure on
R, restricted to the Borel subsets of the interval [0,27), and if F: [0,27) — T is
defined by F(0) = e/, then AgF ! is a left and a right Haar measure on T. [

See Exercises 3 and 5 below and also Exercises 4 and 6 in Sect. 9.3, for additional
examples of Haar measures.

We need a bit of notation. Let G be a group, let x be an element of G, and let f
be a function on G. The left translate of f by x, written ,f, is defined by ,f(r) =
f(x~'t), and the right translate of f by x, written f,, is defined by f.(¢) = f(tx~").
The function f (or f*) is defined by f(z) = f(t~!). Note that if x, y, and ¢ belong to
G, then

wf(@0) = () ) = fO7 ) =, f ) = () ()

hence

xyf:x(yf)-

A similar argument shows that

fxy = (fx)y'
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If A is a subset of G, then the characteristic functions of the sets A, xA, and Ax are
related by the identities

(xa)x = Xax

and

«(Xa) = Xxa-

This gives one reason for defining , f(¢) and f,(¢) to be f(x~'¢) and f(zx~!), rather
than f(xr) and f(¢x). (The definitions of , f and f, are not entirely standard; some
authors use f(xt) and f(tx) where we used f(x~'t) and f(zx~').)

If G is a locally compact group and if u is a left Haar measure on G, then

[arau= [ rau (1)

holds for each Borel function f that is either nonnegative or -integrable (note that
[xfdu = u(xA) = u(A) = [ fdu holds if f is the characteristic function of the
Borel set A, and then use the linearity of the integral and the monotone convergence
theorem).

Theorem 9.2.2. Let G be a locally compact group. Then there is a left Haar
measure on G.

Proof. Let K be a compact subset of G, and let V be a subset of G whose interior
V? is nonempty. Then {xV?°},c is an open cover of the compact set K, and so there
are finite sequences {x;}”_, of elements of G such that K C U’ x;V. Let #(K : V)
be the smallest nonnegative integer n for which such a sequence {x;}?_; exists. Of
course, #(K : V) =0 if and only if K = &.

Let us choose a compact set Ky whose interior is nonempty; it will serve as
a standard for measuring the sizes of various subsets of G and will remain fixed
throughout this proof. Roughly speaking, we will measure the size of an arbitrary
compact subset K of G by computing the ratio #(K : U)/#(Ky : U) for each open
neighborhood U of e and then finding a sort of limit of this ratio as the neighborhood
U becomes smaller. We will use this “limit” to construct an outer measure 1* on G,
and then we will show that the restriction of u* to %(G) is the required measure.

We turn to the details. Let % be the family of all compact subsets of G, and let 7%/
be the family of all open neighborhoods of e. For each U in % define hy: € — R
by hy(K) =#(K : U) /#(Ky : U).

Lemma 9.2.3. The relations

(@) 0<hy(K) <#(K:Ko),

(b) hu(Ko) =1,

(©) hy(xK) = hy(K),

(d) hy(Ky) <hy(Kz) if K1 C Ko,

(e) hU(Kl UKQ) < hU(Kl) +hU(K2), and

) hU(Kl UKQ) = hU(Kl) +hU(K2) ileUf1 ﬁK2U71 =0

hold for all U, K, K, K, and x.
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Proof. The relation
#K:U) <#(K:Kp)#(Ko:U) 2)

holds for all K and U, as we can see by noting that if {x;}{_; and {y;}’_, are se-
quences in G such that K C U | x;Ky and Ko C U _ly,U then K C U | U;?:lx,-ij.
Dividing both sides of (2) by #(Ko : U) gives assertion (a). Assertions (b), (c), (d),
and (e) are clear. In view of (e), we can prove (f) by checking that

# KUKy :U)>#(K; :U)+#(K,:U) 3)
holds whenever
KU 'nKU '=2. “

So suppose that (4) holds and that {x;}?_, is a sequence of points such that n =
#(K 1 UK, : U) and K; UK, C U xU. Then each set x;U meets at most one of K
and K; (for if x;U met both K| and K>, then x; would belong to K1U’ NKU™ D,
and so we can partition the sequence {x;}’__, into sequences {y;}?_, and {z;}%_,
such that K; C U’ _ iU and K» C Ul 1ziU. Relation (3) and part (f) of the lemma
follow. O

We now turn to the “limit” of the ratios #(K : U)/#(Kp : U)—that is, of the
functions {hy }yea - We will find this “limit” by constructing a certain product space
that contains all the functions Ay and then using a compactness argument to produce
the “limit” function.

For each K in ¢ let Ix be the subinterval [0,#(K : Kj)] of R. Let X be
the product space [Jxew Ik, endowed with the product topology. Since each
interval Ix is compact, Tychonoff’s theorem (Theorem D.20) implies that X is
compact. According to part (a) of Lemma 9.2.3, each function hy belongs to
X. For each open neighborhood V of e let S(V) be the closure in X of the set
{hy :U € andU CV}. If Vi, ..., V, belong to % (that is, if they are open
neighborhoods of e) and if V' is defined by V = N, V;, then hy € N}_,S(V;); since
Vi, ..., V, were arbitrary, this implies that the closed sets {S(V)}yee satisfy the
finite intersection property. The compactness of X now implies that Nyc4 S(V)
is nonempty. Let us choose, once and for all, an element A, of Nyc4 S(V). This
function A, is our “limit” of the functions Ay .

Lemma 9.2.4. The function he satisfies

(@) 0<he(K),
(b) he ( )=0,
(©) he(Ko) =1,
(d) he(xK) = h()

(@) he(Ki) < he(Kz) if K1 C K>,

) he KlUKz) < h, (K1)+h (Kz), and

(g) he (KlUKz)Zh (K1)+h.(K2) IfKiNK;, =

forall xin G and all K, Ky, and K, in €.

AAAA
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Proof. Let us begin with part (f). Recall that X, as the product space [Jxc« Ik, is
a certain set of functions on %, with its topology defined so that for each compact
subset K of G (i.e., for each element K of the index set €) the projection from X to
R defined by i — h(K) is continuous. Hence for each choice of compact subsets K
and K, of G the map from X to R defined by

h— h(Ky) +h(K2) — h(K1 UK>) o)

is continuous. Since this map is, in addition, nonnegative at each hy (see part (e)
of Lemma 9.2.3), it is nonnegative at each point in each set S(V). In particular, it is
nonnegative at h,, and so part (f) is proved.

Property (a) is clear, and properties (b) through (e) can be proved with arguments
similar to the one given above for part (f). We turn to part (g). Suppose that K;
and K, are disjoint compact subsets of G. According to Proposition 7.1.2 there are
disjoint open sets U; and U, such that K; C U; and K, C U,, and according to
Proposition 9.1.4 there are open neighborhoods V; and V; of e such that K1V, C Uy
and K»V, C U,. Let V =V NV,. Then KV and K,V are disjoint, and so for each U
that belongs to % and satisfies U C V! we have

hy (Kl U Kz) =hy (Kl) + hU(Kz)
(see part (f) of Lemma 9.2.3). Consequently the map defined by (5) vanishes at each
element of S(V~1). Since ke € S(V1), part (g) follows. O

Let us return to the proof of Theorem 9.2.2. We are now in a position to construct
the promised outer measure on G. Define u* on the collection of open subsets of
G by

w(U)=sup{he(K): KCU and K € €}, (6)

and extend it to the collection of all subsets of G by
u*(A) =inf{u*(U):ACU and U is open}. (7

It is clear that y* is nonnegative, that it is monotone, and that u*(2) = 0.
In view of (7), we can verify the countable subadditivity of y* by checking that
each sequence {U;} of open subsets of G satisfies

IJ*(UUI'> < ZH*(Ui)- (3

So suppose that {U;} is a sequence of open subsets of G. Let K be a compact subset
of U;U;. Then there is a positive integer n such that K C U?_,U;, and there are
compact subsets K1, ..., K, of Uy, ..., U, such that K = U?_| K; (use Lemma 7.1.10
and mathematical induction). It follows that
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u(U) < 2u*<vf>

M=

he(K) < D, he(K;) <

1

l

(see Lemma 9.2.4 and Eq. (6)); since K was an arbitrary compact subset of U;U;,
another application of (6) gives (8).

We can prove that each Borel subset of G is y*-measurable by verifying that if
U and V are open subsets of G and if u*(V) < +oo, then

pr(V) = pr(Vvnu) +p(Vnue) )

(see the proof of Proposition 7.2.9). We proceed to check this inequality. Let € be a
positive number. Choose a compact subset K of VN U such that

he(K) > u*(VNU) —e, (10)

and then choose a compact subset L of V NK° such that he(L) > p*(VNK°) — €.
Then K and L are disjoint, and, since VN U C VNKC, L satisfies

he(L) > u*(VNU) —e. an
It follows from these inequalities and Lemma 9.2.4 that
he(KUL) = he(K) + he(L) > u*(VNU)+u*(VNU®) —2e.

Since € is arbitrary and he (K UL) < u*(V), inequality (9) follows. Consequently
2(G) is included in the o-algebra of y*-measurable sets, and the restriction of p*
to #(G) is a measure (Theorem 1.3.6). Call this measure (.

We turn to the regularity of u. Note that if K is compact, if U is open, and if
K C U, then he(K) < u(U). It follows from this and (7) that

ha(K) < u(K). (12)

Furthermore, if K is a compact set and U is an open set that includes K and has a
compact closure (see Proposition 7.1.4), then

he(L) < he(U™)
holds for each compact subset L of U, and so
H(K) <p(U) <h(U™).

It follows that u is finite on the compact subsets of G. The outer regularity of u
follows from (7), and the inner regularity follows from (6) and (12).

It is easy to check that u is nonzero and translation-invariant (use Lemma 9.2.4
and Eqs. (6) and (7)). Thus u is the required measure. O

The following lemma gives a fundamental elementary property of Haar meas-
ures; we will need it for our proof of Theorem 9.2.6.



290 9 Haar Measure

Lemma 9.2.5. Let G be a locally compact group, and let |l be a left Haar measure
on G. Then each nonempty open subset U of G satisfies L(U) > 0, and each
nonnegative function f that belongs to # (G) and is not identically zero satisfies

[fdu>0.

Proof. Since U is regular and not the zero measure, we can choose a compact set
K such that p(K) > 0. Let U be a nonempty open subset of G. Then {xU } ¢ is
an open cover of the compact set K, and so there is a finite collection, say xi, ...,
Xx,, of elements of G such that the sets x;U, i = 1, ..., n, cover K. The relation
U(K) <3, u(xU) and the translation invariance of p imply that p(K) < nu(U)
and hence that (1 (U) > 0. Thus the first half of the lemma is proved.

Now suppose that f is a nonnegative function that belongs to .# (G) and does
not vanish identically. Then there is a positive number € and a nonempty open set U
such that f > eyy. It follows that [ fdu > eu(U) > 0. O

Theorem 9.2.6. Let G be a locally compact group, and let |1 and v be left Haar
measures on G. Then there is a positive real number ¢ such that v = c|l.

Proof. Let g be a nonnegative function that belongs to J#(G) and does not
vanish identically (g will be held fixed throughout this proof), and let f be an
arbitrary function in J# (G). Since [ gdu # 0 (Lemma 9.2.5), we can form the ratio
Jfdu/ [gdu. We will show that this ratio depends only on the functions f and g
and not on the particular Haar measure p used in its computation. It follows that the
Haar measure v satisfies

Jfdv _ [fdu
Jgdv  [gdu

and hence satisfies [ fdv =c [ fdu, where cisdefinedby c= [gdv/ [gdu. Since
this holds for each f in ¢ (G), Theorem 7.2.8 implies that v = cpL.

We turn to the ratio [ fdu/ [gdu. If h € (G x G), then Proposition 7.6.4
implies that the iterated integrals [ [A(x,y) u(dx)v(dy) and [ [h(x,y) v(dy) u(dx)
exist and are equal. If in the second of these integrals we reverse the order of
integration, use the translation invariance of the Haar measure u to replace x with
y~!x (see (1)), again reverse the order of integration, and finally replace y with xy,
we find that

//h(xvdey)u(dX) = '/'/h(y*‘x,y)u(dx)v(dy)
= '/'/h(y’laxy)V(dy)u(dX) (13)

Let us apply this identity to the function 4 defined by

f(x)g(yx)

")) = eloo) viar)
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(Note that & does belong to # (G x G): Corollary 9.1.6 and Lemma 9.2.5 imply that
x> [g(tx) v(dt) is continuous and never vanishes; furthermore, if K = supp(f) and
L = supp(g), then supp(h) C K x LK~!.) For this function & we have h(y~!,xy) =
FODgx)/ [g(ty~ ") v(dt), and so Eq. (13) implies that

. —1
[rwutan = [etntan [ L0 ())1)3( Vi)

Thus the ratio of [ fdu to [gdu depends on f and g, but not on , and the proof
is complete. a

The reader should note that if the locally compact group G is commutative (and
if, for convenience, the group operation is written additively), then a simpler proof
of Theorem 9.2.6 can be given. In fact, it is easy to check that if f and g belong to
A (G), then

[ rau [eav=[ [ gt uidnviay
— [ [ 4380 mi@n vidy)
— [ [ 0)str=0 vidy) i)
= [ [r0)s(=0m(a@n vidy)

:/fdv/gdy.

Thus if we let g be a nonnegative function that belongs to .# (G) and does not vanish
identically and if we define cby c = [gdv/ [gdu, then [ fdv =c [ fdu holds for
each f in .2 (G). It follows that v = cu.

Exercises

1. Let G be the set of rational numbers, with addition as the group operation and
with the topology inherited from R. Show that there is no nonzero translation-
invariant regular Borel measure on G.

2. Let G be a locally compact group, let u be a left Haar measure on G, and let f
and g be continuous real-valued functions on G. Show that if f and g are equal
H-almost everywhere, then they are equal everywhere.
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3. Let G be the multiplicative group of positive real numbers, with the topology it
inherits as a subspace of R. Show that the formula

B ) = [ LA

defines a Haar measure on G.
4. Let G be a locally compact group that is homeomorphic to an open subset (say
U) of RY, and let ¢ be a homeomorphism of G onto U.

(a) Show that if for each a in G the function u +— @(a¢@~!(u)) is the restriction
to U of an affine” map L,: RY — R?, then the formula

1
N
1) o(a) [det(Ly-1(,] (du)

defines a left Haar measure on G.
(b) Likewise, show that if for each a in G the function u — @(¢~'(u)a) is the
restriction to U of an affine map R, : R4 — R4, then the formula

' 1
)= [ ey A
defines a right Haar measure on G.
5. Let G be the group defined in Exercise 9.1.9. Suppose that we identify G with
the right half-plane in R? by associating the point (a,b) with the matrix (g Il)) .

Show that the formula

w(A) :///;aizdadb

defines a left Haar measure on G and that the formula

w(A) = / L
Aa
defines a right Haar measure on G. (Hint: Use the preceding exercise.)
6. Let G be a locally compact group, and let i be a left Haar measure on G. Show
that the topology of G is discrete if and only if p({x}) # 0 holds for some
(and hence for each) x in G.

2A map F: RY — R? is affine if there exist a linear map G: R? — R? and an element b of R? such
that F(x) = G(x) + b holds for each x in RY. If F is affine, then G and b are uniquely determined
by F, and we will (for simplicity) denote by det(F) the determinant of the linear part G of F (see
Sect. 6.1).
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Let G be a locally compact group, and let i be a regular Borel measure on G.
The map x — x~! is a homeomorphism of G onto itself (Proposition 9.1.2), and so
the subsets A of G that belong to %(G) are exactly those for which A~! belongs to
%(G) (Lemma 7.2.1). Define a function [i on %(G) by ft(A) = u(A~"). It is easy
to check that [ is a regular Borel measure on G. The relation

[ rai= | fau (1)

holds if f is a Borel function that is nonnegative or fi-integrable; this is clear if f is
a characteristic function and follows in general from the linearity of the integral and
the monotone convergence theorem.

Proposition 9.3.1. Let G be a locally compact group, and let [l be a regular Borel
measure on G. Then W is a left Haar measure if and only if [i is a right Haar
measure, and is a right Haar measure if and only if [1 is a left Haar measure.

Proof. The identity (Ax)~! = x~!A~! implies that [i(Ax) = {i(A) holds for each x
in G and each A in %(G) if and only if u(x'A~") = u(A~") holds for each x in
G and each A in #(G). The first half of the proposition follows. We can derive the
second half from the first by replacing y with fI and noting that ,EL =U. O

Corollary 9.3.2. Let G be a locally compact group. Then there is one and, up to a
constant multiple, only one right Haar measure on G.

Proof. In view of Proposition 9.3.1, this is an immediate consequence of Theorems
9.2.2 and 9.2.6. O

Proposition 9.3.3. Let G be a locally compact group, and let U be a left Haar
measure on G. Then U is finite if and only if G is compact.

Proof. The regularity of p implies that u is finite if G is compact.

We turn to the converse. Suppose that u is finite. Let K be a compact subset
of G such that ¢(K) > 0 (for instance, K can be a compact set whose interior is
nonempty; see Lemma 9.2.5). The finiteness of t(G) implies that there is an upper
bound, for instance 1 (G)/u(K), for the lengths of those finite sequences {x;}/ for
which the sets x,K, i = 1, ..., n, are disjoint. Thus we can choose a positive integer
n and points xi, ..., x, such that the sets x;K, i = 1, ..., n, are disjoint, but such that
for no choice of x,4 are the sets x,K, i =1, ..., n+ 1, disjoint. It follows that if
x € G, then xK meets U?_,x;K, and so x belongs to (UL x;K)K ~!; hence G is equal
to the compact set (U, x;K)K 1. O

It follows that each compact group G has a Haar measure g such that u(G) = 1.
In dealing with compact groups one often assumes that the corresponding Haar
measures have been “normalized” in this way.
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Let G be a locally compact group, and let u be a left Haar measure on G. The
maps u — ux are homeomorphisms of G onto itself (Proposition 9.1.2), and so for
each x in G the formula . (A) = u(Ax) defines a regular Borel measure u, on G.
The translation invariance of y implies that p, satisfies t1,(yA) = g (yAx) = p(Ax) =
Ux(A) for each y in G and each A in %(G). Thus L, is a left Haar measure, and so
Theorem 9.2.6 implies that for each x there is a positive number, say A(x), such
that 1, = A(x)u. The function A: G — R defined in this way is called the modular
function of G. See Exercises 2 and 4 for some examples.

If v is another left Haar measure on G, then there is a positive constant ¢ such that
vV =cl, and s0 Vy = clly = cA(x)L = A(x)V holds for each x in G. Thus the modular
function A is determined by the group G and does not depend on the particular left
Haar measure used in its definition.

Recall that (x4)x = )ax holds for each member x and subset A of G. It follows that

[ fedu =) [ fau @

holds if f is the characteristic function of a Borel subset of G and hence if f is a
Borel function that is nonnegative or t-integrable.

Proposition 9.3.4. Let G be a locally compact group, and let A be the modular
function of G. Then

(a) A is continuous, and

(b) A(xy) = A(x)A(y) holds for each x and y in G.

Proof. Let u be a left Haar measure on G, and let f be a nonnegative function that
belongs to . (G) and does not vanish identically. Then [ fdu # 0 (Lemma 9.2.5),
and so Corollary 9.1.6 and Eq. (2) imply the continuity of A. The relation A(xy) =
A(x)A(y) follows from the calculation

Alxy)p(A) = p(Axy) = A(y)u(Ax) = A(y)A(x) L (A).
O

A locally compact group G is unimodular if its modular function satisfies
A(x) =1 at each x in G. Thus a locally compact group G is unimodular if and
only if each left Haar measure on G is a right Haar measure and so if and only if
the collection of all left Haar measures on G coincides with the collection of all
right Haar measures on G. Of course every commutative locally compact group is
unimodular.

Proposition 9.3.5. Every compact group is unimodular.

Proof. Let G be a compact group, and let A be its modular function. The relation
A(x") = (A(x))" holds for each positive integer n and each element x of G
(Proposition 9.3.4); hence A is unbounded if there is an element x of G that satisfies
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A(x) > 1 or that satisfies 0 < A(x) < 1 (for then x~! satisfies A(x~!) > 1). However
the continuity of A and the compactness of G imply that A is bounded; thus A(x) =1
must hold at each x in G. a

The remaining results in this section will be needed only for a few exercises and
for the definition and study of M,(G) in Sect.9.4; they can be omitted on a first
reading.

Proposition 9.3.6. Let G be a locally compact group, and let L be a left Haar
measure on G. Then each Borel subset A of G satisfies

p4) = [ A u(av).
Proof. Define a measure v on %(G) by

v(A) :/AA(x’l)u(dx).

We will show that v is regular, that v is a right Haar measure, and finally that v = [i.
We begin with the regularity of v. For each positive integer n let G, be the open
subset of G defined by

1
Gn:{xeG:—<A(x1)<n}.
n

Let U be an open subset of G. Since v(U) = lim, v(U NG, ) (Proposition 1.2.5), we
can show that

v(U) = sup{v(K) : K C U and K is compact}
by checking that
v(UNG,) =sup{v(K): K CUNG, and K is compact}

holds for each n. However this last equation is an easy consequence of the regularity
of u and the fact that 1/n < A(x~!) < n holds at each x in G, (consider the cases
where (U NG,) = o0 and where (U NG,) < +oo separately). Now suppose that
A is an arbitrary Borel subset of G. We need to show that

v(A) =inf{v(U):A C U and U is open}. 3)

We can certainly restrict our attention to the case where v(A) is finite. Let € be
a positive number. Then for each n we can choose an open subset U, of G, that
includes AN G, and satisfies v(U,) < V(AN G,) + &/2" (use the regularity of u
and the fact that 1/n < A(x~') < n holds at each x in G,). The set U defined by
U = U,U, then includes A and satisfies v(U) < v(A) + &; since € is arbitrary, (3) is
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proved. It is easy to see that each compact subset K of G satisfies v(K) < +eo (note
that u (K) is finite and that the function x — A(x~!) is bounded on K). With this the
proof of the regularity of v is complete.

Since v is regular and nonzero, the calculation

vy = [, A ()

(here we used (2) and part (b) of Proposition 9.3.4) implies that v is a right Haar
measure.

Thus there is a positive number ¢ such that v = ¢[i (see Proposition 9.3.1 and
Corollary 9.3.2), and so

v v 1 B
~ F R T J, A i)

holds whenever A is a Borel set that satisfies 0 < [1(A) < +ee. Since A is continuous
and has value 1 at e, we can make the right side of the equation arbitrarily close to
1 by letting A be a sufficiently small symmetric neighborhood of e. Thus ¢ = 1, and
sov=[. O

Corollary 9.3.7. Let G be a locally compact group, let | be a left Haar measure
on G, and let v be a right Haar measure on G. Then a Borel subset A of G satisfies
W(A) =0 if and only if it satisfies v(A) = 0.

Proof. The formula A — [,A(t™')u(dt) defines a right Haar measure on G
(Proposition 9.3.6), and so there is a positive constant ¢ such that for each A in Z(G)
we have v(A) = ¢ [, A(t~") u(dt). Since A is positive everywhere on G, it follows
that A satisfies v(A) = 0 if and only if it satisfies i (A) = 0 (see Corollary 2.3.12).
O

Exercises

1. Let G be alocally compact group, and let it be a right Haar measure on G. Show
that p(xA) = A(x~ ") (A) holds for each x in G and each A in Z(G).
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. Let G be the group considered in Exercises 9.1.9 and 9.2.5, and let A be the

modular function of G. Show that A <g l;) = 1/a holds for each <g l;) in G.

. Let G be as in the preceding exercise. Find a Borel subset of G that has finite

measure under the left Haar measures on G but infinite measure under the right
Haar measures on G.

. Show that the formula

" 1
B = | g )

where A is Lebesgue measure on Rdz, defines a left and a right Haar measure
on GL(d,R). Hence GL(d,R) is unimodular (note, however, that it is neither
compact nor abelian). (Hint: See Exercise 9.2.4.)

. Let G be a locally compact group and let i be a left Haar measure on G. Show

that G is unimodular if and only if u = fI.

. Let H be {0, 1}, with the discrete topology and with addition modulo 2 as the

group operation. Let G be HY, with the product topology and with the group

operation defined component-by-component in terms of the operation on H.

(a) Show that G is a compact group.

(b) Let u be the Haar measure on G for which p(G) = 1 (see Proposition 9.3.3
and the remark following it). Show that

) 1
u({{aj} €G:a,, =bifori=1,...,k})= 7
holds for each sequence ny, ..., n; of distinct positive integers and each

sequence by, ..., by of elements of {0,1}.

(c) Show that there are compact subsets K and L of G such that u(K) = u(L) =
0,but KL =G.

(d) Let f: G — [0,1] be the map that takes the sequence {a;} to the number
> a2~ Show that A(B) = u(f~"'(B)) holds for each Borel subset B of
[0,1].

. Let G be a locally compact group, and let u be a left Haar measure on G. Show

that u is o-finite if and only if G is o-compact.

. Let G be a locally compact group that is not unimodular, let u be a left Haar

measure on G, and let v be a right Haar measure on G. Show that there is
a Borel subset A of G such that u(A) < +eo and V(A) = +eo. (Hint: See
Proposition 9.3.6 or Exercise 9.3.1.)

. Let G be a locally compact group, let u be a left Haar measure on G, and let

v be a right Haar measure on G. Suppose that outer measures p* and v* and
measures (] and v; are associated to ( and v as in Sect. 7.5.

(a) Show that A« = My+.

(b) Show that a subset of G is locally u;-null if and only if it is locally v;-null.
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9.4 The Algebras L'(G) and M(G)

Since most of the topics dealt with in this section involve measures and integrals on
products of locally compact groups, we begin by recalling some of the necessary
facts.

Suppose that X and Y are locally compact Hausdorff spaces and that ¢ and v are
regular Borel measures on X and Y, respectively. If X and Y have countable bases
for their topologies, then (X x Y) is equal to B(X) x #(Y), u and v are o-finite,
and the product measure (4 X v (as defined in Sect. 5.1) is a regular Borel measure
(see Proposition 7.6.2). Thus the theory of product measures contained in Chap. 5 is
adequate for the study of products of regular Borel measures on second countable
locally compact Hausdorff spaces.>

We dealt with products of arbitrary locally compact Hausdorff spaces in Sect. 7.6;
there we showed that if y and v are regular Borel measures on X and Y, then

[ [renu@oviay) = [ [ sty vianua

holds for each f in J# (X x Y), and we used the Riesz representation theorem
(applied to the functional f — [ [ f(x,y) 1t(dx) v(dy)) to construct a regular Borel
measure [ X V on X x Y such that

Jrawsv)= [ [rennavia) = [ [renviaua) o

holds for each f in J£ (X x Y). We proved that (1) also holds for many other
functions on X x Y (see Theorem 7.6.7 and Exercises 7.6.3 and 7.6.4).

Now let G be an arbitrary locally compact group, let u be a left Haar measure
on G, and let f and g belong to £ (G, %(G), ). The convolution of f and g is the
function f * g from G to R (or to C) defined by

[f()g(s~'t)u(ds) if s f(s)g(s~'¢) is integrable,
0 otherwise.

(f*g)(f)Z{

Some basic properties of convolutions are given by the following propositions.

Proposition 9.4.1. Let G be a locally compact group, let | be a left Haar measure
on G, and let f and g belong to L' (G,2B(G),11).

(a) The function s — f(s)g(s't) belongs to £ (G,%(G), 1) for w-almost every t
inG.

(b) The convolution f* g of f and g belongs to £ (G, %(G),u) and satisfies
£ *gllr < [ llglls-

3In particular, the reader who is interested only in second countable locally compact groups can
ignore the references to Sect. 7.6 in what follows.
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We need the following two lemmas for the proof of Proposition 9.4.1.

Lemma 9.4.2. Let G be a locally compact group, let [l be a left Haar measure on
G, and let f belong to X' (G, %(G), ). Then there is a sequence {K,} of compact
subsets of G such that f vanishes outside | J, K,

Proof. We can use Corollary 2.3.11 and the regularity of u to produce a sequence
{Un} of open subsets of G that have finite measure under y and are such that f
vanishes outside | J,, U,. Let H be a subgroup of G that is open and o-compact (see
Proposition 9.1.8). Since each nonempty open subset of G has nonzero measure
under u (Lemma 9.2.5), it follows that each U, meets at most countably many left
cosets of H and hence that | J,, U, is included in the union of a countable collection
of left cosets of H. Since H, along with each of its cosets, is o-compact, the lemma
follows. O

Lemma 9.4.3. Let G be a locally compact group, let | be a left Haar measure on G,
and let F: G x G — G x G be defined by F(s,t) = (s,5~'t). Then F is a measure-
preserving homeomorphism of G X G onto itself. That is, F is a homeomorphism

such that each Borel subset A of G x G satisfies (1 x 1)(A) = (u x u)(F~(A)).

Proof. The inverse of F is given by F~!(s,t) = (s,st); thus F and F~! are both
continuous, and F is a homeomorphism. The regularity of the measure (u x p)F~!
follows. Now suppose that U is an open subset of G X G. For each s in G the
sections Uy and (F~!(U)); are related by (F ! (U)), = sUj, and so Proposition 7.6.5
and the translation invariance of u imply that (u x u)(U) = (u x u)(F~1(U)). Tt
follows from this and the regularity of the measures u x u and (u x u)F~! that
(ux u)(A) = (ux u)(F~'(A)) holds for each A in (G x G). O

Proof of Proposition 9.4.1. It follows from Exercise 7.6.4 that the function (s,7) +—
f(s)g(t) belongs to £ (G x G,%(G x G), u x ) and then from Lemma 9.4.3 that
the function (s,¢) — f(s)g(s~'t) belongs to ' (G x G, B(G x G),u x u) (see
Sect. 2.6). Since in addition (s,?) + f(s)g(s~'¢) vanishes outside a G-compact set
(apply Lemma 9.4.2 to f and g, and then use Lemma 9.4.3), Theorem 7.6.7 implies
part (a) and the first half of part (b). The second half of part (b) follows from the
calculation

Jira@luan < [ [176)ts 1) (s uiar)

= [ [ 176t uids) = £l

O

Note that if fi, f>, g1, and g, belong to ! (G, B(G),u), if fi = f» pu-a.e., and

if g1 = g u-ae., then fi xg; = f> % gy p-a.e.; this follows, for example, from the
calculation

Il fixg1— faxgalli < |f1x (g1 —g2) I +11(fi — f2) &2l
<|Ifillillgr —g2lli + l.fi — f2llillg2lli =0



300 9 Haar Measure

(see also Exercise 4). Thus convolution on .#' (G, %(G), i) induces an operation
on L' (G,%(G), u); this operation is also denoted by * and called convolution.

We will show that L'(G,%(G),u), with convolution as multiplication, is a
Banach algebra. (This Banach algebra is often denoted by L'(G).) Recall that
an algebra is a vector space A on which there is defined an operation - (called
multiplication) for which the identities

u-(v-w)=(u-v)-w,
u-v+w)=u-v+u-w,
(u+v)-w=u-w—+v-w, and
o(u-v)=(au)-v=u-(av)
hold for all u, v, and w in A and all scalars . A Banach algebra is an algebra for
which

(a) the underlying vector space has the structure of a Banach space, say with norm
I, and
(b) the relation ||u - v|| < ||u||||v|| holds for all u and v in A.

Proposition 9.4.4. Let G be a locally compact group, and let U be a left Haar
measure on G. Then L'(G,%(G),u), with convolution as multiplication, is a
Banach algebra.

Proof. With the exception of the associative law for convolutions, the conditions
that define a Banach algebra are either immediate or given by Theorem 3.4.1 and
Proposition 9.4.1.

We turn to the associative law. Suppose that f, g, and & belong to 2 (G) (or
to A C(G)) and that x belongs to G. Then the functions involved in computing
f*(gxh)and (f xg) xh are all integrable, and these convolutions are given by

(F % (gm0 = [ £65)(gh)(s™x) (ds)
— [ [ 9l 5 u(an uias)
and
(£ 8) <m) @) = [ (@) (Oh"x) ()
= [ [ #sls ™ 0h5) p(ds) ().

Consider the last of these integrals; in it reverse the order of integration and use
the translation invariance of u to replace ¢ with st. It follows that (f x (g *h))(x) =
((f*g)*h)(x). Thus the associative law holds for those elements of L! (G, %(G), 1)
that are determined by functions in % (G) (or in # ©(G)); since these elements
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are dense in L'(G,%(G),u) (Proposition 7.4.3), the associative law follows (see
Exercise 2). O

Let us turn to the convolution of measures. We begin with the following lemma.

Lemma 9.4.5. Let G be a locally compact group. If L and v are finite positive
regular Borel measures on G and if L X V is the regular Borel product of |l and v,
then the formula

(uxv)(A) = (uxVv)({(xy) € GX G:xy € A})

defines a regular Borel measure on G. Furthermore,

(1)) = [V ) p@n) = [uay ) viay) @)

holds for each A in 2(G).

Note that Corollary 7.6.6 implies that the functions appearing on the right side
of (2) are Borel measurable.

Proof. Let F: G x G — G be the group operation (in other words, define F by
F(x,y) = xy). Then u * v is given by the equation (i * v)(A) = (u x v)(F~1(A)),
and so is a measure on #(G) (see Sect. 2.6). Corollary 7.6.6 implies that each A in
P(G) satisfies (2). We need to check the regularity of p  v.

We begin by checking that an arbitrary Borel subset A of G satisfies

(u*v)(A) =sup{(u*Vv)(K): K CAandK is compact}. 3)

Suppose that € is a positive number, that Ky is a compact subset of F~!(A) such that
(u x v)(Ko) > (1 x v)(F~'(A)) — & (see Proposition 7.2.6), and that K = F(Kj).
Then K is a compact subset of A such that F~'(K) D K, and hence such that
(uxVv)(K) > (u*Vv)(A) —&. Since € is arbitrary, (3) follows. In particular, ft * v is
inner regular. Since for each A in Z(G) we can use (3), applied to A, to approximate
A° from below by compact sets and hence to approximate A from above by open sets,
the outer regularity of u x v follows. a

Recall that M,(G,R) is the Banach space of all finite signed regular Borel
measures on G (the norm of y is the total variation of u). Likewise, M,(G,C) is
the Banach space of all complex regular Borel measures on G. Here we will denote
each of those spaces by M(G).

Let i and v belong to M(G). We define their convolution [ * v by

(s v)(A) = [ vl ) = [y ) vidy). @

It follows from the preceding lemma and the Jordan decomposition theorem that the
two integrals appearing in (4) exist and are equal, and that u * v is regular. Thus
uxveM(G).
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It is easy to check that if y and v belong to M(G) and if f is a bounded Borel
function on G, then

Jrawsv)= [ [reu@vian = [ [reviau@ o

(first check (5) for characteristic functions, and then use the linearity of the integral
and the dominated convergence theorem).

Proposition 9.4.6. Let G be a locally compact group. Then M(G), with convolution
as multiplication, is a Banach algebra.

Proof. Let vy, v,, and v3 belong to M(G). Then each Borel subset A of G satisfies
(v % (v v))(A) = [ vs) (5" 4) v ()
= //V3(y71x71A) v (dy) vy (dx)
and
(1 v2) £ v3)(4) = [ va(u'4) (v +v) )
= [ [vlen D va@ v
(in the last step of this calculation we used (5)). The associativity of convolution
follows.

We turn to the inequality ||u* v|| < ||u|||v]|. Let {A;}] be a finite partition of G
into Borel sets. Then Exercise 4.2.8 implies that

Sl = 3| [ uao ) viar)

< [ Slutan Hl1vian < [ luldivi= vl

Since the partition {A;} was arbitrary, the inequality ||u* v|| <|/u||||v| follows. The
remaining conditions in the definition of a Banach algebra are clearly satisfied. O

Let us consider the relationship between the convolution of functions and the
convolution of measures. Corollary 9.3.7 implies that an element of M(G) is
absolutely continuous with respect to the left Haar measures on G if and only if
it is absolutely continuous with respect to the right Haar measures on G. Thus
we can define M,(G) to be the collection of elements of M(G) that are absolutely
continuous with respect to some (and hence every) Haar measure on G.

Recall that an ideal in an algebra A is a linear subspace I of A such that u-v and
v-u belong to I whenever u belongs to [ and v belongs to A.
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Proposition 9.4.7. Let G be a locally compact group. Then

(a) My(G) is an ideal in the algebra M(G),

(b) if 1 is a left Haar measure on G, then the map f + vy (Where vy is defined
by v¢(A) = [, fdu) induces a norm-preserving algebra homomorphism of
L' (G,%(G), ) into M(G), and

(c) the image of L'(G,%(G), 1) under this homomorphism is M,(G).

Proof. Tt is clear that M,(G) is a linear subspace of M(G). Suppose that u is a left
Haar measure on G, that v; € M(G), and that v, € M,(G). Let A be a Borel subset of
G that satisfies (A) = 0. The translation invariance of u implies that y(x'A) =0
holds for each x in G; since v, < U, the relation v, (x’lA) = 0 also holds for each
x in G. The definition of v; * v, now implies that (v; x v,)(A) = 0. Hence v| x v, €
M, (G). The proof that v, x v € M,(G) is similar (use Corollary 9.3.7 to conclude
that if (A) = 0, then u(Ay~") = 0 holds for each y in G). Thus M,(G) is an ideal
in M(G).

We already know that the map f +— vy induces a norm-preserving linear map
whose image is M, (G) (Proposition 7.3.10). The calculation

Vi) = [ 1a(0) [ 9ls ™0 plds )
= [ [t uidn uids)
— [ [ vitan vytas)

= (vy* Vg)(A)
shows that it preserves convolutions. O

Proposition 9.4.7 provides a “coordinate-free” description of L' (G, %(G),u): it
is isomorphic to the algebra M, (G), whose definition depends only on the existence
of Haar measures and not on the choice of a particular left or right Haar measure.

Let us close this section by returning to the map 7' constructed in Sect. 3.5 (see
also Theorem 4.5.1, Example 4.5.2, Theorem 7.5.4, and the remarks following the
proof of Theorem 7.5.4).

Theorem 9.4.8. Let G be a locally compact group, and let L be a regular Borel
measure on G. Then the map T constructed in Sect. 3.5 is an isometric isomorphism
of L*(G,%(G), 1) onto the dual of L' (G, %(G), 1t).

Proof. According to Proposition 3.5.5 we need only show that T is surjective. So
suppose that F belongs to (L'(G,%(G),u))*.

Let H be a subgroup of G that is open and o-compact (see Proposition 9.1.8),
and let JZ be the family of left cosets of H. For each C in JZ let #(C) be the
o-algebra of Borel subsets of C, let uc be the restriction of u to #(C), and let
Fc be the linear functional on L' (C, %(C), uc) defined by Fo({f)) = F({f")) (here
f" is the function on G that agrees with f on C and vanishes on C°). Since ¢ is
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o-finite (recall that C, as a coset of H, is o-compact), we can choose a bounded
Borel measurable function g¢ on C such that Fo({f)) = [ fgcduc holds for each
fin ZY(C,%(C),uc) (see Theorem 4.5.1). By modifying gc on a pc-null set if
necessary, we can assume that |gc(x)| < ||[F¢|| < ||F|| holds at each x in C. Now
choose a sequence {g,} of continuous functions on G such that

(@) |gn(x)| < ||F|| holds at each x in G, and
(b) for each C in J# the sequence {g, } converges to gc f-almost everywhere on C

(construct the functions g, on each C separately, using Lusin’s theorem (Theorem
7.4.4) and the o-compactness of the sets in .7; see also D.6). Finally, define? g
by g = limsup, g, (in case we are dealing with complex-valued functions, define
the real and imaginary parts of g separately). Then g is a bounded Borel function,
and the relation F({f)) = [ fgdu holds for each f in ' (G, B(G),u). Thus T is
surjective, and the proof is complete. O

Exercises

Note: In the following exercises G is a locally compact group with identity element
e, and U is a left Haar measure on G.

1. Show that if f and g belong to % (G), then f * g belongs to . (G).

2. Show that if f and g belong to .Z!(G,%(G),u) and if {f,} and {g,}
are sequences in .Z'(G,%(G),u) such that lim,|f, — f|li = 0 and
lim, ||g, — gll1 = 0, then lim,, || f;, x g» — f * g|[1 = 0.

3. Suppose that f and g belong to .Z' (G, %(G), it). Show that in the definition of
f * g the expression f(s)g(s~'t) can be replaced
(a) with f(rs)g(s™ "),

(b) with f(s~")g(st)A(s~ "), and
(c) with f(ts~D)g(s)A(s™1).

4. Show that if fi, f», g1, and g, belong to L' (G,%(G),u), if fi = f u-
almost everywhere, and if g; = g p-almost everywhere, then f; xg; = fo * g»
everywhere.

5. Show that G is commutative if and only if convolution is a commutative
operation on L' (G). (Hint: To show that the commutativity of L' (G) implies
that of G, consider f * g and g * f for suitable nonnegative functions f and g in
Z(G).)

6. (a) Suppose that the locally compact group G has a countable base for its
topology. Show that there is a sequence {¢,} of nonnegative functions in
ZY(G,%(G),u) (or even in # (G)) such that [ ¢, du = 1 holds for each
n and such that

4The function g cannot be defined simply be requiring that its restriction to each C in 7 be gc;
see Exercise 12.
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lim||f5 @, — fll1 =Tim|| g, * f = fll1 =0 (6)

holds for each f in .Z'(G,%(G),u). Such a sequence is called an
approximate identity. (Hint: Let {U,} be a decreasing sequence of open
neighborhoods of e such that each open neighborhood of e includes some
U,. For each n let @, be a nonnegative function that belongs to ¢ (X),
vanishes outside U,, and satisfies the relations ¢, = (¢,) and [ @, du = 1.
In verifying (6) it might be convenient to begin with the case where
fex(G))

(b) Now omit the assumption that G has a countable base for its topology.
Show that there is a net’ { @y} 44 of nonnegative functions in .#(G) such
that [ @, dp = 1 holds for each o and such that limgy || f * Qo — f]|1 =
limy ||@g * f — f]|1 = O holds for each f in .Z'(G,%(G),u). (Hint: Let
the directed set A be the collection of all open neighborhoods of e, and
declare that U <V holds if and only if V C U.)

. Show that §,, the point mass concentrated at e, is an identity for the algebra

M(G).

. Show that G is commutative if and only if convolution is a commutative

operation on M(G).

. Suppose that v € M(G), that f € £'(G,%(G), ), and that y is the finite

signed or complex regular Borel measure defined by is(A) = [, fdu (see
Proposition 7.3.8). Define functions g and /# on G by

[f(s7't)v(ds) ifsrs f(s~'t)is |v|-integrable,
8(r) = :
0 otherwise,

and

h(s) = [f(st™OA@ Y v(dt) ift— f(st™)A(™") is |v|-integrable,
B 0 otherwise.

Show that g and h belong to .Z!(G,%(G), i) and that (v us)(A) = [, gdu
and (Us*V)(A) = [, hdu hold for each A in A(G).

Let v, f, and iy be as in Exercise 9. Show that v iy = 0 holds for each f in
ZY(G,%(G), ) if and only if v = 0. (Hint: Use Exercise 9 and Corollary 9.1.6

SRecall that a directed set is a partially ordered set A (say ordered by <) such that for each o and
B in A, there is an element y of A that satisfies ¢ < y and 8 < y. A net is a family indexed by a
directed set. A net {xq }qea in a topological space X is said to converge to a point x of X if for
each open neighborhood U of x there is an element o of A such that x,, € U holds whenever o
satisfies & > 0. Thus limy || f * @ — f]|1 = 0 holds if and only if for each positive € there is an
element o of A such that ||f % @ — f||1 < € holds whenever o satisfies a > oy. See Kelley [69]
for an extended treatment of nets.
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to show that if f belongs to .# (G) and satisfies v * s = 0, then [ fdv = 0;
then use Theorem 7.3.6.)

11. Show that L!(G) has an identity if and only if the topology of G is discrete.
(Hint: Use Exercise 6 in Sect. 9.2 and Exercises 7 and 10.)

12. Let G be R?, with the usual group operation but with the topology defined in
Exercise 7.2.4. Show that
(a) G is alocally compact group,
(b) {0} x R is an open, closed, and o-compact subgroup of G, and
(c) there is a function f: G — R that is not Borel measurable, but for which

each section fy is Borel measurable. (Hint: See Exercises 8.2.7 and 8.2.9.)

This explains the footnote in the proof of Theorem 9.4.8.

Notes

The history of Haar measure is summarized in the notes at the ends of Sections 15
and 16 of Hewitt and Ross [58].

The reader can find a more extensive introduction to topological groups in
Pontryagin [98] or in Hewitt and Ross [58].

The proof given here for the existence of Haar measure (which is a modification
of Halmos’s modification of Weil’s [126] proof) depends on the axiom of choice.
Proofs that do not depend on this axiom have been given by Cartan [24] and Bredon
[19]. Cartan’s proof is given by Hewitt and Ross [58] and by Nachbin [93]. Hewitt
and Ross and Nachbin also give calculations of Haar measure for a number of
groups.



Chapter 10
Probability

This chapter is devoted to an introduction to probability theory. It contains some
of the fundamental results of probability theory—the strong law of large numbers,
the central limit theorem, the martingale convergence theorem, the construction of
Brownian motion processes, and Kolmogorov’s consistency theorem.

One purpose of this chapter is to give the reader a chance to work through some
applications of measure theory and thereby to get some practice with the techniques
presented earlier. Another, perhaps more significant, goal is to give the reader a
broader picture of how o-algebras, measures, measurable functions, and integrals
arise.

10.1 Basics

In probability theory one describes and analyzes random situations, often called
experiments. Let us look at how such situations can be modeled using measure
theory. We begin with some terminology.

A probability space is a measure space (Q,<7,P) such that P(Q) = 1. The
elements of Q are called the elementary outcomes or the sample points of our
experiment, and the members of < are called events. If A € o7, then P(A) is the
probability of the event A.

Example 10.1.1. We illustrate these concepts with a very simple example. Suppose
we toss a fair coin (one for which a head has probability 1/2) twice. There are four
possible outcomes: we get two heads, we get a head and then a tail, we get a tail and
then a head, or we get two tails. So we can let our set Q of elementary outcomes
be {HH,HT,TH,TT}. It is natural in this case to let & contain all the subsets of
Q. For example, {HT,TH} is one of the subsets of Q; it corresponds to the real-
world event in which we get a head on exactly one of the tosses. Finally, in this
situation each elementary outcome has probability 1/4 of occurring, and so we let
the probability of an event A be 1/4 times the number of elements of A. O
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A real-valued random variable on a probability space (Q,<7,P) is an
o/ -measurable function from Q to R. Such a variable represents a numerical
observation or measurement whose value depends on the outcome of the random
experiment represented by (Q,<7,P). More generally, a random variable with
values in a measurable space (S,%) is a measurable function from (Q,.</,P)
to (S,%). Let X be a random variable with values in (S, %). The distribution
of X is the measure PX ! defined on (S,%) by (PX~!)(A) = P(X"(A)) (see
Sect.2.6). We will often write Py for the distribution of a random variable
X. If X, ..., Xy are (S,%)-valued random variables on (Q,</,P), then the
formula X(®) = (X;(®),...,Xs(w)) defines an S%-valued random variable X;
the distribution of X is called the joint distribution of X1, ..., Xj.

Example 10.1.2. Let us continue with our coin-tossing example. The number of
heads that appear when our two coins are tossed can be represented with the random
variable X defined by

0 ifo=TT,
X(w)=11 ifwo=HT or®=TH, and
2 ifw=HH.
The distribution Py of X is given by Py = 18 + 18 + 16> O

An abbreviated notation for events is common in probability. We introduce it
with a couple of examples. Suppose that (Q, <7, P) is a probability space and that X
and X,,,n =1, 2, ..., are real-valued random variables on Q. Then the events

{weQ:X(w) >0},

{weQ:X(w)= li;?lX"(w)}’

and
{w € Q:limX,(w) exists}
n

are often abbreviated as {X > 0}, {X =1lim, X, }, and {lim, X, exists}. Sometimes
one goes a bit further and simply writes P(X > 0) instead of P({X > 0}) or
P{oeQ:X(w)>0}).

If a real-valued random variable X on a probability space (Q2,.27, P) is integrable
with respect to P, then its expected value, or expectation, written E(X), is the
integral of X with respect to P. That is, E(X) = [ X dP. If X is integrable, one also
says that X has a finite expected value or that X has an expected value. Note that
Proposition 2.6.8 gives a way to compute the expected value of a real-valued random
variable in terms of its distribution, namely E(X) = [ x Px (dx). That proposition in
fact gives the more general formula E(f o X) = [ f dPx, by which we can compute
the expected value of a Borel function f of a random variable X in terms of the
distribution of X.
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We often have use for the expected value of the square of a real-valued random
variable X, or the second moment of X. If X has a finite second moment, then it
follows from the inequality |X| < X2+ 1 that X has a finite expectation. In this case,
one calls the expected value of (X — E(X))? the variance of X; it gives a measure
of the amount by which the values of X differ from the expected value of X. The
nonnegative square root of the variance of X is called the standard deviation of X.
One often denotes the expected value of a random variable X with uy or simply u,
the variance with var(X) or 62, and the standard deviation with oy.

Lemma 10.1.3. Let X be a random variable with a finite second moment, and let a
and b be real numbers. Then

(a) var(X) = E(X?) — (E(X))? and
(b) var(aX +b) = a*var(X).

Proof. The lemma follows from basic algebra and the linearity of the integral. O

Suppose that X is a real-valued random variable with a discrete distribution—
that is, suppose that there is a countable subset C of R such that P(X € C) = 1. Then
X has a finite expected value if and only if Y . |x|P(X = x) < 4o, and in that
case E(X) = Y .ccxP(X = x). Likewise, if the distribution Py of X is absolutely
continuous with respect to Lebesgue measure and if fx is the Radon—-Nikodym
derivative of Py with respect to Lebesgue measure, then X has a finite expected value
if and only if [ |x|fx (x)dx < +ee, and in that case E(X) = [pxfx(x)dx. As these
remarks may suggest, it turns out that discrete and continuous random variables, '
which receive separate treatments in elementary discussions of probability theory,
can be given a fairly uniform treatment in terms of measure theory.

We have seen (in Propositions 1.3.9 and 1.3.10) that there is a correspondence
between finite Borel measures on R and bounded nondecreasing right-continuous
functions F : R — R for which lim,_, .. F(x) = 0. In the present context, this means
that the distribution Py of a real-valued random variable X is determined by the
function Fx : R — R defined by

Fi(x) = Py((—0,3]) = P(X < ).

The function Fy is called the cumulative distribution function, or just the distribution
function, of X.

Let {X;}ic; be an indexed family of random variables on a probability space
(Q,47,P). Then o(X;,i € I) is the smallest o-algebra on Q that makes all these
variables measurable. Likewise, if {X,} is a sequence of random variables on
(Q, 47, P), then one often writes 0(X;,X,...) for the smallest o-algebra on Q that
makes each X,, measurable.

'A real-valued random variable is discrete if its distribution is discrete and is continuous if its
distribution is absolutely continuous with respect to Lebesgue measure.
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Examples 10.1.4.

(a) We begin by returning to coin tossing. Suppose that now our experiment is to
toss a fair coin repeatedly, until we first get a head, and then to stop. It seems
reasonable to define Q2 by

Q={H,TH,TTH,..., TTTTTTTTH,...}

and to let o consist of all subsets of Q. We will (by countable additivity)
determine the probability of all the events in <7 if we specify the probabilities
of the one-point subsets of Q. It seems reasonable to let P({H}) = 1/2,
P({TH})=1/4, P{TTH}) = 1/8, ... (the reader should think through this
assignment of probabilities again, after reading the discussion of independence
that occurs later in this section). Note that the sum of the geometric series
> 1(1/2)"is 1, and so this assignment of probabilities does give a probability
measure.

(b) Now suppose that we choose a real number from the interval [a,b] in such
a way that the probability that the number chosen lies in a subinterval I of
[a,D] is proportional to the length of /. We can describe this situation with
the probability space ([a,b],%(|a,b]),P), where the measure P is given by
P(A) = A(A)/(b— a). In this case one has a uniform distribution on [a,b]. Of
course, if the interval [a, b] is the unit interval [0, 1], then the measure P is just
the restriction of Lebesgue measure to the Borel subsets of [0, 1].

(c) Now suppose that f is a nonnegative Borel measurable function on R such that
J fdA = 1. Then the formula P(A) = [, fdA defines a probability measure on
the measurable space (R, Z(R)). The function f is called the densiry of P (or
of a random variable having distribution P). Note that the measures in part (b)
above can be viewed as special cases of the situation here, with the uniform
distribution on [a, D] given by the density function that has value 1/(b —a) on
[a,b] and O elsewhere.

(d) In a similar way, a nonnegative Borel measurable function on R? such that
J [ f(x,y)A(dx)A(dy) = 1 defines a probability measure on the measurable
space (R?, B(R?)).

(e) Let us now look at normal, or Gaussian, distributions, which are given by the
familiar bell-shaped curves. We begin by evaluating the integral [p e /2 dx.
Let us denote the value of this integral by A for a moment. If we interpret A as
an integral over R? and evaluate the integral using polar coordinates, we find

0o poo 2 oo
AT= / / el dxdy = / ﬂ / re "2 drde = 2x.
)] Jo Jo

. 2 . J .
Thus A = +/2x, and so the function x — \/szﬂe”‘ /2 is a probability density
function on R (that is, it is nonnegative and its integral over R is 1).
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Now suppose that X is a random variable whose distribution has density x >

2 .
\/Lz?eﬂc /2 Tt is easy to check that

1 / —x2/2
— | xe dx=0
V2 JR
and hence that E(X) = 0. If in the following calculation we use integration by

parts to convert the first integral into the second, whose value we know, we find
that

1 2 —2)2 1 / —2/2
xX‘e dx = e dx=1
V2 ./R V2m JR

and hence that E(X?) = 1. Thus X has expected value 0 and variance 1.

It is easy to check that if X is as above and if y and o are constants, with
o > 0, then the random variable 6X + u has mean y and variance 62 (see
Lemma 10.1.3). Furthermore, according to Lemma 10.1.5, 6X + u has density

8u,0? given by

1 (—p)2/202
- —(x—u)*/20
g, 52(x) = e .
n.o? () 2To
With this we have the densities of the normal or Gaussian random variables
with mean u and variance o2.

One often writes N(0,1) for the distribution of a normal random variable
with mean 0 and variance 1 and N(u,oc?) for the distribution of a normal
random variable with mean u and variance 6. Thus N(0,1) is the measure
on (R,#(R)) with density x — \/szﬂe’xz/z, and N(u,0?) is the measure on

(R,2(R)) with density g, 5. O

Lemma 10.1.5. Let X be a real-valued random variable with density fx, let a and
b be real constants with a > 0, and let Y = aX + b. Then Y is a continuous random
variable whose density fy is given by

fr(t) = ifx (ﬂ)

a

Proof. Define afunctionT: R — R by T (1) =at+b. Then A(T(A)) = aA(A) holds
for each subinterval A of R and consequently for each Borel subset A of R. Thus

a/hd,% :/hoT*IdA

holds for each nonnegative measurable 4 (check this first in the case where 4 is the
indicator function of a Borel set), and so we have
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BA) =T () = [ | frdn

T-1(a)

= (1/a) [ Gr-say o T~ o T

~/a) [ 5x(50) pan

Thus Py can be calculated by integrating the function ¢ — % fx(%), and the proof
is complete. a

We will need the following fact about normal distributions.

Lemma 10.1.6. Let Z be a normal random variable with mean O and variance 1.

Then |

P(Z>A)< e

w2d)s V27mA

holds for each positive real number A.
Proof. We have

—x? -x2/2 L ap

P(Z>A) / gy < / PRax = —¢4/2,
( Yz V2n A V21A

Let us turn to a few definitions and results involving independence.
Let (Q,47,P) be a probability space, and let {A;};c; be an indexed family of
events. The events® A;, i € I, are called independent if for each finite subset Iy of /

we have
rTIGI() H P
i€l

Let {X;}ics be an indexed family of random variables, defined on (Q, <7, P) and
with values in the measurable space (S,%). The random variables X;, i € I, are
called independent if for each choice of sets A; in %, i € I, the events Xi’1 (A;) are
independent.

Finally, let (Q, o7, P) be a probability space and let {47 };c; be an indexed family
of sub-o-algebras of 7. The o-algebras 7, i € I, are independent if for each choice
of sets A; in <7, i € I, the events A; are independent.

Note that if {X;};cs is an indexed family of random variables on a probability
space (Q, <7, P), then the random variables X;, i € I, are independent if and only if
the o-algebras o(X;), i € I, are independent.

2 Although the independence of A;, i € I, depends on the relationship between the events A;, rather
than on the events individually, it is standard to call the events, rather than the indexed family,
independent.
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Proposition 10.1.7. Let (Q,.<7, P) be a probability space, let { <7, }icj be an indexed
family of independent sub-c-algebras of </, let {S;} jc; be a partition of I, and for
each jin J let ; = O'(Uiegj,;a/i). Then the G-algebras % are independent.

Proof. For each j in J let &7; consist of all finite intersections of sets in U,-esj,;zfi.
Note that each &; is a -system such that %; = o(Z?;). Let Jo be a nonempty finite
subset of J, and for each j in Jy let A; be a member of &;. The relation

P(NjenAj) = [T PA)) (1)

J€h

follows from the independence of the .27;’s. Now suppose that the elements of Jj are
J1s J25 -5 jn, and let Z be the class of all A in %, such that

P(Ajl n---NAj,_, ﬁA) :P(Ajl)"'P(Ajnﬂ)P(A)

holds forall Aj, in &,,i=1,...,n—1. Then & is a Dynkin class (i.e., a d-system)
that includes &;,, and so Theorem 1.6.2 implies that ¥ = %;,. Similar arguments,
n—1 of them, show that (1) holds for all A; in %;, j € Jo. Since the independence
of the %, j € J depends only on the independence of finite subfamilies, the proof
is complete. O

Example 10.1.8. Proposition 10.1.7 may look overly abstract, but it allows simple
proofs of some results for which a rigorous proof might otherwise be awkward.
For example, suppose that {X, }_, is a sequence of independent random variables
on a probability space (Q,.<7,P). Then it is an immediate consequence of Propo-
sition 10.1.7 that the random variables X5, | + Xp;, i = 1, 2, ...are independent.
Proving this independence in other ways would probably take more work. O

Proposition 10.1.9. Let (Q, o, P) be a probability space, let (S, %) be a measur-
able space, let X, X5, ..., X4 be S-valued random variables on Q, and let X be the
S9-valued random variable with components Xy, X, ..., Xy. Let Px,, Px,, ..., Px,,
and Px be the distributions of X1, X, ..., X4, and X, respectively. Then X1, Xo, ...,
X, are independent if and only if the joint distribution Py is equal to the product
measure Py, X Px, X --- X Px,.

Proof. If we rewrite the definition of independence, we find that Xj, ..., X; are
independent if and only if

Px(Ay x -+ xAg) =[] Py (Ai)

holds for each choice of sets A; in %, i =1, ..., d. Thus if Px is equal to the product
of the measures Py, then Xj, X, ..., X; are independent. The converse follows
from the uniqueness of product measures (see Theorem 5.1.4 and the discussion at
the end of Sect. 5.2). O
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Proposition 10.1.10. Let (Q,.<7,P) be a probability space and let X, X, ..., X,
be independent real-valued random variables on (Q, </ ,P), each of which has a
finite expectation. Then the product T1; X; has a finite expectation, and E([]; X;) =
[LE(X).

Proof. Let X be the R"-valued random variable with components X1, ..., X,, and
let Px and Py,, ..., Px, be the distributions of X and Xj, ..., X,. We will use
these distributions for the calculation of E(T];X;) and [T; E(X;). Since the random
variables X;, ..., X, are independent, Py is the product of the measures Py,, ..., Py,
(Proposition 10.1.9). Thus we can use Proposition 5.2.1 and Theorem 5.2.2, together
with the finiteness of the expectations E(X;) and the remarks at the end of Sect. 5.2,

to conclude that [T; X; has a finite expectation and that E([]; X;) = [, E(X;). O

Corollary 10.1.11. Let X, X5, ..., X, be independent real-valued random vari-
ables with finite second moments, and let S = X\ + --- + X,. Then var(S) =

Y var(X;).

Proof. By the independence of X; and X; (where i # j), the expectation of the
product (X; — E(X;))(X; — E(X;)) is the product of the expectations of X; — E(X;)
and X; — E(X;), namely 0. Thus

var($) = E((Y (X — E(X)))*) = X D E((X; — E(X)) (X; — E(X;)))

:ZE((Xi_E(Xi))z) =2 var(X;). O

Now suppose that X; and X, are independent real-valued (or R4-valued) random
variables with distributions Py, and Py, . In view of Proposition 10.1.9, we can use
the product measure Py, X Py, to compute the distribution Py, ;x, of Xj + X:

PX1+X2(A) = (PX1 X PXz)({(xlaXZ) 1xp+xp €AY). (2)
One defines the convolution v| * v, of finite measures v; and v, on (RY, Z(R?)) by
(vixwn)(A) = (vi x vo)({(x1,%2) 1 x1 +x2 €A});

thus (2) says that the distribution of the sum of two independent random variables
is the convolution of their distributions: Py, 1 x, = Py, * Px,.

Note that convolution satisfies the associative law vy x (Vo * v3) = (v x V) * V3,
since if Xj, X», and X3 are independent random variables with distributions vy,
v, and vz, then both vy x (v, x v3) and (V) % Vo) * v3 give the distribution of
X1 + Xo + X3. More generally, the convolution of the distributions of n independent
random variables gives the distribution of their sum.
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We can compute convolutions as follows.
Proposition 10.1.12. Let v| and v, be probability measures on (R, (R%)).

(a) The convolution v x v, satisfies
(V1 %v2)(A) = /v1 (A—y)dva(y) = /vz(A ~x)dvi(x)

for each A in B(R?).

(b) If vy is absolutely continuous (with respect to Lebesgue measure), with density
[ then vy x vy is absolutely continuous, with density x — [ f(x —y) va(dy).

(c) If vi and v, are absolutely continuous, with densities f and g, then V| x vy is
absolutely continuous, with density x — [ f(x—y)g(y) A(dy).

Proof. Since the sections of the set {(x,y) :x+y €A} are equal to A —x and A — y,
part (a) is an immediate consequence of Theorem 5.1.4. Part (b) follows from the
calculation

) = [ a4 35020 va(ay)
= [ [ st 2@ valay)
= [10) [ $lx=y)valar) Aca)

(The finiteness of [ f(x—y) v»(dy) for almost every x follows from this calculation,
applied in the case where A = R.) Part (c) follows from part (b), since in this case
we have [ f(x—y)va(dy) = [ f(x—y)g(y) A(dy) (recall Exercise 4.2.3). O

In the remainder of this section we look at some random variables that arise when
we consider the binary expansions of the values of certain uniformly distributed
random variables. The techniques discussed here will give us a way to construct
arbitrary sequences of independent (real-valued) random variables.

It will be convenient to have a bit of standard terminology. A random variable X
is said to have a Bernoulli distribution with parameter p if the possible values® of X
are 0 and 1, with 1 having probability p and 0 having probability 1 — p.

So let us suppose that (Q, <7, P) is a probability space and that X is a random
variable on (Q,.27,P) that is uniformly distributed on [0, 1]. By redefining X on a
null set, if necessary, we can assume that every value of X belongs to [0, 1). Define a
sequence {Y,} on (Q,.<7, P) by letting ¥, (@) be the nth bit in the binary expansion*

3 Actually, we are only assuming that P(X € {0,1}) = 1 and not that X (@) € {0, 1} for every ® in
Q.

“In case the value X (@) has two binary expansions, take the one that ends in an infinite sequence
of 0’s. See B.9 in Appendix B.
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of X (). Then Y} (w) is 0 if X () belongs to the interval [0,1/2) and is 1 if X (®)
belongs to [1/2,1). Likewise ¥» () is 0 if X (@) belongs to [0,1/4)U[1/2,3/4) and
is 1if X () belongs to [1/4,1/2)U[3/4,1).In general, ¥, (®) is 0 if X () satisfies
2i/2" < X(w) < (2i+1)/2" for some i and is 1 otherwise; from that it is not difficult
to check that the variables {Y, } are measurable and independent, with each having
a Bernoulli distribution with parameter 1/2.

Proposition 10.1.13. Let (Q, 7, P) be a probability space.

(a) Suppose that X is a random variable on (Q, </, P) that is uniformly distributed
on [0,1], and define a sequence {Y,} on (Q,/,P) by letting {Y,(®)} be
the sequence of 0’s and 1’s in the binary expansion of X(®). Then {Y,} is
a sequence of independent random variables, each of which has a Bernoulli
distribution with parameter 1/2.

(b) Conversely, suppose that {Y,} is a sequence of independent random variables
on (Q,4,P), each of which has a Bernoulli distribution with parameter 1/2.
Then the random variable X defined by X = Y.,Y,/2" is uniformly distributed
on the interval [0, 1].

Proof. A proof for part (a) was given just before the statement of the proposition.
We turn to part (b). By modifying the variables Y, on a null set if necessary, we
can assume that for every @ the sequence {¥,(®)} contains only 0’s and 1’s and
does not end with an infinite string of 1’s. Consider the dyadic rational i/2", where
i satisfies 0 < i < 2". Then i/2" has an n-bit binary expansion, say 0.b1b;...b,, and
X () belongs to the interval [i/2",(i+ 1)/2") if and only if Y;(w) = b; holds for
j=1,...,n Thus Px(I) = A(I) holds for intervals I of the form [i/2", (i + 1)/2")
and hence (see Lemma 1.4.2) for all open subsets / of (0, 1). In view of the regularity
of Py and A (Proposition 1.5.6), the proof is complete. O

Corollary 10.1.14. There is an infinite sequence of independent random variables,
each of which is uniformly distributed on [0, 1]. Such a sequence can be constructed

on the probability space ([0, 1], 2([0,1]),1).

Proof. Let X be arandom variable that is uniformly distributed on [0, 1]; such a ran-
dom variable can of course be defined on the probability space ([0, 1], 4([0,1]),A4).
Let {Y,} be the sequence of random variables constructed in part (a) of Propo-
sition 10.1.13. Since the set N of positive integers has the same cardinality as
the set N x N of pairs of positive integers, we can reindex the sequence {Y,},
obtaining a doubly indexed sequence {Y,:m}. For each n define a random variable
Z,byZ, =%, Y,:m /2™. Then part (b) Proposition 10.1.13 implies that each Z, is
uniformly distributed on [0,1], while Proposition 10.1.7 implies that the variables
{Z,} are independent. O

It is possible to use uniformly distributed random variables to construct random
variables having arbitrary distributions on (R, 2(R)). This can be done as follows:

Proposition 10.1.15. Let p be a probability measure on (R, B(R)) with cumu-
lative distribution function F, and let X be a random variable that is uniformly
distributed on the interval (0,1). Then the function F~': (0,1) — R defined by
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F Y )=inf{xeR:r < F(x)}

is Borel measurable, and F~ o X has distribution u.

Proof. The function F satisfies limy_,_o F(x) = 0 and lim,_, ;. F(x) = 1, from
which it follows that for each 7 in (0,1) the set {x € R:¢ < F(x)} is nonempty
and bounded below and hence that each F~!(¢) is finite. If #; < 15, then

{xeR:L <F(x)} C{xeR:n <F(x)},

and taking the infima of these sets gives F~!(¢;) < F~!(t,). In other words, F~! is
nondecreasing, and so it is Borel measurable.
Let us check that

Fln) <x 3)

holds if and only if
t <F(x). “

It is immediate from the definition of F~! that (4) implies (3). On the other hand,
if (3) holds, then there is a sequence {x,} that decreases to x and is such that r <
F(x,) holds for each n. Since F is right continuous, (4) follows and the proof of the
equivalence of (3) and (4) is complete.

Finally, the equivalence of (3) and (4) implies that for each x in R we have

P(F'oX <x)=P(X <F(x))=F(x);

thus F~! o X has distribution function F and distribution . a

Corollary 10.1.16. Ler u be a probability distribution on (R, 2(R)). Then there
is an infinite sequence of independent random variables, each of which has
distribution |L. Such a sequence of random variables can be constructed on the
probability space ([0,1],%([0,1]),1).

Proof. This is an immediate consequence of Corollary 10.1.14 and Proposition
10.1.15. ad

Given a source of independent and uniformly distributed random numbers (for
instance, a table of random numbers or a random number generator on a computer),
one can use the techniques of Proposition 10.1.15 and Corollary 10.1.16 to simulate
a sequence of observations from an arbitrary distribution.

Exercises

1. Let (Q, </, P) be a probability space, and let Ay, Ay, ..., A, be a finite indexed
family of events in .27. Show that the conditions
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(i) theevents Ay, Ay, ..., A, are independent,
(ii) the equation

P(31 ﬁBzﬁ---ﬂBn) ZP(Bl)P(Bz)---P(Bn)

holds for every choice of By, B>, ..., By, where for each i the event B; is
either A; or AY,

(iii) the events A{, AS, ..., Aj, are independent, and

(iv) the random variables ya,, X4,, - - -» X, are independent

are equivalent.

2. Let (Q, o, P) be a probability space, let Xj, ..., X; be real-valued random
variables on €, and let X be the R?-valued random vector whose components are
X1, ..., Xy4. Suppose that Fx,, ..., Fx, are the cumulative distribution functions
of X1, ..., X; and that Fy is the cumulative distribution function of X, defined by

Fx(l‘l,...,l‘d) :P(Xl' <t; forall i).
Show that X1, ..., X; are independent if and only if
FX(tla"'vtd) :FXl(tl)"'FXd(td)

holds for all (¢1,...,2;) in R?. (Hint: Use Theorem 1.6.2.)

3. Let (Q,,P) be a probability space, let Xj, ..., X; be real-valued random
variables on Q, and let X be the R“-valued random vector whose components
are X, ..., Xy. Let uy, ..., Uy be the distributions of X1, ..., Xy, and let u be the
distribution of X.

(a) Show that if u is absolutely continuous (with respect to Lebesgue measure),
then uy, ..., Uy are absolutely continuous.

(b) Show by example that the absolute continuity of (t does not follow from the
absolute continuity of Uy, ..., Ug.

4. Let (Q,<7,P) be a probability space, let Xj, ..., X; be real-valued random
variables on Q, and let X be the R?-valued random vector whose components
are X, ..., X;. Suppose that the distributions of X, ..., X; are absolutely
continuous, with densities fi, ..., fz. Show that X, ..., X; are independent if
and only if the random vector X is an absolutely continuous random variable
whose density is given by (t1,...,15) — fi(t1) ... fa(ta)-

5. Let Xj, X5, ..., X, be independent random variables, each of which has a
Bernoulli distribution with parameter p, andlet S =X; + X +--- + X,,.

(a) Show that S has a binomial distribution with parameters n and p—that is,
that it is concentrated on the set {0,1,...,n}, with P(S = k) being given by
(1) p*(1 = p)"~* for each k in {0,1,...,n}.

(b) Show that E(S) = np and var(S) =np(1 — p).
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6. A real-valued random variable has a Poisson distribution with parameter A if its
values are nonnegative integers, with P(X = k) = A*e~* /k! for each nonnegative
integer k.

(a) Check that the formula above indeed defines a probability measure on
(R, B(R)).

(b) Verify that if the random variable X has a Poisson distribution with parameter
A,then E(X) = A and var(X) = 1.

(c) Show that if X| and X, are independent random variables that have Poisson
distributions with parameters A; and A;, respectively, then X; + X, has a
Poisson distribution with parameter A; + 4.

7. Let X; and X, be independent random variables, each of which is uniformly
distributed on the interval [0, 1]. Find the density function of X; + X5.

8. Let X and Y be independent normal random variables with mean 0 and variance
1, and let R and © be random variables with values in [0, +e<) and [0,27) that
correspond to writing (X,Y) in polar coordinates.

(a) Show that R and © are independent, that R has distribution function given
byt—1— e~"*/2 for nonnegative ¢, and that © has a uniform distribution.

(b) Derive from this a way to use Proposition 10.1.15 to simulate values for
normally distributed random variables by using easily available functions,
rather than by using the inverse of the distribution function of a normal
distribution.

10.2 Laws of Large Numbers

This section contains an introduction to the laws of large numbers.
Let X and Xj, X, ... be random variables on the probability space (Q,<7,P).
Then {X,} is said to converge in probability to X if

imP(|X,—X|>¢€)=0
n
holds for each positive number € and to converge almost surely to X (or to converge
a.s. to X) if
P(X =limX,) =1.
n
In other words, {X,,} converges to X in probability if it converges to X in measure,
and {X,} converges to X almost surely if it converges to X almost everywhere.’

Thus a number of relationships between convergence in probability and almost sure
convergence can be found in Chap. 3.

SMore generally, an arbitrary (probabilistic) assertion holds almost surely if it holds almost
everywhere.
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Random variables X;, i € I, are said to be identically distributed if they all have
the same distribution—that is, if Py, = PXj forall i, jinI. Sequences {X,} of random
variables that are independent and identically distributed occur frequently, and one
often abbreviates a little and calls such sequences i.i.d.

Theorem 10.2.1 (Weak Law of Large Numbers). Ler {X,} be a sequence of
independent identically distributed real-valued random variables with finite second
moments. For each n let S, = X| + -+ + Xp. Then Sy/n converges to E(X)) in
probability.

Proof. Let € be a positive number. Since var(S,/n) = (1/n)var(X;) (see
Corollary 10.1.11 and Lemma 10.1.3), Proposition 2.3.10 implies that

P( %—E(XO >£> =P< —S,,—f(S,,) ’ >£2>
< évar(S,,/n) = Va;g1>.

Thus lim,, P(| 5;1—” —E(X;)| > €) =0, and so S, /n converges to E(X;) in probability.
O

Suppose that (Q,.27,P) is a probability space and that {A,} is a sequence of
events in .27 Then

{w € Q: w € A, for infinitely many n}

is equal to N> _, U"_, Ay; it is the event that infinitely many of the events A, occur,
and it is often written as {A, i.0.} (“i.0.” is an abbreviation for “infinitely often”).
For example, if we are dealing with an infinite sequence of tosses of a coin, and if
for each n we let A, be the event that a head appears on the nth toss, then {A, i.0.}
is the event that a head appears on infinitely many of the tosses.

Proposition 10.2.2 (Borel-Cantelli Lemmas). Let (Q,<7,P) be a probability
space, and let {A,} be a sequence of events in <7 .

(@) If S, P(Ay) < +oo, then P({Ay i.0.}) = 0.
(b) If the events Ay, n =1, 2, ..., are independent and if ¥, P(A,) = +oo, then
P({A,i0.})=1.
Note that part (b) of Proposition 10.2.2 implies that if the events {A,} are
independent and satisfy P({A,i.0.}) =0, then Y, P(A,) < 4. Combining this

with part (a) of the proposition, we see that for independent events the conditions
P({A,i.0.})=0and ¥, P(A,) < +oo are equivalent.

Proof. Since {4, 1.0.} =N7_, Ur_, A,, we have

=

P({Ani0.}) <P(Uy_,An) < Y P(Ay)

n=m
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for each m. Thus if 3, P(A,) < 4o, then P({A4, i.0.}) <lim, Y, P(A,) =0 and
so P({A, i.0.}) = 0; with this, part (a) is proved.
To prove part (b), let us look at the complement of {A,, i.0.}. We have

{Api0.} =U,_ N, Ay,

and so we can prove that P({A, i.0.}) = 1 by checking that P(N;;_,,A%) = 0 holds
for each m. Since the events Ay, Af L1, ---are independent (see Exercise 10.1.1), we
have

POA5) = [ (1~ PlAn).

We can now derive the relation

oo

[Ta—-P@A)) =0 (1)

n=m

from the hypothesis that Y, P(A,) = +eo: If P(A,) = 1 for some n that is greater than
or equal to m, or if there is a positive € such that P(A,) > € holds for infinitely many
n, then (1) certainly holds. Otherwise, log(1 — P(A,)) is asymptotic to —P(A,), and
so Yo, log(1 — P(Ay)) = —eo, from which (1) follows. O

Proposition 10.2.3 (Kolmogorov’s Zero—-One Law). Suppose that {X,} is a se-
quence of independent random variables. Then each event that belongs to the
o-algebra N, (X, X1, - - ) has probability 0 or 1.

The intersection of the o-algebras ¢ (X, X, +1,-..) is, of course, a o-algebra. It
is called the tail 0-algebra of the sequence {X,}, and its members are called tail
events. Thus Kolmogorov’s zero—one law can be rephrased so as to say that each
tail event of a sequence of independent random variables has probability O or 1.

Proof. Let .7 be the tail c-algebra for the sequence {X,}. Proposition 10.1.7
implies that for each n the c-algebras o(X;), ..., 6(X,—1), and (X, Xp41,...)
are independent and hence that 6(X;), ..., 6(X,_1), and 7 are independent. Since
this is true for every n, it follows that the collection consisting of 6(X,), n = 1,
2, ..., together with .7, is independent. Applying Proposition 10.1.7 once more
shows that 0(X;,X,,...) and .7 are independent. Since .7 is a sub-c-algebra of
o(X1,Xs,...), 7 must be independent of .7. Thus each A in 7 satisfies P(A) =
P(ANA)=P(A)P(A), from which it follows that P(A) =0 or P(A) = 1. O

Example 10.2.4. Suppose that {X,} is a sequence of independent random vari-
ables, and for each nlet S,, = X| + - - - + X,,. For each k the convergence or divergence
of the sequence {S,(®)} does not depend on the values X; (®), ..., Xi(®) but only
on the later terms in the sequence {X,(®)}. Thus the event {lim, S, exists} is a
tail event and so by Kolmogorov’s zero—one law has probability O or 1. A similar
argument shows that the event {lim, S,,/n exists} has probability O or 1. O
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Theorem 10.2.5 (Strong Law of Large Numbers). Let {X,} be a sequence of
independent identically distributed random variables with finite expected values.
Foreachnlet Sy =X| + -+ X,. Then {S,/n} converges to E(X)) almost surely.

We will need the following two results for the proof of the strong law of large
numbers.

Proposition 10.2.6 (Kolmogorov’s Inequality). Let X), Xy, ..., X, be independent
random variables, each of which has mean 0 and a finite second moment, and for
eachilet Si =X+ -+ X;. Then

n

P(max [S;| > &) < (1/e*) Y E(X?)

1<i<n =1

holds for each positive €.
Proof. Define events A and Ay, ..., A, by A = {max; |S;| > €} and

Ai={lSi|>¢eand |[S;| <eforj=1,2,...,i—1}.
Let us check that for each i we have

/ §?dP < / S2dP. ()
Aj Aj

To see this, note that the random variables y,,S; and S,, — S; are independent, while
E(S, — S;) =0, and so Proposition 10.1.10 implies that fA,— Si(S, — S;) = 0. Hence,
if we write S2 as (S; + (S, — S;))? and expand, we find

/S,%dP:/ S%dP+2/ Si(S,,—Si)dP+/(Sn—Si)2dP
Aj Aj Aj Aj
:/ SizdP—l—/ (S, —Si)2dP
Aj Aj

> [ spap,
Aj

and (2) follows. Using Proposition 2.3.10 and relation (2), we find
e’P(A) =Y e?P(A;) < 2/ 57 < 2/ 52 < /Sﬁ;
i i JAi i JAi

since the variables X; are independent and have mean 0, we have E(S2) = Y E(X?),
and the proof is complete. O

Proposition 10.2.7. Let {X,} be a sequence of independent random variables that
have mean 0 and satisfy ¥, E(X?) < +ee. Then ¥,, X, converges almost surely.
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Proof. For each n define S, by S, = X; + X+ --- 4+ X,,. If for each m and n such
that m > n we apply Kolmogorov’s inequality (Proposition 10.2.6) to the sequence
Xu+1s - --» X and then let m approach infinity, we find

=

P({sup|Si— S| > £}) < izz

i>n

Choose a sequence {&} of positive numbers that decreases to 0, and for each k
choose a positive integer ng such that 32, | E (X?) < €}/2*. For each k define Ay
by A = {sup;.,, |Si — Su,| > &}. Then

1 2
> P(Ay) <28—2;—’; =31/2" < 4o,
k k “k k

and so P({Ayi.0.}) = 0. However, for each @ outside {Aji.0.} the sequence
{Sy(®)} is a Cauchy sequence, and so {S,} converges almost surely. O

Proof of Strong Law of Large Numbers. For each i let ¥; be the truncated version of
X; defined by

Yiw) = Xi(w) if |X;(w)| <i,and
' 0 otherwise.

Of course, the variables {Y i} are independent and have finite expected values.

Claim. The series 2, At converges almost surely.

Since E((Y; — E(Y;))? ) < E(Y?), the claim will follow from Proposition 10.2.7
if we verify that 3; E(Y? /i?) < +oo. Let i be the common distribution of the X;’s,
and for each positive integer j define /; by I; = {x e R: j—1 < |x| < j}. Thereis a
constant C such that 3.7 ; 1/ i? < C/j holds for each j (use basic calculus), and so

SE0R) =35 [ Puls
_22 /xudx 22 /x/.tdx

i j<l j l>j J

2
= Z/C/,j %H(dx) = C/Rlxlu(dx) = CE(|X]) < +oo.

With this the claim is proved.

ForeachnletT, be Y, %() the nth partial sum of 21 i( ) The planis to
relate the partial sums of Zi(Y E(Y;)) to the T,,’s and to {S,/n}; this will give us
the information that we need about the sequence {S,/n}. We begin by noting that
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Since (by the claim above) lim, 7, exists almost surely, if we divide both sides of
the preceding equation by n and use item B.7 in Appendix B, we find

1 n 1 n—1
lim= Y (Y;— E(Y;)) =lim (T,,—— ZT,) =0 as. 3)
L " iz
As preparation for the final step we check that
1 n
lim — Xi—Y)=0 .S. 4
im~ Z{( 7 a.s 4
and that
1 n
li}ln; Y E(Y;) =E(X)). (5)
i=1

Let us begin with Eq. (4). Note that the finiteness of E(|X;|) and Exercise 2.4.6
imply that 3, P({X; # Y;}) = X; P(|Xi| > i) < —+eo; from this and the Borel-Cantelli
lemma, we conclude that P({X; # ¥; i.0.}) = 0 and hence that (4) holds. Equation (5)
follows from the fact that lim; E(Y;) = E(X;), plus another use of B.7. Finally,
Egs. (3) and (5) imply that

n

1 n
Iim- ) Y, =E(X
im . Z{ f (X1)
holds almost surely, and from this, together with (4), we conclude that lim, S, /n =
E (X)) holds almost surely. With this the proof of the strong law is complete. O

Theorem 10.2.8 (Converse to the Strong Law of Large Numbers). Let {X,} be
a sequence of independent identically distributed random variables that do not have
finite expected values. For eachn let S, = X| + - - + X,,. Then limsup,, |S,/n| = +oo
almost surely.

Proof. Let K be a positive integer, fixed for a moment, and for each » let A, be the
event {|X,| > Kn}. Since the variables {X;} have a common distribution, but do not
have a finite expected value, it follows from Exercise 2.4.6 that ¥, P(A,) = +e. The
second part of the Borel-Cantelli lemmas implies that P({A, i.0.}) = 1 and hence
that

X,
P<limsup| i ZK) =1.
n

n



10.2 Laws of Large Numbers 325

This is true for each positive integer K, and so it follows that limsup,, |X,,/n| = +oo
almost surely. However,
X . Sn

n—18,

n n n n—1

from which it follows that limsup,, |X,,/n| < 2limsup, |S,/#n|; thus limsup|S, /| is
also almost surely infinite. a

Exercises

1. The Weierstrass approximation theorem says that every continuous function on a
closed bounded subinterval of R can be uniformly approximated by polynomials.
This exercise is devoted to a derivation of the Weierstrass approximation theorem
for functions on [0, 1] from the weak law of large numbers.

Let f be a continuous real-valued function on [0, 1], let {X,,} be a sequence of
independent random variables, each of which has a Bernoulli distribution with
parameter p, and for each n let S, = X; +--- 4+ X, and ¥, = S,,/n. For each p in
[0,1] let gu(p) be E,(f oY,), the expected value of f oY, in the case where the
underlying Bernoulli distribution has parameter p. Then (see Exercise 10.1.5)

gn(p) = i‘, f(k/n) (Z) pra—p)

k=0

and so g, is a polynomial in p. Show that the sequence {g, } converges uniformly
to f. (Hint: The weak law of large numbers says that for each € we have
lim, P(|S,,/n— p| > €) = 0; check that this convergence is uniform in p. Use this
and the uniform continuity of f to conclude that the convergence of E,,(f oY) to
f(p) is uniform in p.)

2. Suppose that {X, } is a sequence of independent random variables and that 7 is
the o-algebra of tail events of {X,}. Show that every [—oo, 4-o0]-valued random
variable that is .7 -measurable is almost surely constant.

3. Let b be an integer such that » > 2. The digits that can occur in a base b expansion
of a number are, of course, 0, 1, ..., b— 1. A number x in [0, 1] is normal to base
b if each value in {0,1,...,b — 1} occurs the expected fraction (namely 1/b) of
the time in the base b expansion of x—that is, if

number of times k occurs among the first n digits of x 1
im i
n n b

holds fork =0, 1, ..., b — 1. The value x is normal if it is normal to base b for
every b.
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(a) For a given b, show that almost every number in [0, 1] is normal to base b.
(Hint: Modify part (a) of Proposition 10.1.13 and use the strong law of large
numbers.)

(b) Conclude that almost every number in [0, 1] is normal.

4. (The Glivenko—Cantelli Theorem) Let (€,.27,P) be a probability space, let u
be a probability distribution on (R, Z(R)), let F be its distribution function,
and let {X, } be a sequence of independent random variables on (Q, <7, P), each
of which has distribution u. For each @ in Q, {X,(®)} is a sequence of real
numbers, and we can define a sequence {1}, of measures on (R, Z(R)) by
letting p’ = (1/n) X7_ Oy, (w)- Also, let F,” be the distribution function of the
measure [°; thus,

n

an(x> = (1/}1) ;X(foo,x] OXk(w)

_ number of kin {1,2,...,n} for which X; (@) < x
n

holds for all n, @, and x. (Such functions F,” are called empirical distribution

functions.) Since p describes the distribution of values of the X,,’s, it seems

plausible that for a typical , the measures 1, might approach u as n becomes
large. This is in fact true, and the Glivenko—Cantelli theorem makes a rather
strong version of this precise, namely that for all w outside some set of

probability zero, the sequence {F,’(x)}7"_, converges to F(x), uniformly in x.

(a) As a first step, show that if x € R, then F(x) = lim, £,®(x) and F(x—) =
lim, F,; (x—) hold for almost every o in Q.

(b) Show thatif € is a positive number, if x1, X2, . . ., X are real numbers such that
x| < x3 < --+ < xy and such that the intervals (—eo, x1), (x1,%2), ..., (X, o)
all have measure less than € under u, and if o is such that lim, F,® (x;) =
F(x;) and lim, E®(x;—) = F(x;—) hold fori =1, 2, ..., k, then sup, |F,® (x) —
F(x)| < € holds for all large n.

(c) Use parts (a) and (b) to prove the Glivenko—Cantelli theorem.

5. Let {X,} be a sequence of independent identically distributed random variables
that are nonnegative and satisfy E (X, ) = 4o for each n. Show that lim,, %” = o0
almost surely.

6. (a) Let Xi, X, ..., X, be independent random variables on (Q, <7, P), each of
which has mean 0, for each i let S; = X; + X» 4+ --- + Xj, let ¢ be a positive
constant such that |X;| < ¢ holds almost surely for each i, and for each i let
o'l-2 be the variance of X;. Show that for each positive number a,

(a+c)?
Yo

(Hint: Start by using ideas from the proof of Kolmogorov’s inequality to
show that

P(max |S;| >a)>1—
1
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E(S3) < a*(1—P(A)) + (a+c)’P(A) + Y (07 + - 0; )P(Ay),
i

where Ay, ..., A, are given by
Ai={|Si|>aand |Sj| <aforj=1,2,...,i—1}

and A = U;A;)

(b) Let Xy, X5, ... be independent random variables on (€, <7, P), each of which
has mean 0, and for each i let 0'1.2 be the variance of X;. Show that if there is
a constant ¢ such that |X;| < ¢ holds almost surely for each i and if the series
Y X; is almost surely convergent, then Y ; O'iz < oo,

(c) Show that part (b) remains true if the assumption that each X; has mean
0 is omitted. (Hint: Define random variables Y1, Y», ... on the product of
(Q, o, P) with itself by letting Y;(w;, ) = X;(®;) — X;(@,), and apply part
(b) to the series Y, Y;.)

7. Let {X,,} be a sequence of independent random variables such that P(X,, = 1) =
P(X, = —1) = 1 holds for each n, and let {a,} be a sequence of real numbers.
Show that the series ¥, a,X, converges almost surely if and only if {a,} € ¢>.
(Hint: See Exercise 6.)

8. Let X1, Xp, ... be independent random variables on (Q, o7, P), let ¢ be a positive

constant, and for each i define a new random variable, the truncation Xi(c) of X;
by c, as follows:

. i . <
X(C)(a)) _ Xt(w) if |Xl((0)| < ¢, and
0 otherwise.

The three series theorem says that the series >; X; converges almost surely if and
only if the series

(1) ZIP(|X1| > C)’
(i) E(X). and
(iii) 3, var(X\*)

all converge. Prove the three series theorem. (Hint: Use the Borel-Cantelli
lemma, Proposition 10.2.7, and Exercise 6.)

10.3 Convergence in Distribution and the Central Limit
Theorem

In this section we look at circumstances under which probability distributions on
(R, %(R)), or on (R? %(RY)), give good approximations to one another. As a
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rather trivial example, if n is large, then the point mass J;,, concentrated at 1/n
should be considered to be close to the point mass & concentrated at 0. As a
somewhat less trivial example, for large values of n the measure (1/n)37; 5/,
would seem to give a reasonable approximation to the uniform distribution on [0, 1].
More significantly, we will see in Theorem 10.3.16 (the central limit theorem)
that the distributions of certain normalized sums of random variables are well
approximated by Gaussian distributions.

We should note that for our current purposes the total variation norm (defined in
Sect. 4.1) does not lead to a reasonable criterion for closeness. For example, the total
variation distance between §, /n and & is 2, however large n is. We need a definition
that, for large n, will classify these measures as close.

We will deal with such questions in terms of convergence of sequences of
probability measures (for a bit about an approach using distances, see Exercise 12
and the notes at the end of the chapter). Let u and p;, yp, ... be probability
measures on (R, 2(R%)). The sequence { i, } is said to converge in distribution, or
to converge weakly, to 1 if

[ rau=tim [ rau,

holds for each bounded continuous f on R?.

Before doing anything else, we should verify that limits in distribution of
sequences of probability measures are unique. In other words, we should check
that if the sequence {u,} converges in distribution to i and to v, then y = v. This,
however, is an immediate consequence of the following lemma.

Lemma 10.3.1. Let y and v be probability measures on (R, B(RY)). If [ fdu =
[ fdv holds for each bounded continuous f on R%, then = v.

Lemma 10.3.1 is an immediate consequence of the Riesz representation theorem
(Theorem 7.2.8). The following proof, however, does not depend on the Riesz
representation theorem and so avoids unnecessary dependence on Chap. 7.

Proof. Since u and v are regular (see Proposition 1.5.6), it is enough to prove
that each compact subset K of R? satisfies u(K) = v(K). So let K be a nonempty
compact subset of R?. Recall that the distance d(x, K) between the point x and the set
K is continuous as a function of x (see D.27) and is equal to 0 exactly when x € K.
For each k define a function f;: R — R by f;(x) = max(0,1 — kd(x,K)). These
functions are bounded (by 0 and 1) and continuous, and they form a sequence that
decreases to the indicator function yx of K. Furthermore [ fydu = [ frdv holds
for each k, and so we can use the dominated convergence theorem (or the monotone
convergence theorem) to conclude that

w(K) = lillcn/fkdu :1111{11'/fkdv — v(K).
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With this the proof of the lemma is complete. O

Proposition 10.3.2. Suppose that i and U,, n=1, 2, ..., are probability measures
on (R, B(R?)). Then the conditions

(a) the sequence {U,} converges in distribution to L,

(b) each bounded uniformly continuous f on R? satisfies Jfdu=1lim, [ fdu,

(¢) each closed subset F of R satisfies limsup,, u,(F) < u(F),

(d) each open subset U of R? satisfies u(U) < liminf, u,(U), and

(e) each Borel subset B of RY whose boundary has measure O under | satisfies
W (B) = lim, U, (B)

are equivalent.

Proof. Since every uniformly continuous function is continuous, condition (b) is an
immediate consequence of condition (a). Now assume that condition (b) holds. If
F is a nonempty closed subset of R¢, then the functions f;: RY — R defined by
fi(x) = max(0,1 — kd(x,F)) are bounded (by 0 and 1) and uniformly continuous
(again see D.27). Since these functions decrease to the indicator function of F, it
follows that u(F) = limy [ fidu. Now suppose that € is a positive constant, and
choose k such that [ fidu < u(F)+ €. Then, since U, (F) < [ fi du, holds for each
n, we have

limsup/,tn(F)§lirrln/fkdun:/fkdu<,u(F)+£,

and condition (c) follows. It is easy to check that condition (d) is equivalent to
condition (c). Now suppose that conditions (c) and (d) hold, and let B be a Borel
set whose boundary has p-measure 0. Let F and U be the closure and interior of
B. Then F — U is the boundary of B, and so y(F) = u(U) = u(B), from which it
follows that

1(B) = (U) <liminfu,(U)
<liminfu,(B) < limsup u,(B)

<limsup u,(F) < p(F) = p(B).

Thus, condition (e) follows from conditions (c) and (d).

Finally, we derive condition (a) from condition (e). So suppose that condition
(e) holds, and let f be a bounded continuous function on R?. Suppose that £ is a
positive number. Let B be a positive number such that —B < f(x) < B holds for all
x, and let ¢, cq, ..., ¢y be numbers such that

—B=cp<c1<--<cy=B8B
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(we still need to look at the details of how the ¢;’s are to be chosen). Fori=1, ...,k
let Gy = {x € R?: ¢; | < f(x) < ¢t }. The continuity of f implies that the boundary
of Cy is included in the set of points x such that f(x) is equal to ¢;_; or ¢. Since the
sets {x € R? : f(x) = c}, where c ranges over R, are disjoint and Borel, at most a
countable number of them can have positive measure under pt. It follows that we can
choose our points ¢; so that the boundaries of the sets C; have p-measure 0 and so
that each interval [c;_1,c¢;) has length less than €. If we define g by g = 2{;1 CiXc;s
then f < g < f+ ¢, and so, if we apply condition (e) to the sets C;, we find

lim sup /fdu,, glim/gdu,, :/gdu < /fdu—i—e.

A similar calculation shows that [ fdu — & < liminf, [ fdpu,. Since € is arbitrary,
condition (a) follows, and with that the proof of the proposition is complete. a

As we have seen, probability measures on (R, %(R)) can be identified with
distribution functions. Here is a characterization of convergence in distribution on R
in terms of distribution functions (in fact, convergence in distribution seems to have
first been defined in terms of distribution functions).

Proposition 10.3.3. Suppose that i and U,, n=1, 2, ..., are probability measures
on (R,2(R)), with distribution functions F and F,, n =1, 2, .... Then the
conditions

(@) {u,} converges in distribution to L,
(b) F(t) =lim, F,(¢t) holds at each t at which F is continuous, and
(c) F(t) =lim, F,(t) holds at each t in some dense subset of R

are equivalent.

Proof. Tt follows from Proposition 10.3.2 that condition (a) implies condition
(b) and from the fact that a monotone function has at most countably many
discontinuities (see Lemma 6.3.2) that condition (b) implies condition (c). To
show that condition (c) implies condition (a), we will assume that condition (c)
holds and prove that each open subset U of R satisfies u(U) < liminf, t,(U)
(see Proposition 10.3.2). So suppose that U is a nonempty open subset of R. Let
€ be a positive number. According to Proposition C.4, there is a sequence {U;}
of disjoint open intervals whose union is U. We can choose an integer k such
that u(U) —e < [,L(Uf?lei). Next we approximate the sets U;, i = 1, ..., k, with
subintervals C; such that ¥¥_, 11(U;) — e < 3¥_, 11(C;) and such that each C; is of the
form (c;,d;], where ¢; and d; belong to the dense set given by condition (c). Then
each C; satisfies 1 (C;) = lim, u,(C;), and it follows that

u(U) —2e < 3 pu(Ci) = lim 3’ 1, (C;) < liminf 1, (U).

Since ¢ is arbitrary, we have u(U) < liminf, u,(U), and the proof is complete. O
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Next we introduce the Fourier transform of a probability measure. For that we
need to know a bit about the integration of complex-valued functions; see Sect. 2.6.
We will also be using complex-valued exponential functions; see item B.10 in
Appendix B for the facts we need.

In addition, we need the following basic result:

Lemma 10.3.4. Let z and {z,}, n=1, 2, ..., be complex numbers such that 7 =
lim,, z,. Then lim,, (1 +z,/n)" = €.

Proof. Choose a positive constant M that is larger than the absolute values of z
and of every z,. For each k the term in the binomial expansion of (14 z,/n)" that
involves the kth power of z,, is
k
" &
(&)

As n approaches infinity, this term approaches the term z¥/k! from the series
expansion of e*. Let us check that the sum of the terms of the binomial expansion
of (14 z,/n)" approaches the sum of the terms of the series for e*. The issue here
is the interchange of sums and limits, and this interchange can be justified with the
dominated convergence theorem, if we apply that theorem to integrals (i.e., sums)
on the space of nonnegative integers together with counting measure and if we note
that the functions involved here are dominated by the terms in the series expansion
of eM). Thus lim, (1 +z,/n)" = €%, and the proof is complete. O

Now suppose that (1 is a probability measure on (RY, (R?)). The characteristic
function,® or Fourier transform, of u is the function ¢,: R? — C defined’ by
¢u(t) = [ u(dx). (The integrand here is bounded and measurable, and so
the definition of ¢, makes sense.) If X is an R?-valued random variable, then the
characteristic function of X, written ¢y, is defined to be the characteristic function
of the distribution Py of X, and so ¢x (1) = p, (1) = E(e/*X)).

Proposition 10.3.5. Let u be a probability measure on (R?, (R?)). Then
(@) ¢u(0)=1,

() |¢u(t)| < 1 holds for each t in RY, and
(¢) @u is continuous on R4,

Proof. Part (a) is immediate, and part (b) follows from Proposition 2.6.7. For part
(c), let t be an arbitrary element of R, and suppose that {z,} is a sequence of
elements of R such that # = lim,7,. Then the dominated convergence theorem

5The phrase “characteristic function” is ambiguous; it can mean either “Fourier transform” or
“indicator function” (see item A.3 in Appendix A). In this chapter we follow the usage of
probabilists and use characteristic function to mean Fourier transform; in the rest of the book
we use characteristic function to mean indicator function.

"Here (,x) is the inner product of 7 and x, defined by (r,x) = 3%_, £x;. In case we are dealing with

measures on R, rather than on R?, we write ¢/, rather than i),
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implies that
lim/ei(””x)u(dx) = /ei(”x)u(dx)

and hence that lim, ¢y (#,) = ¢y (¢). Since this holds for every sequence {#,} that
converges to ¢, the continuity of ¢, follows (see D.31 in Appendix D). a

Lemma 10.3.6. Let X be a real-valued random variable, let a and b be real
constants, and define a random variable Y by Y = aX +b. Then ¢y (t) = e ¢x (at)
holds for all real t.

Proof. This follows from the calculation ¢y (1) = E(e(@X+0)) = ¢tbE(piaX) =
e ox (at). O

Proposition 10.3.7. Let i be a probability measure on (R, Z(R)), and let n be a
positive integer such that | has a finite nth moment—that is, such that [ |x|" L (dx)
is finite. Then ¢y has n continuous derivatives, which are given by

¢[.(lk) (l‘) — ik '/xkeitxu(dx)

fork=1,2,..., n

Proof. Note® that |¢™ — 1| < |u| holds for all real u and that lim,_,o(e™ — 1) /u = i.
We will use those facts in the calculations below.
We verify the formula for ¢l(1k) by using mathematical induction. Suppose that we

have already verified that q)ﬁ(lk) has the required form (certainly q)ﬁ(lo) is ¢y, and has the
required form). Then

(k) (k) ' j
h) — i(t4+h)x __ itx
W =ol0) _y [udetid,

o pihx
= ik/xke”xeh—lu(dx).

The integrand in the second integral above approaches ix**!¢/* as h approaches 0,

and it is dominated by |x**!|. It follows from the dominated convergence theorem

thatif 0 <k <nand if q)ﬁ(lk) has the form given in the proposition, then ¢L(lk+1) has the

analogous form with k replaced by k 4 1. (Note that, as in the proof of Proposition
10.3.5, we are actually taking limits as & approaches 0 along sequences.) The
continuity of ¢L(lk+1) follows from another application of the dominated convergence
theorem. O

8 A geometric justification for the inequality |e™ — 1| < |u| comes from the fact that |¢™ — 1] is the
straight-line distance between the points (cos u, sinu) and (1,0), while |u«| gives the length of a path
that connects these points and lies on the unit circle. Alternatively, we can give this inequality and
also the limit lim,_,o(e™ — 1) /u = i non-geometric proofs if we rewrite the exponentials in terms
of sines and cosines.
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Proposition 10.3.8. Suppose that P is the normal distribution on (R, 2(R)) with
mean W and variance 6. Then ¢p(t) = et e=0%/2,
Proof. Let us begin with the special case where P is the standard normal distribution

(i.e., the normal distribution with mean O and variance 1). Then the Fourier
transform ¢p of P is given by

1 ixt ,—x2/2
00 (0) \/ﬁ/R ¢

It is easy to check that P has a finite first moment (in fact, finite moments of all
orders), and so it follows from Proposition 10.3.7 that

1 .
op(t) = \/T—n/Rixe”“e*xz/zdx.

If we integrate by parts (view the integrand above as the product of ie” and the
derivative of —e—/2), we find that op (1) = —tgp(r). It follows that the derivative of
t— e’2/2¢p(t) is identically zero and so, since ¢p(0) = 1, that ¢p(t) = e '/2 The
general case now follows from Lemma 10.3.6. a

Proposition 10.3.9. Let v and v, be probability measures on (R, B(R?)), and
let v be their convolution. Then ¢y (t) = ¢y, (t)dy, (t) holds at each t in R?.

Proof. Let X| and X, be independent random variables with distributions v; and v;.
Then X; + X, has distribution v, and so Proposition 10.1.10 implies that

Ov(1) = E("N17%)) = E("™)E("2) = ¢y, (1), (1) 0

Example 10.3.10. Let us now try to invert the Fourier transform—to go from the
Fourier transform of a probability measure back to the measure. We start with
the Gaussian distributions and look at ¢ — e"’zlz/ 2 the Fourier transform of the
Gaussian distribution with mean 0 and variance 2. If we multiply this function by
e integrate, and use Proposition 10.3.8 at the last step, we find

g . 2,2 L 2.2
/ g M Ot /2dl‘ — / M0t /2dl‘
R R

2

vV 21 1 / el’xt67261—2 dt
R

o Vil
. @efxz/ZGz'
o
It follows that | ' . 1 2 2
E/Refmeia ; /2dt: meﬂc /207 O
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In particular, we can go from the Fourier transform ¢ of the Gaussian distribution
with mean 0 and variance 62 back to its density, say g, by using the Fourier inversion
formula
1
21

/e*”“(p(t)dt =g(x), (1)
JR

which says that the inverse Fourier transform of ¢ is equal to g. The Fourier
inversion formula works for many distributions, but not all (see Exercise 13).
However, we now have enough information to prove the following uniqueness
theorem.

Proposition 10.3.11. Let u and v be probability measures on (R?, B(R?)). Then
W=V ifand only if oy = ¢y.

Proof. The following is a proof for measures on R, rather than on R¢. We can
convert it to a proof for measures on R? by changing the constant 1/27 in the
Fourier inversion formula to 1/(27)?, replacing e~ with ¢***), and checking
that the Fourier inversion formula works for probabilities on R? that are products of
d Gaussian distributions, each with mean 0 and variance 62.

So let us turn to the proof when d = 1. It is certainly true that if u = v, then
¢u = ¢y, and so we need only check that if ¢, = ¢y, then y = v. So let u and
v be probability measures on (R, %(R)) such that ¢, = ¢,. In addition, let 5
be the Gaussian distribution on R with mean 0 and variance ¢?; let ¢y, and go
be its Fourier transform and density function. Let us calculate the inverse Fourier
transform of @y, ., or equivalently of ¢y, ¢, (Proposition 10.3.9), using the fact that
we know from Example 10.3.10 that the Fourier inversion formula works in the
Gaussian case:

1 7 _; 1 7 _; ;
o Lo ou0dr = o [ o) [ o uids)ar

=5 [ [0 0)ana
~ [ golx=5)u(as

(we were able to apply Fubini’s theorem because p is finite and ¢y, is integrable
with respect to Lebesgue measure). Note that the result of this calculation is the
density of Y5 * i (see Proposition 10.1.12). In other words, the inverse Fourier
transform of ¢, @, is the density of y5 * 1. A similar calculation can be applied
to v. Since (1 and v are such that ¢, = ¢y, we can conclude from these calculations
that 5 * L = Y5 * v. Finally, V5 * 1t and Y5 * v converge in distribution to ¢ and v as
o approaches 0 (check this; you might use Exercise 7), and it follows that 4 = v.

O

Corollary 10.3.12. Let Xy, ..., Xy be real random variables, all defined on the
same probability space, and let X be the R-valued random variable whose
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components are Xy, ..., X4. Then the random variables X1, ..., X, are independent
if and only if x (t) = [Ti ¢x, (tx) holds for each vectort = (11,...,14) in R%.

Proof. 1f the random variables X, . .., X; are independent, then the relation ¢x () =
[T; 9x, (1) follows from Proposition 10.1.10, which can easily be extended to apply
to complex-valued functions.

We turn to the converse. Let uy and iy, ..., Ux, be the distributions of X and
X1, ..., Xy. Since the characteristic function (call it @p0q) of the product measure
Ux, X - X Uy, is given by @proa () = [Tx @x, (x), it follows from Proposition 10.3.11
that the relation ¢x (1) = [T ¢x, () implies that u is equal to the product measure
Uy, X --- X Ux, and then from Proposition 10.1.9 that the random variables Xi, ...,
X, are independent. O

Our goal for the rest of this section is to prove the central limit theorem
(Theorem 10.3.16). The main tool for this will be Proposition 10.3.15.

Suppose that {1, } is a sequence of probability measures on (R, Z(R)). Let us
look at the relationship between convergence in distribution of the sequence {1, }
and pointwise convergence of the corresponding sequence {¢y, } of characteristic
functions. For this we need a concept related to regularity. We know (see Proposi-
tion 1.5.6) that if y is a probability measure on (R?, Z(R¢)), then

sup{u(K) : K is compact} = 1.

Measures satisfying this condition are sometimes called fight. A collection € of
probability measures on (R?, %(R%)) is called uniformly tight if for every positive
€ there is a compact set K such that

uK)>1-e¢

holds for each u in %.

The following result is sometimes useful for establishing the uniform tightness
of a family of probability measures on (R, Z(R)). See, for example, the proof of
Proposition 10.3.15.

Proposition 10.3.13. Suppose that U is a probability measure on (R, B(R)) and
that @ is its characteristic function. Then for each positive € we have

p({remipmz2l) < [a-oma

Since characteristic functions are complex-valued functions, it’s conceivable that
the integral on the right-hand side of the inequality above could have a non-real
value, in which case the inequality would be meaningless. We’ll see in the proof
below that this difficulty does not occur.
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Proof. Using Fubini’s theorem and basic calculus, we find
€ £ )
o()di = / / o (dx) di
—€ —eJR

€
:// (costx—l—isintx)dtu(dx):/
RJ—¢ R

Since (1 — 2&5) > L if |ex| > 2, we have

se [ o= [ (1-55 Jutan 2 gu({remonz 2}

and the proposition follows. a

Proposition 10.3.14. Let {u,} be a uniformly tight sequence of probability meas-
ures on (R, Z(R)). Then {1, } has a subsequence that converges in distribution to
some probability measure on (R, B(R)).

Proof. Suppose that {F; } is the sequence of distribution functions corresponding to
{t,} and that {x;} is an enumeration of some countable dense subset D of R. We
will use a diagonal argument to choose a convergent subsequence of { ,, }. To begin,
choose a subsequence {F} ,, }, of {Fy, }, such that {Fj ,(x;)}, is convergent, and then
continue inductively, for each k choosing a subsequence {Fi; 1 ,}n Of {Fi,}n such
that {Fj1,(xxs1)}n is convergent. Now take the diagonal subsequence {F; ;} of
{Fu}, and let {y,, } be the corresponding subsequence of {i,}. We will show that
{ /,Lnj} converges in distribution to some probability measure (.

We can define a function Gy on the countable dense set D by letting Go(x) =
lim; F; j(x) hold for each x in D. Then Gy is a nondecreasing function and,
since the sequence {l,} is uniformly tight, Gy satisfies limy_,_. Go(x) = 0 and
lim,_, 4. Go(x) = 1. Next, define G: R — R by

G(x) =inf{Go(t) :t € D and t > x}.

Then G is nondecreasing, it has limits of 0 and 1 at —ee and 4o, and it is right con-
tinuous; let i be the corresponding probability measure (recall Proposition 1.3.10).
We show that the sequence {u, j} converges in distribution to y by checking that
G(x) = lim; F; j(x) holds at each x at which G is continuous. To do this, suppose
that G is continuous at x, let € be a positive number, and choose values 7y and #; in
D such thattg < x < t;, G(x) — & < Gy(tp), and Go(t1) < G(x) + €. Note that if j is
large enough that |F; j(t;) — Go(t1)| < €, then

ijj(x) < ijj(tl) < Go(l1)+8 < G(x)+28.
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A similar calculation gives a lower bound of G(x) — 2& for F; j(x), and so we can
conclude that |G(x) — Fj j(x)| < 2& holds for all large j. Thus G(x) = lim; F} ;(x),
and Proposition 10.3.3 implies that {u, j} converges in distribution to U. O

Proposition 10.3.15. Let y and Uy, Uy, ... be probability measures on (R, B(R)).
Then the sequence {l,} converges in distribution to [ if and only if the sequence
{®u,} converges pointwise to ¢y.

Proof. For each ¢ the function x + ¢ is bounded and continuous. Thus if {,}
converges in distribution to u, then [ ¢ u(dx) = lim,, [ €™ u,(dx) holds for each ,
and {¢,, } converges pointwise to ¢y,.

Let us turn to the converse and assume that {¢,,, } converges pointwise to ¢.
We begin by showing that the sequence {u,} is uniformly tight. Choose a positive
number &, and then use the continuity of ¢, at 0 (and the fact that ¢, (0) = 1) to

choose 6 such that %ji;(l — @u(1))dt < €. Since {¢y, } converges pointwise to ¢y,
we can use the dominated convergence theorem to conclude that

o
5 [0 oud<e

holds for all large n. Proposition 10.3.13 now implies that

2 2
uﬂ<|:_§73:|)>1_8 ()

holds for all large n. By making 6 smaller, if necessary, we can make (2) hold for
all n. It follows that the sequence {u,} is uniformly tight.

We now check that {u, } converges in distribution to . Suppose it did not. Then
there would be a bounded continuous function f on R such that {[ fdu,} does
not converge to [ fdu. Choose a subsequence {fi,, } of {u,} such that { [ fdpu,, }
converges to a value other that [ fdu. The uniform tightness of {u,}, which we
verified above, together with Proposition 10.3.14, lets us replace {u, } with a
subsubsequence that converges to some probability measure v. Then v # u, since
Jfdv# [ fdu,yetdy = @y, since {@,, } converges to both ¢, and ¢, This is im-
possible, and so our hypothesis that {u, } does not converge to ¢ must be false. O

Let us make a last preparation for the proof of the central limit theorem. Suppose
that X is a random variable with mean 0 and variance 1 and that ¢ is its characteristic
function. Then ¢(0) = 1, ¢'(0) =0, ¢”(0) = —1, and ¢ has at least two continuous
derivatives (see Proposition 10.3.7). According to I"Hospital’s rule, plus the facts in
the previous sentence, we have

o 9 = (1=2/2)

x—0 x2

=0
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and so ¢ can be written in terms of its second-degree Maclaurin polynomial 1 —x?/2
as ¢(x) = 1 —x?/2 + R(x), where lim,_,o R(x) /x> = 0.

Theorem 10.3.16 (Central Limit Theorem). Let X|, Xp, ... be a sequence of
independent identically distributed random variables, with common mean | and
variance 62, and for each n let S, = X| + --- + X,,. Then the normalized sequence
{(Sn—npt)/o+/n} converges in distribution to a normal (i.e., Gaussian) distribution
with mean 0 and variance 1.

Proof. Each random variable (X; — u)/oc has mean 0 and variance 1 and hence
has a characteristic function ¢ that is as described just before the statement of the
theorem. Since the X;’s are identically distributed, the function ¢ does not depend
on the index i. Note that

Sp—nu 1 2 Xi— U

oyn Vn&E o

3)

If we use Eq. (3), the independence of the X;’s, Lemma 10.3.6, Proposition 10.3.9,
and the fact that lim, ,oR(x)/x*> = O (where R(x) is the remainder defined just
before the statement of the theorem), we find that the characteristic function of

(S, —nu)/o+/nis given by

) - () (- 2225

where g, = —nR(t/+/n) and hence where lim, &, = 0. It follows (Lemma 10.3.4)

that the characteristic functions of the normalized sums (S, — ni)/c+/n approach
—12)2.

the function t — e ; since the limit is the characteristic function of the
normal distribution with mean O and variance 1, the theorem follows (see
Proposition 10.3.15). O
Exercises

1. For each positive integer n define a probability measure y, on (R, Z(R)) by
M = (1/n) 3| 8/, Show that the sequence {i, } converges in distribution to
the uniform distribution on [0, 1].

2. Suppose that g and yy, Lo, ..., are probability measures on (R, %(R)), each of
which is concentrated on the integers. Show that the sequence {1, } converges
in distribution to g if and only if w({k}) = lim, ,({k}) holds for each k in Z.

3. Show that
(a) if u is the point mass at a, then ¢, is given by @, (r) = €',

(b) if u is the binomial distribution with parameters n and p, then ¢, is given
by du(t) = (1— p(1 — )",
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10.

11.

12.

(c) if u is the Poisson distribution with parameter A, then ¢y, is given by ¢, (¢) =

e’“l’e”), and

(d) if p is the uniform distribution on the interval [a,b], then ¢, is given by
eitb7 eim

Ou(t) = Gy

. Show that if ¢ is the characteristic function of a probability measure on

(R, B(R)), then ¢(—1) = ¢(¢).

. Show that a probability measure g on (R, %(R)) is symmetric (i.e., 4(—A) =

1 (A) holds for each A in Z(R)) if and only if ¢y, is real-valued.

. Show that if ¢ is the characteristic function of a probability measure on

(R,%(R)), then ¢ is uniformly continuous on R.

. Suppose that X and X1, X, ... are real-valued random variables and that y and

Ui, Uy, ... are their distributions. Show that if {X,,} converges in probability to
X, then {,} converges in distribution to y.

. Let u be a probability distribution on (R, Z(R)). Show that |¢,(r)| = 1 for

some nonzero number ¢ if and only if there exist real numbers a and b such that
U is concentrated on the set {a+ bn : n € Z}. (Such a distribution is called a
lattice distribution.)

. Show directly (i.e., using only the definition of convergence in distribution)

that if a sequence {u,} of probability measures on (RY, (R?) converges in
distribution to some probability measure, then the sequence {, } is uniformly
tight.

Suppose that {u,} is a sequence of probability distributions on (R, %Z(R))
whose characteristic functions {¢,} converge pointwise to some function
¢: R — C. Show that if ¢ is continuous at 0, then there is a probability
distribution ¢ on (R, %Z(R)) such that {u,} converges to u in distribution.

For each n let u, be a binomial distribution with parameters n and p,,. Show that
if {np,} is convergent, with A = lim,, np,, then the sequence {1, } converges in
distribution to the Poisson distribution with parameter A. Do this

(a) by making a direct calculation of probabilities (see Exercise 2), and

(b) by using characteristic functions.

Suppose that for probability measures p and v on (R, %(R)) we define d(u,v)
by

d(u,v) =inf{e > 0:F,(r) <F,(t+€)+¢€and
Fy(t) < Fy(t+¢€)+¢eforalltin R}.

(The function d is known as Lévy’s metric.)

(a) Show that d is a metric on the set of all probability measures on (R, Z(R)).

(b) Suppose that y and i, Uy, ... are probability measures on (R, Z(R)).
Show that the sequence {1, } converges in distribution to y if and only if
lim,, d(n, ) = 0.
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13. Suppose that u is a probability distribution on R such that ¢, is integrable.
(Note that for the inversion formula (1) to make sense with the integral
interpreted as a Lebesgue integral, ¢, must be integrable.)

(a) Show that if u is absolutely continuous with density function g and if
the inversion formula (1) is valid for ¢, and g, then g is bounded and
continuous.

(b) Show that if ¢ is integrable, then u is absolutely continuous and formula
(1) works. (Hint: Use some ideas and calculations from Proposition 10.3.11.
In particular, consider [ h(x)p(x)dx, where h ranges over the continuous
functions with compact support on R and p is the inverse Fourier transform
of Pyosut-)

14. Show how to prove the central limit theorem without using Proposition 10.3.13.
(Hint: For each n let 1, be the distribution of (S, — nu)/o+/n. Use Markov’s
inequality (that is, Proposition 2.3.10), rather than Proposition 10.3.13, to show
that the sequence {u, } is tight.)

15. Let p and u;, Uy, ... be probability measures on (R, Z(R)) such that the
sequence {4, } converges in distribution to 4.

(a) Suppose that X and Xj, X5, ... are random variables, all defined on the
same probability space, whose distributions are ¢ and g, U, .... Show (by
giving a simple example) that it does not follow that {X,,} converges almost
surely to X.

(b) On the other hand, show that there are random variables X and X, X», ...,
all defined on the same probability space and with distributions pt and py,

U, ..., such that {X,} converges to X almost surely. (Hint: Let F and
Fi, F,, ... be the distribution functions of y and uj, Uy, .... Then the
random variables F~! and Ffl, F{l, ... constructed from F and Fj, F>,

. as in Proposition 10.1.15 do what is required. To verify the almost
sure convergence, use the equivalence of inequalities (3) and (4) from
Sect. 10.1 to verify that lim,, F, ' (t) = F~!(¢) holds at each ¢ at which F~!
is continuous.)

10.4 Conditional Distributions and Martingales

Suppose that (Q, <7, P) is a probability space, that A and B are events in <, and that
P(B) # 0. In elementary treatments of probability, the conditional probability of A,
given B, written P(A|B), is defined by

p(ajp) = PANE)
P(B)

Example 10.4.1. Suppose that we select a number at random from the set

{1,2,3,4,5,6}, with each number in that set having probability 1/6 of being

selected. Consider events E and F', where E is the event that the number selected is

even and F is the event that the number selected is not equal to 6. Then we have
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P(ENF) 2/6

PEF) = ——— =2/5
(EIF) P(F) 5/6 /
and P(FNE) _2/6
N
P(FIE)= ——— =2/3,
which should agree with one’s intuition. a

Let us deal for a moment with a probability space (Q, <7, P) such that Q is finite
and .7 contains all the subsets of Q. Let X and Y be real-valued random variables on
(Q, o, P) with values xi, ..., xp and yy, ..., yn, and let us assume that P(Y =y;) #0
for each j. Then E(X|Y =y;), the conditional expectation of X, given thatY =yj,
is defined by

EX|Y =yj) ZX, X =xlY =yj).
It follows that

YxP(X =x;andY =y;) Jy=y; XdP
P(Y =y)) P(Y =y))

E(X[Y =yj) = )

Of course, this defines a function y; — E(X|Y = y;) on the set of values of Y.
It is convenient to have a slightly different form of the conditional expectation,
with the new form being defined on the probability space (Q,.o7, P). Let us define
E(X|Y): Q — R by letting E(X|Y)(w) be E(X|Y = ;) for those @ that satisfy
Y(w) =y;. In other words, E(X|Y) is the composition of the functions ® — Y (o)
andy — E(X|Y =y). It follows from (1) that

/BE(X|Y)dP:/BXdP 2

holds for each B of the form {Y =y, }. Since each B in the o-algebra o(Y) generated
by Y is a finite disjoint union of sets of the form {Y = y;}, it follows that (2) holds for
each B in o(Y). Furthermore, E(X|Y) is o (Y )-measurable (in this simple example,
where Q is finite, this just means that E(X|Y) is constant on each set of the form
{Y =y;b.

We are now ready to look at how these ideas generalize to arbitrary probability
spaces.

Let (Q, o7, P) be a probability space and let Z be a sub-c-algebra of «7. Suppose
that X is a real-valued random variable on (Q,.</,P) that has a finite expected
value. A conditional expectation of X given % is a random variable Y that is %-
measurable, is integrable (that is, has a finite expected value), and satisfies

/YdP:/XdP
JB JB



342 10  Probability

for each B in 2. One generally writes E(X|4%) for a conditional expectation of X
given 2. When one needs to be more precise, one sometimes calls an integrable
ZB-measurable function Y that satisfies [, Y dP = [, X dP for all B in & a version of
the conditional expectation of X given 2 or a version of E(X|%).

Proposition 10.4.2. Let (Q,.o/,P) be a probability space, let X be a random
variable on (Q, o/, P) that has a finite expected value, and let 2 be a sub-c-algebra
of <. Then

(a) X has a conditional expectation given B, and
(b) the conditional expectation of X given A is unique, in the sense that if Y| and
Y, are versions of E(X|B), then Y| =Y, almost surely.

Proof. The formula u(B) = [z X dP defines a finite signed measure on (Q, A); it
is absolutely continuous with respect to the restriction of P to %. Thus the Radon—
Nikodym theorem (Theorem 4.2.4), applied to u and the restriction of P to %, gives
a #-measurable random variable Y such that

/BYdP:u(B) _ /BXdP

holds for each B in #. Thus Y is a conditional expectation of X given B. The
uniqueness assertion in the Radon—Nikodym theorem gives the uniqueness of the
conditional expectation. O

Proposition 10.4.3. Let (Q,<7, P) be a probability space, let 8 and B be sub-0-
algebras of <7, and let X and Y be random variables on (Q, </, P) that have finite
expected values. Then

(a) if a and b are constants, then E(aX + bY|#) = aE(X| %) + bE(Y| %) almost
surely,g

(b) if X <Y, then E(X|B) < E(Y|#) almost surely,

© IEXIZ) < X1l

(d) if X is B-measurable, then E(X|#) = X almost surely (in particular, if ¢ is a
constant, then E (c|B) = c almost surely),

(e) if By C B, then E(X|Bo) = E(E(X|B)|%o) almost surely,

(f) if # and X are independent (that is, if % and 6(X) are independent), then
E(X|2) is almost surely equal to the constant E(X), and

(g) if X is bounded and JB-measurable, then E(XY|%) = XE(Y|%) almost surely.

Proof. Note that aE(X| %) + bE (Y| %) is a #-measurable function that satisfies

91t is probably worth translating one of the parts of this proposition into more precise language. Part
(a) says that if Z is a version of E(aX + bY|#), if Z; is a version of E(X|%), and if Z; is a version
of E(Y| %), then Z = aZ; + bZ, almost surely. Equivalently, part (a) can be viewed as saying that
if Z; and Z, are versions of E(X|%) and E(Y|%), then aZ, + bZ, is a version of E(aX + bY|A).
Other assertions about conditional expectations can be made precise in similar ways.
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/(aE(X|%’)+bE(Y|§£))sz /(aX+bY)dP
JB JB

for each B in % and hence is a conditional expectation of aX + bY given 4. Part (a)
then follows from the uniqueness of conditional expectations (part (b) of Proposition
10.4.2).

For part (b), note that

'/BE(XL@)dP:/I;XdPS/I;YdP:/I;E(YL@)dP

holds for each B in 2. It now follows from Corollary 2.3.13 that E (X | %) < E(Y| %)
almost surely.

If we let A1 and A_ be the sets {E(X|#) > 0} and {E(X|%) < 0}, then part (c)
follows from the calculation

IExi#) = [ ECizap— [ Exiz)ap

:/ XdP—/ XdP < |X|.
AL .

Part (d) is immediate, and part (e) follows from the calculation
/E(E(XL%)L@O)LZP: /E(x@)dpz /XdP
B B B
which holds for every B in A (recall that By C A).

We turn to part (). If 8 and X are independent, then for each B in # the random
variables yp and X are independent, and so Proposition 10.1.10 implies that

/XdP:/xBXdP:/XBdP/XdP
B

— P(B)E(X) = /B E(X)dP;

it follows that E(X) is a version of E (X |4).
Let us start our consideration of part (g) with the special case where X = y,4 for
some A in Z. Then for each B in % we have

/XYdP:/ YdP:/ E(Y|%)dP
B BNA BNA

:/XAE(Y|%)dP:/XE(Y|%)dP
B B

and so i
/XYdP: / XE(Y|%)dP. 3)
JB B



344 10  Probability

Equation (3) now extends to the case where X is simple function and then (by the
dominated convergence theorem) to the case where X is an arbitrary bounded %-
measurable function. Furthermore XE (Y| %) is #-measurable. Thus XE (Y| %) is a
version of E(XY|%) and the proof is complete. O

Proposition 10.4.4 (Monotone and Dominated Convergence Theorems for Con-
ditional Expectations). Let (Q, .o/, P) be a probability space, let B be a sub-o-
algebra of <7, and let Xy, X, ... be random variables with finite expected values
such that lim, X,, exists almost surely. If

() {X,} is an increasing sequence such that lim, E(X,) is finite, or
(b) there exists a random variable Y with finite expected value such that each X,
satisfies |X,| <Y almost surely,

then lim, X,, has a finite expected value and E (lim, X,| %) = lim, E (X,| %) almost
surely.

Proof. First suppose that condition (a) holds. Let us also temporarily assume that
the random variables X, are nonnegative. Since we are assuming that {X,} is an
increasing sequence, it follows from part (b) of Proposition 10.4.3 that the sequence
{E(Xy|#)} is increasing almost surely and so has an almost sure limit, possibly
with some of values of lim, E(X,|%) being infinite. The monotone convergence
theorem implies that

/limE(XnL@) P = lim/E(X,,L%) P = lim/X,, dP < oo,
n n n

and so lim, E(X,|%) is finite almost everywhere. Applying the monotone conver-
gence theorem twice more gives

limX, dP = lim / X, dP = lim / E(X,|#)dP = / limE (X,| %) dP
B n n JB n JB B n

for each B in %; thus lim, E(X,,| ) is a version of E(lim, X,|#) and the proof is
complete in the case where condition (a) holds and the X,’s are nonnegative. We
can complete the proof for the case where (a) holds by applying what we have
just proved to the sequence {X, — X} and then using the linearity of conditional
expectations.

Now suppose that condition (b) holds. Since we are assuming that |X,| <Y for
each n, we have |lim, X,| <Y and so lim, X, has a finite expected value. For each
nlet ¥, = inf{Xy : k > n} and Z, = sup{X; : k > n}. Then {Y,} is an increasing
sequence that converges pointwise to liminf, X, and {Z,} is a decreasing sequence
that converges pointwise to limsup, X,;; since limX,, exists, both those sequences
converge to it almost surely. If we apply the first half of the proposition to the
sequence {Y,}, we conclude that lim, E(Y,|%) = E(lim, Y,| %) = E(lim, X,| %)
almost surely. A similar argument, applied to the sequence {Y — Z,}, shows that
lim, E(Z,| %) = E(lim, X,| %) almost surely. Finally, each variable E(X,|%) lies
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between the corresponding variables E(Y,| %) and E(Z,| %), and it follows that
lim, E (X,| %) = E(lim, X,,| %) almost surely. With this the proof is complete. O

In the remainder of this chapter we will be looking at stochastic processes.
A rather abstract definition might say that a stochastic process is an indexed family
{X;}ter of random variables, where T is an arbitrary nonempty set and all the
random variables are defined on the same probability space. However, one usually
deals with more concrete situations, in which the index set 7 is a set of integers
or else a nice set of real numbers (such as an interval), and the members of T
are interpreted as times. For each ¢ in T the random variable X; is thought of as
representing a quantity that can be observed at time 7.

A discrete-time stochastic process is one for which T is a set of integers, and a
continuous-time process is one for which T is an interval of real numbers. We will
see a few discrete-time processes in this section, and we will see some continuous-
time processes later in the chapter.

Let (Q,7,P) be a probability space. A filtration'® is a sequence {%,}:>_, of
sub-o-algebras of o7 that is increasing, in the sense that .%, C .%,; holds for each
n. A discrete-time stochastic process (i.e., a sequence of random variables) {X, }
is adapted to the filtration {.%,}7_ if X, is .%,-measurable for each n. Note that the
sequence {X, }_ is adapted to the filtration {.%, };._ if and only if 6(Xo, ..., X,) C
%, holds for each n.

The intuition here is that the events in the c-algebra .%, are those that could be
known by time n. In one common situation, {X, } is an arbitrary sequence of random
variables and for each n we let .7, be 6(Xy, ..., X,). In this case .%, contains exactly
the events that are determined by the random variables Xy, ..., Xj.

Let {.%,} be a filtration on the probability space (Q,.«7,P). A stopping time or
an optional time is a function 7: Q — NoU {+eo} such that {t <n} € .%, holds for
each n in Ny. It is easy to check that if 7 is a stopping time, then 7 is .27 -measurable
and that a function 7: Q — NoU{+eo} is a stopping time if and only if {t=n} € .Z,
holds for each n in Nj.

One standard interpretation of a stopping time is the following: You are observing
random variables Xy, Xi, ..., one after the other, and you may decide to stop
observing at some random time 7. It is reasonable to decide whether or not to stop
with the nth observation on the basis of the information that is available by time n,
but it is not reasonable to use information about the future (e.g., the values of X, |,
X125, - -.). In other words, {t = n}, the event that you stop just after observing X,
should belong to .%,,.

10n this section we are dealing with discrete-time processes. On the other hand, a filtration
{%:}1er in continuous time is defined by requiring that .%, C .%, holds whenever #; and #, are
elements of 7 such that t; < 1. If {7 },cr is a filtration with T = [0, +<o), then a stopping time
for it is a function T: Q — [0, +oo| such that {T <t} € .% holds for all # in 7. Except for a few
exercises involving Brownian motion, we will not be dealing with filtrations in continuous time.
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Example 10.4.5. Suppose that you take a random walk on the integers in the
following way. You begin at 0, and every minute you toss a fair coin and move
to the right by a distance of 1 if the coin yields a head and to the left by a distance
of 1 if it yields a tail. To formalize this, we let {Y;};, be a sequence of independent
and identically distributed random variables such that

P({Yi=—-1}) =P({Yi=1})=1/2

holds for each i, and then we define {X,}> by Xo =0and X, =Y +---+7Y,
if n > 0. Finally, we define the filtration {.%,} by letting .%, be o(Xy,...,X,) for
each n.

Let us consider a rather simple stopping time for this process. The time you first
reach 1 (if you ever reach it) is given by

171y (@) = inf{n € No : X, (@) = 1}. (4)

Note that 7y, (w) = oo if the set on the right side of (4) is empty—in other words,
if you never reach the point 1. Since

{T{l} <n}= U{Xi =1} € %,

i<n

the variable 7(yy is in fact a stopping time. O

Example 10.4.6. Now suppose we have an arbitrary real-valued process {X,}_,
that is adapted to some filtration {.%, } and we want to know the first time that X,, is
in some Borel subset A of R. The same reasoning as in Example 10.4.5 works if we
replace (4) with

(o) =inf{ne Ny : X,(w) €A}. O

Let us now turn to martingales. Suppose that (Q,.27, P) is a probability space, that
{Fn};_ is afiltration on (Q, <7, P), and that {X,,};-_, is a discrete-time process on
(Q, 7 ,P). Then ({Xu} o, {-Fn}ip). or simply {X,,};r_. is a martingale if

(a) {Xu}_ is adapted to {.Z,}7 .
(b) each X, has a finite expected value, and
(c) for each n we have X,, = E(X,,11|-%,) almost surely.

Sometimes we will say that {X,} is a martingale relative to {.%,}. If condition (c)
is replaced with

for each n we have X,, < E(X,+1|-%,) almost surely

or with
for each n we have X,, > E(X,+1|-%,) almost surely,
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then ({ X}, {Fn}io) or {Xn}ir_ is @ submartingale or a supermartingale. Note
that we can verify condition (c) in the definition of a martingale by checking that
JXndP = [3X,.1dP holds for each n in Ny and each B in .%,. Similar remarks
apply to submartingales and supermartingales.

Examples 10.4.7.

(a)

(b)

(c)

(d)

Let (Q,/,P) be a probability space, and let {¥,};7_, be a sequence of
independent (real-valued) random variables on Q with finite expectations.
Define {S,};> by So=0and S, =Y, +---+Y, if n > 1, and define a filtration
{Fn}r_ by Zu=0(S0,...,8). fE(Y,) =0forn=1,2,..., then we can use
parts (a), (d), and (f) of Proposition 10.4.3, together with the independence of
the sequence {Y,};;_,, to show that

E(Sn+l|<9\n) = E(Sn+Yn+l|§n) = Sn+E(Yn+l|§n) =S

holds almost surely for each n, and hence that {S,};7_ is a martingale. Similar
calculations show that if E(Y,) >0forn=1,2,...(orif E(¥,;) <0 forn=1,
2,...), then {S,}7_ is a submartingale (or a supermartingale).

Suppose that you are gambling, making a sequence of wagers. Let {X,,}>" ,bea
sequence of random variables with finite expected values and defined on some
probability space (Q, .o, P), and suppose that Xy represents your capital at the
start and that X,, represents your capital after n wagers. Define a filtration by
letting .%, = 6(Xo, ...,X,) hold for each n. Then {X,} _ is a martingale if the
wagers are fair (that is, if at each stage the conditional expectation of your gain
from the next wager, namely E (X, 11|%,) — Xy, is 0); it is a submartingale if the
wagers favor you and is a supermartingale if they favor your opponent.

Let (Q, <7, P) be a probability space, let {.%,}_ be a filtration on (Q, <7, P),
and let X be an integrable <7 -measurable function on Q. For each n define X, by
X, = E(X|%#,). Let us check that {X,,}7*_, is a martingale. Condition (¢) in the
definition of martingales is the only thing to check, and that condition follows
from the calculation

EXui1|Fn) = E(E(X|Fi1)|F0) = E(X|F0) = X,

(see part (e) of Proposition 10.4.3).

We define a martingale on the probability space ((0,1],%((0,1]),A) as follows.
Let .7 be the o-algebra that contains only the sets & and (0, 1]. For positive n
let &2, be the partition of (0, 1] that consists of the intervals (i/2",(i+1)/2"],
i=0,...,2"—1; then let %, = 6(Z,). Now suppose that {1 is a finite Borel
measure on (0, 1], and for each n define X,,: (0,1] — R by X,,(x) = u(1)/A (1),
where I is the interval in &2, that contains x. Then each interval I in &2, satisfies

/X,,d)t —u(l) = /x,,ﬂdx.
1 1
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It follows that the same equation holds if 7 is replaced with an arbitrary set in
Fn; hence X, = E(X,1]|%,) and {X,} is a martingale. There are a couple of
things to note here. First, if we consider the behavior of the sequence {X,(x)} as
n goes to infinity, we seem to be dealing with some sort of derivative. We’ll look
harder at this later in this section. Second, we are dealing with pure analysis in
this example; no probability seems to be involved. O

The following is one of the major results of martingale theory.

Theorem 10.4.8 (Doob’s Martingale Convergence Theorem). Let (Q, .o/, P) be
a probability space, and let ({X,,}7>_o,{-Fn}rr_) be a submartingale on (L, <7, P)
such that sup,E(X,) < +eo. Then the limit lim, X, exists almost surely, and
E(|lim, X, |) < +oe.

We need a few preliminary results before we prove the martingale convergence
theorem.

Lemma 10.4.9. Suppose that {F,} is a filtration on the probability space
(Q,o,P) and that {X,} and {Y,} are submartingales on Q relative to {F,}.
Then {X,VY,} is a submartingale relative to { %, }.

Proof. Tt is clear that each X, VY, has a finite expectation and is .%,-measurable.
Define sets C,, n =0, 1, ..., by C, = {X,, > Y, }. Then each C, belongs to the
corresponding .%,, and for each B in .%, we have

/(X,,\/Y,,)dP:/ X,dP+ | Y,dP
B BNCy BNCE

< / Xpr1dP+ / Y,11dP < /(Xn+1\/Yn+1)dP.
BNG, JBrcg B

Thus {X,, VY, } is a submartingale relative to {.%, }. O

Let us for a moment view a martingale (or sub- or supermartingale) {X,} in
terms of gambling, with X,, representing our capital after the nth of a sequence
of games. It is sometimes useful to modify {X,} by allowing ourselves to skip
certain of the games. More precisely, let {€,} be a sequence of {0,1}-valued
random variables, with g, having value 1 if we participate in the nth game and
having value O otherwise. Since X, — X,,—1 would be our gain or loss from the
nth game of the original sequence, &,(X, — X,—1) will be our gain or loss in the
modified sequence. Thus we can describe our fortunes in the modified situation with
a sequence {Y,}, where ¥y = Xy and ¥, = Y,,_| + &,(X,, — X,,—1), or, equivalently,
Y, =Xo+ X" &(X; —Xi—1). For this formalization to be reasonable, we must make
our decisions about which games to play and which to skip using only information
that is available at the time of the decision. Hence it is natural to assume that g, is
%,_1-measurable.
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We have the following proposition, which says that if we transform a submartin-
gale {X,} as in the preceding paragraph, then the resulting sequence {Y,} is also a
submartingale, with expected values no larger than those for the original sequence.

Proposition 10.4.10. Suppose that ({X,},{%n}) is a submartingale on the prob-
ability space (Q,</,P) and that {&,};>_, is a sequence of {0,1}-valued random
variables on Q such that €, is %, _1-measurable for each n. Then the sequence
{Ya}r defined by Yo = Xo and Y, = Y, + €,(Xy —Xy—1) forn=1,2, ... isa
submartingale, and E (Y,) < E(X,) holds for each n.

Proof. Tt is clear that each Y, is .%,-measurable and has a finite expected value.
Since {X, } is a submartingale,
E(Xn _Xn71|<g\nfl) = E(Xn|§nfl) —Xp 120

holds almost surely forn =1, 2, ..., and so (see Proposition 10.4.3)

E(Yn|g\n71) = E(Yn71|g\n71) +E(€n(Xn _Xn71)|§n71)

=Y,1+ gnE(Xn _Xn71|fg.n71)

> Y1
almost surely; thus {Y,} is a submartingale. We prove that E(Y,) < E(X,) by
induction. This inequality certainly holds when n = 0. For the induction step, note
that, since E(X,, — X,—1|-%n—1) > 0, we have

E(Yn) = E(Ynfl) + E(gn(Xn - anl))

(Yn 1) ""E(gnE(Xn —Xn-1 |g\n71))

E(Y,_
E(Xy_1)+EXy—Xo_1) = E(X,). 0

IN

In order to prove the martingale convergence theorem, we will look a bit at how
a sequence {x,} of real numbers might fail to converge. One way for this to happen
is for liminf, x, to be less than limsup,, x,,. In that case, there are real numbers a and
b such that

limninfx,, <a<b<limsupx,,
n
from which it follows that there is a subsequence {x,, } of {x,} such that x,, <a,
Xp, > b, x4y <a,.... This suggests the following definition. A sequence {x,} is said
to have an upcrossing of the interval [a, b] as n increases from p to g if x, < a, x, <b
for n satisfying p <n < g, and x, > b.

Now suppose that (Q, 7, P) is a probability space, that {.%#,} is a filtration on
(Q, 7, P), and that {X,} , is a sequence of random variables adapted to {.%,}.
Let a and b be real numbers such that a < b. Our immediate goal is to count the
upcrossings of the interval [a,b] made by these random variables, and for this we
use sequences {0, } and {1, } of stopping times defined as follows. We define ; by
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o1(w) =inf{i € Np: Xi(w) <a},
and then we continue inductively, defining 6,,, n > 2, and 7, n > 1, by
(o) =inf{i € Ny: i > 0, (w) and X;(w) > b}

and
oy(0) =inf{i € Ny: i > 7,_| (@) and X;(®) < a}

(recall that the infimum of the empty set is +o0). We can check inductively that o,
and 7, are indeed stopping times by noting that

{01 <k} =Uio{Xi <a} € 7,

{0, <k} =U" {1, 1 <iandX; <a} €. ifn>2 and
{1, <k} =UL {0, <iand X; > b} € F.

The finite sequence {X;(®)}"_, contains k or more upcrossings'! of [a,b] if and

only if 7 (@) < n. Thus, if we define functions Ut QSR by letting yle?! (w) be

the number of upcrossings of [a, b] in the sequence {X;(w)}" ), then {U,Ea’b] >k} =

{t < n}; since each 1 is a stopping time, it follows that U,La’b] is .%,-measurable.

Proposition 10.4.11 (The upcrossing inequality). Ler (Q, <7, P) be a probability
space and let ({X,},{%}) be a submartingale on (Q, </ ,P). If a and b are real
numbers such that a < b, then for each n the number U,Ea’b] of upcrossings of |a,b)
by {Xi}!, satisfies
E((X,—a)")

b—a '
Proof. Let us suppose that a and b are fixed. We can assume that each X, satisfies
a < X,, since replacing {X,} with {max(X,,a)} gives a new sequence that is a
submartingale (see Lemma 10.4.9), has the same number of upcrossings of [a,b] as
the original sequence, and is such that E((X,, —a)™) is the same for the old and new
sequences. Let {0, } and {7,} be the sequences of stopping times defined before the
statement of the proposition, and define functions?g,: Q >R, n=1,2, ..., by

E(Ui*) <

&(w) =

1 if there is an i such that 6;(w) < n < 7;(w), and
0 otherwise.

Then

Here we are, of course, counting non-overlapping upcrossings, where we call a sequence of
upcrossings of [a, b] non-overlapping if the sets of times (i.e., of subscripts) during which they
occur are non-overlapping.

12The intuitive meaning of &, is that it tells whether X,, is part of an upcrossing.
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{8,, = 1} ZUL‘({O',' <n— l}ﬁ{Tign—l}C) € Zi,

and so g, is %, j-measurable. Let {Y¥,} be the submartingale (see Proposition
10.4.10) defined by ¥, = Xo + X1, &(Xi — Xi—1). We will use {Y¥,} to bound the
number of upcrossings of [a,b] by {X;}!_,.

For an arbitrary element @ of Q let us analyze the set of those k that satisfy
k < nand g(w) = 1. Such values of k can arise in two ways. First, for each i such
that 7;(@) < n we have the set of k that satisfy 0;(w) < k < 7;(w). Those values
correspond to the steps in the upcrossing of [a, ] that begins at o;(®) and ends at
7;(®), and so we have

7i()

b—a< Y (X(0)—X (o). )

k=0;(@)+1

The other way that such k can arise is for there to be an i such that 0;(®) < k <
n < 7;(®). These k correspond to a potential upcrossing that has started but has not
finished by time 7, and in this case we have

n

Y, (X(0) = X1 (o) =X, (®) —a> 0. (6)
k=0i(w)+1

We are now ready to relate the number of upcrossings to the submartingale {Y,, }.
In view of (5) and (6), we have
0.5 3
Xo+ (b—a)Uy™" < Xo+ Y, &(Xx —Xp—1) = Yos
k=1

since a < Xp and E(Y,) < E(X,,) (see Proposition 10.4.10), it follows that

a+(b—a)EWU") <E(Y,) <E(X,)

and hence that

(b—a)E(UM) <E(X,—a) <E(Xp—a)t).

With this the proof of the upcrossing lemma is complete. a
We are now in a position to prove the martingale convergence theorem.

Proof of the Martingale Convergence Theorem. As in the statement of the theorem,
let {X,};_, be a submartingale such that sup, E(X,) < +eo. We begin by showing
that liminf, X,, = limsup, X, almost surely, which we do by counting upcrossings.
For each pair a, b of real numbers such that a < b we define U d. Q 5 R
by letting U [“*b](a)) be the total number of upcrossings of [a,b] in the sequence

{Xu(®)}_,- (This differs from U,Ea’b], which only counts the upcrossings in the first
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n—+1terms of {X;(w)}7 ). Note that the sequence {U,Ea’b] +_, is increasing and has
Ul** as its limit, and also that (X, —a)* < X} 4 |a|. The monotone convergence
theorem and the upcrossing inequality, together with assumption that sup, E (X,") <
+o0, imply that

[a,b]

E(X,—a)" EXF
E(U[a,h}) _ llmE(Un ) < sup (( n a) ) < sup, n T |a|
n n

b—a - b—a

< oo

It follows that U, the number of upcrossings of [a,b], is almost surely finite.
Since

{liminfX, < limsupX,} = Uy, {U" = 4o},
n

where a and b range over all rational numbers such that a < b, we have liminf, X, =
limsup, X, almost surely. Thus lim, X, exists almost surely, as an element of
[—o0,4-o0]. We still need to show that E(|lim, X,|) < +eo and hence that lim, X,
is finite almost surely.

Note that |X,| = 2X, — X, and so if we use Fatou’s lemma (Theorem 2.4.4), plus
the fact that {X,,}, as a submartingale, satisfies E(Xy) < E(X,), we find

/ |limX, | dP — / liminf |X,|dP
. n n
< liminf/ |X,|dP < ZSup/X,f—/XodP< +oo.
n n

With this the proof of the martingale convergence theorem is complete. O
Let us return to a couple of the examples discussed above. We first look at
Example 10.4.7(c), which we can extend as follows:

Proposition 10.4.12. Let (Q,.o7,P) be a probability space, let X be an integrable
random variable on Q, let {F,} be a filtration on (Q,</,P), and let F.. =
0 (Uy%,). Then the martingale {X,} defined by X, = E(X|-%#,) converges almost
surely and in mean (i.e., in the norm || - ||1) to E(X|%=).

Proof. Since

B = [ %= [ x<|xl,
{Xu>0} {Xu>0}

the martingale convergence theorem (Theorem 10.4.8) implies that the sequence
{X,} converges almost surely, say to Xjn.

Let X.. = E(X|-%.). Part (e) of Proposition 10.4.3 implies that {X,, } is also given
by X, = E(X-|-%,). Let us show that lim, ||X;, — X.||; = 0. Suppose that € is a
positive real number. It follows from Proposition 3.4.2 and Lemma 3.4.6 that there
is a simple function X of the form Y} a;x4,;, where each A; belongs to U,.%#,, such
that | X — X.||1 < €. Since each A; is in .%, for some n, there is a positive integer N
such that X is .Zy-measurable. It follows that if n > N, then E(X¢|.-%,) = X, and
so (see also part (c) of Proposition 10.4.3)
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[1Xn = Xeol [t = [|E (Xeo| F) — Xeo11
< ||E(Xeo| Fn) — E(Xe| Fn) 11 + | E (Xe| Fn) — Xel[1 + |1 Xe — Xeo] 1
< 1Xe — Xoo|| 1 + 0+ [|Xe — X1 < 26

Since € was arbitrary, we have lim, || X;, — X.||; = 0.

We still need to show that {X,} converges to X.. almost surely. Since we have
lim, | X;, — X|[1 = 0, there is a subsequence of {X,} that converges to X.. almost
surely (see the discussion that follows the proof of Proposition 3.1.5). Since we
already know that the sequence {X,} converges almost surely to Xj,, we can
conclude that X.. = Xj;;, and hence that {X,,} converges to X.. both almost surely
and with respect to || - [|1. O

See Exercise 11 for another proof of Proposition 10.4.12.

Example 10.4.13. Let us now look at Example 10.4.7(d), which hinted at some
relationships between martingales and derivatives. Let y be the measure from that
example, and define F by F(x) = u((0,x]). The martingale convergence theorem
says that the limit

lim F(b") — F(a")

n b, —ay

exists for almost every x in (0, 1], where for each n we let (ay,by] be the interval
in &, that contains x. In case u is absolutely continuous with respect to Lebesgue
measure, Proposition 10.4.12 identifies this limit as the Radon—Nikodym derivative
of u with respect to Lebesgue measure. See Exercise 12 for the case of singular
measures.

Note that the argument in the preceding paragraph is not a derivation of the
almost everywhere differentiability of monotone functions from the martingale con-
vergence theorem—there are uncountably many possible choices for the sequence
{P,} of partitions of (0,1], and different sequences of partitions could give rise
to different sets of values where the limit does not exist. Nevertheless, as noted by
Doob [38, p. 347], these ideas can be made to work; see Chatterji [27] for the details.

O

Exercises

1. Let (Q,</,P) be a probability space, let X and Y be random variables
on (Q,.o,P) such that the joint distribution of (X,Y) on R? is absolutely
continuous with respect to Lebesgue measure, and let p: R> — R be the
density function for that joint distribution. Suppose that F: R?> — R is a Borel
measurable function such that F o (X,Y) has a finite expected value. Define a
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function f: R — R by letting

_ JF(xy)p(xy)dy
[ p(x,y)dy

for those x for which the expression above is defined and finite and by letting
f(x) = 0 for other x. Show that f o X is a version of the conditional expectation
E(Fo(X,Y)|o(X)).

fx)

. Suppose that (Q,.27, P) is a probability space and that {.%,} is a filtration on

(Q, o, P).

(a) Show that if 7; and 7, are stopping times and n is a positive integer, then
T +n, T + T, T VT, and T A Tp are stopping times.

(b) Show that if {7,} is a sequence of stopping times, then inf, 7,, sup, T,
liminf, 7,, and limsup,, 7, are stopping times.

. Let (Q, <7, P) be a probability space, let {.Z,}5 be a filtration on (Q, </, P),

and let T be a stopping time. Define .%; to be the set of all sets A in o (U%,)

such that AN {7 < n} € .%, holds for each nonnegative integer n.

(a) Show that .#; is a sub-o-algebra of ..

(b) Show that a set A belongs to .% if and only if it satisfies AN{t =n} € %,
for each nonnegative integer n, along with AN {7 = 4o} € o(UF,).

. Suppose that {X,, }7 is a sequence of independent identically distributed random

variables on (Q,.27, P). Define a filtration {.%,}5 by %y = {@,Q} and %, =
o(Xi,...,X,) forn=1, 2, .... Suppose that T is a stopping time such that
P(7 < +o0) = 1. Define a sequence {Y,} of random variables by

X o) if 7(w) < 4o, and
Yn(a)) — T+”( ) 1 ( ) + an
0 otherwise.

(a) Show that the random variables {Y,} are independent and identically
distributed, with the same distributions as the X,,’s. (Hint: Consider the
probabilities of events of the form {t=m}N{Y; € A} N{V, € A }N---N
{Y, €A,})

(b) Show that the o-algebra .%; and the process {Y, } are independent. That is,
show that the o-algebras %#; and 6(¥,,n = 1,2,...) are independent.

. (Jensen’s inequality for conditional expectations) Let ¢ : R — R be a convex

function, let (Q,.7,P) be a probability space, let Z be a sub-c-algebra of
</, and let X be a random variable on (Q,./, P) such that both X and ¢ o X
have finite expected values. Show that ¢ o E(X|#) < E(¢ 0 X|#) holds almost
surely. (Hint: Use ideas from Exercise 3.3.8 to show that there is a family .# of
functions, each of the form x +— ax + b, such that

¢(x) =sup{f(x): f €7}
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10.

11.

holds for each x in R and such that f o E(X|2) < E(¢ o X|%) holds almost
surely for each f in .#. To conclude that ¢ o E(X|%) < E(¢ o X|%) holds
almost surely, choose a countable subset .% of .% such that ¢ is the pointwise
supremum of the functions in .%y. (Why do we need .% to be countable?) The
existence of such a subset can be derived from item D.11 in the appendices.)

. Show that if {X, } is a submartingale relative to {.%,}, then it is a submartingale

relative to {0 (X0, X1,...,Xn)}-

. Show that if ({X,},{%,}) is a submartingale and if 7 is a stopping time, then

({Xean}, {#n}) is a submartingale.

. (This exercise has nothing to do with martingales or conditional expectations.

It appears here as preparation for Exercise 10.) Suppose that {a, } is a sequence

of real numbers such that the sequence {e/®} is convergent for all ¢ in some

Lebesgue measurable set of positive measure.

(a) Show that {e“} is convergent for all real ¢. (Hint: Use Proposition 1.4.10.)

(b) Show that {a,} is convergent. (Hint: Choose an interval [b,c] such that
J; lime™@ dt # 0. Then consider the sequence { [; e dt}.)

. Suppose that {X,} is a sequence of independent random variables on some

probability space. For each n define .%, and S, by %, = 0(X1,Xa,...,X,) and
S, = X1 +X>+ -+ X,,. Suppose that ¢ is a real number such that lim,, E (¢/*5")
exists and is not equal to 0. Check that for such ¢ we have E (e*5%) # 0 for all n.
Let Y, = ¢ /E(e*5") for each n.

(a) Verify that ({Y,},{%#,}) is a martingale.

(b) Conclude that the sequence {5} is almost surely convergent.

Let {X,} be a sequence of independent random variables, let ¥, X, be the
corresponding infinite series, let y,, n =1, 2, ... be the distributions of the
partial sums of the series, and let ¢y, n =1, 2, ... be the corresponding
characteristic functions. Consider the following conditions:

(1) The series Y, X, converges almost everywhere.
(ii) The series Y, X,, converges in probability.
(iii) The series Y, X, converges in distribution (that is, the sequence {u,}
converges in distribution to some probability measure).
(iv) The sequence of characteristic functions {¢,,} has a nonzero pointwise
limit on a set of positive measure. That is, lim, ¢y, () exists and is nonzero
for all ¢ in some set of positive measure.

We have seen that condition (i) implies condition (ii), condition (ii) implies
condition (iii), and condition (iii) implies condition (iv) (see Proposition 3.1.2,
Exercise 10.3.7, and Proposition 10.3.15). Now prove that condition (iv)
implies condition (i). (Hint: Use Exercises 8 and 9.)

Let ({X,},{-%,}) be a martingale on (Q, <7, P) such that the sequence {X,} is
uniformly integrable. (See Exercises 4.2.12—4.2.16.)

(a) Show that {X,} converges almost surely and in mean to some random

variable X.
(b) Show that for each n the equality X, = E(X|.%,) holds almost surely.
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Suppose that g is a finite measure on ((0,1],%((0,1])) and that {X,,} is the
martingale defined in Example 10.4.7(d). Show that if u is singular with respect
to Lebesgue measure, then lim, X, = 0 holds A-almost everywhere on (0, 1].
Let (Q,.7,P) be a probability space. In this exercise we consider sequences
{X, } and {.%,} that are indexed by the negative integers. The pair ({X, },{%u})
is called a reverse martingale if

(i) each .%, is a sub-c-algebra of <7,
(i) F,, C %, holds whenever m < n,
(iii) each X, is measurable with respect to the corresponding .%, and has a finite
expected value, and
(iv) X, = E(Xy41|-%) holds forn = -2, -3, ....

Prove the convergence theorem for reverse martingales: if ({X,},{%,}) is a
reverse martingale, then there is a function X_.. such that X_.. = lim,,—,_« X
holds almost surely and in mean. Furthermore, X_.. = E(X_1| N, %,). (Hint:
Use the upcrossing inequality, and verify and use the fact that the sequence
{X,} is uniformly integrable. See Exercises 4.2.12-4.2.16
In this exercise we derive the strong law of large numbers from the convergence
theorem for reverse martingales (see Exercise 13). Suppose that (Q,.7,P)
is a probability space and that {X;} is a sequence of independent identically
distributed random variables on (Q, <7, P) that have finite expected values. For
each positive integer n let S,, = X; + Xo + - - - + X,, and define the o-algebra .%_,
to be O-(Sn,Xn+1,Xn+2, . )
(a) Let & = o(S,). Show that E(X||.F) = E(Xz|.%) = --- = E(X,|-%) and
conclude that E(X;|-%#) = S,/n. (Hint: Using the map

o~ (X1(0),X%(o),...,X,(0))

to convert this to a calculation on R” might be useful.)

(b) Show that ({S,/n},{%,}) is a reverse martingale.

(c) Use the convergence theorem for reverse martingales, together with Kol-
mogorov’s zero—one law (see Exercise 10.2.2), to conclude that lim,, S, /n =
E(X;) holds almost surely.

10.5 Brownian Motion

In this section we look at a continuous-time stochastic process that models Brownian
motion, the random movement of a very small particle suspended in a fluid. Einstein
seems to have been one of the first to study Brownian motion mathematically, and
Norbert Wiener was the first to build a probability measure with which to describe
Brownian motion. In fact, the basic probability measure defining a Brownian motion
process is generally called a Wiener measure.
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As we noted in Sect. 10.4, a continuous-time process is a stochastic process
{X; }+er for which the index set T is a reasonable subset of R—typically an interval
such as [0,1] or [0,+e0). We will first construct a Brownian motion in which the
index set is [0, 1] and then we’ll note how to build one with index set [0, 4o).

Since one usually thinks of particles moving in three-dimensional space, it seems
natural to construct a process {X; };cr for which the variables X; have values in
R3. However, the trick of taking three independent one-dimensional process and
using them to build a three-dimensional process works. More precisely, suppose that
{Xi}1er is a one-dimensional Brownian motion on a probability space (Q,.<7,P).
Then it turns out that the three-dimensional process {X/};cr that is defined on the
product of three copies of (Q, <7, P) by X/ ((w;, @, @3)) = (X (1), X, (), X (@3))
has suitable properties. In any case, we will devote our attention to one-dimensional
Brownian motion. We begin with a precise definition.

Suppose that (Q, o7, P) is a probability space and that T is either [0, 1] or [0, +o).
A stochastic process {X; };cr with values in R is a Brownian motion'? if

(2) Xo(w) =0 for all ® in Q,

(b) for each choice of 1, t, ..., t, in T such that fy < t; < --- < t,, the increments
X, —X;,_,,i=1, ..., n, are independent, with X;, — X;, |, having distribution
N(0,#; — ;1 ), that is, a normal distribution with mean O and variance #; — f;_1,
and

(c) foreach  in Q the function X, (®): T — R defined by ¢ — X;(®) is continuous.

Given a process {X; }ser, the functions ¢ — X;(®) are called the paths of the
process. Thus condition (c) says that we are requiring the paths of a Brownian
motion process to be continuous.

Theorem 10.5.1. Let T = [0,1]. Then a one-dimensional Brownian motion with
parameter set T exists. That is, there exist a probability space (Q, o , P) and random
variables X;, t € T, on Q such that the stochastic process {X; },er is a Brownian
motion.

Proof. Let (Q,<7,P) be a probability space on which there exists a sequence
{2}, of independent random variables, each of which has a normal distribution
with mean O and variance 1. (Recall that according to Corollary 10.1.16, such a
sequence can be constructed on the probability space ([0, 1], 2([0,1]),24).) We will
use such a sequence {Z,} to build a sequence of piecewise linear approximations to
a Brownian motion process. More precisely, we will construct processes {X/"}scr,
n=20,1,...,such that

(a") for each n the paths of {X/'},cr satisfy X[/(w) = 0 for all @ and are piecewise
linear, with the paths being linear on the intervals of the form [(i —1)/2",i/2"],

13Some authors only require conditions (a) and (c) in the definition of a Brownian motion to hold
for all @ outside some P-null subset of Q.
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(b") for each n the process {X/};cr, when restricted to the points #;/n, i =0, ...,
2", looks like a Brownian motion (that is, it has independent increments whose
distributions are normal and have the required means and variances),

(¢') for almost every o the sequence of functions {t — X/'(®)}7_, converges
uniformly on [0, 1] as n approaches infinity, and

(d") these processes satisfy X/'(w) = X" (®) = X""*(w) = ... for each n and ®
and each ¢ of the form i/2".

Now assume that we have constructed such a sequence of processes {X/" };cr, and let
A be an event of probability 1 such that if @ € A, then the sequence {r — X/*(®)},
converges uniformly on 7. Define a process {X; }cr by

lim,, X" ift €T and w €A, and
X,(w)_{lm” o) i and ® an

0 ift €T and o ¢ A.

Then, in view of the uniform convergence of the paths, condition (a’) implies that
Xo = 0 and that all the paths of {X;};er are continuous. Conditions (b’) and (d’)
imply that if 7, 1, ..., #; are dyadic rationals such that 7y < #; < --- < #, then
the increments X;, — X;,_, i = 1, ..., k, are independent, with X;, — X;, | having
distribution N(0,#; —#;_1). We need to extend this to the case where the #; are not
necessarily dyadic rationals.

So suppose that 7;, i =0, ..., k, are elements of [0,1] such that tp <7} < -+ <
fy. Let us approximate these values by choosing sequences {t;,}n, i =0, ..., k,
of dyadic rationals in [0,1] such that #; = lim,;, holds for all i and #;_, < t;,
holds for all i and n. Then for each n the increments X;,, — X, | ,i=1, ..., k, are
independent, with X, —X;,_, , having distribution N (0, t'i,,, —tiq n) The increments
Xy, — Xi,_,, converge pointwise (and so'* in distribution) to the increments X, —
Xti;l, and so it follows that the increments X, —X;,_,,i=1,..., k, are independent
(see Corollary 10.3.12), with X;, — X;. | having distribution N(0,#; — #;—1). This will
complete the proof, as soon as we construct the processes {X" };er, n =0, ....

We turn to the construction of processes {X/' };er, n =0, . .. satisfying conditions
(@’)—(d"). Recall that we have a sequence {Z,,}::O of independent normal random
variables, each with mean O and variance 1. We define the process {X°},cr by
letting X () = tZo(®) hold for each @ and each ¢. This process certainly satisfies
conditions (a’) and (b’) above.

Given the process {X/" ' },c7, we form the process {X/},cr as follows. For each
t of the form i/2"~! we let X" = X"~ !. For each 1 of the form (2i+1)/2",i=0, ...,
21—l _ 1 we let

X[n _ th,1 +27(n+1)/222”*1+i'

14Use the definition of convergence in distribution, together with the dominated convergence
theorem.
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2i 2i+1 2042
2 2n o

Fig. 10.1 Constructing X” from X"~ . Solid line: path of X"~ !. Dashed line: path of X". Vertical
line: 2=("1/27,, .,

Then we use straight line segments to interpolate between the points (¢, X/’ (®)), for
which 7 has the form i/2" for some i. See Fig. 10.1. (The choice of Z,,-1; from
the sequence of Z’s is made so that the new Z’s used in the construction of {X;'};cr
are all distinct from those used earlier—that is, from those used in the construction
of {X}}icr, where k < n. The coefficient of Z,, 1; will turn out to be what is
needed to make the increments of {X;'};cr be independent and have the required
distributions.) To simplify the notation a bit, let us denote i/2" by #;, fori =0, ...,
2". Then the increment X, — X/ is given by

Xn

i1

-Xp, = x4 27(”“)/222"*1% -Xpn!

Dit1 ()]

=(1/2)X X ) 422z, X

D2 Di

=(1/2)xp L =xp ) 4272z,

Dit2

A similar calculation shows that

Xn

Diy2

— X"

Dit1

= (1/2)(x7) —xpy — =27,

12i+2 Ii
The variables (1 /2)(X,§;; —Xg:l) and 2=("*D/2z,, | . are independent, with
each having distribution N(0,1/2"*1), from which it follows that the increments
Xp.., —Xp, and X7 — X/ both have distribution N(0,1/2"). Finally, if one
calculates the characteristic function of the joint distribution of the increments
X;,, — X, one obtains the product of the characteristic functions of normal variables
with mean 0 and variance 1/2", and the independence of the increments follows.
With this we have verified conditions (a’), (b’), and (d').

We turn to condition (c), the almost sure uniform convergence of the sequence
{X"(®)}. Suppose that we can find a sequence {¢&,} of positive numbers such that

Yn€n < +eoand Y, P(A,) < 4o, where A, is defined by
A= {sup|X"—X""!| > g,}.
t
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Then the Borel-Cantelli lemma says that P({A, i.0.}) = 0; since if @ ¢ {4, i.0.},
then sup, |X"(®) — X" '(w)| < &, holds for all large n, the almost sure uniform
convergence of the sequence {r — X/'(w)};_, will follow from the condition
S En < oo

We still need to construct the sequence {&,}. In view of the way {X/"};cr was
constructed from {X/"~'},c7, we have

P(Ay) = P({sup| X" = X["| > &,})
t
_ 2y
P(oglilflzf*l |2 Zon-1,;] > &)

2117171
< ¥ P2z, 0 > &)
i=0

= 2" P(|Zy1| > 20T 2,

Since Zy,-1 has a normal distribution with mean 0 and variance 1, it follows from
Lemma 10.1.6 that

2 il 2L
PA <2n71—ef(1/2)2 & — —372 8,1.
W) <2 g, Vren
If, for example, we let g, be 271/ then > < tooand Y, P(A,) < 4oo, and the
proof is complete. a

Corollary 10.5.2. A one-dimensional Brownian motion with parameter set [0, +oo)
exists.

Proof. We will use a sequence {X,(n)},€[071], n=1, 2, ..., of independent
Brownian motion processes, which we can construct as follows. According to
Corollary 10.1.16 there exists a sequence {Z,} of independent normal random
variables, each with mean O and variance 1. Using ideas from the proof of
Corollary 10.1.14, we can divide the sequence {Z,} into a sequence of sequences
{Z,’M}m, n =1, 2, .... Finally, for each n, the construction in Theorem 10.5.1

can be applied to the sequence {Z, ,} to produce the process {X,(”)},G[OJ]; the
independence of these processes follows from the independence of the sequences
{Zymn=1,2,....

Next we define a process {Xl}t€[0,+w) by splicing together the paths of the

processes {X,(")},e[ovl]—that is, by letting X; (@) = X,(l) (w) ifr < 1, letting X; (@) =
Xl(l)(a)) —i—Xt(E)l (w)if 1 <t <2,.... More precisely, we define X; recursively by

XV (w) if0<r<1,and
Xi(0) = (n)
Xp1(0) +X, (w) ifn>landn—1<t<n.
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It is clear that the paths of {Xt}ze[o, ) are continuous and that Xy = 0. Now suppose

that we have a sequence fy, #1, ..., ty in [0,4o0) such that ;| <1f,i=1, ..., m.
Add to this sequence those integers between #y and t,, that are not in the original
sequence, forming a new sequence o, Si, ..., Sy such that s;_1 < s;,i=1,..., n.
Since {Xt(")},e[ovl], n=1,2,...,is a collection of independent Brownian motions,
the increments X;;, — X, ,,i=1, ..., n, are independent normal variables with mean
0 and the appropriate variances. It follows that the increments X;, — X, ,i=1,...,
m, are independent and have the required distributions. O

Here is an interesting fact about the paths of a Brownian motion process.

Theorem 10.5.3. Almost all the paths of a one-dimensional Brownian motion are
nowhere differentiable. More precisely, let T = [0,1] and let {X;};cr be a one-
dimensional Brownian motion on the probability space (Q, <7 ,P). Then there is a
set A in &/ such that P(A) = 0 and such that for each ® outside A the patht — X;(®)
is nowhere differentiable.

Proof. Let K be a positive integer, which we hold fixed for the moment. We will
construct a sequence {B,} of </-measurable subsets of Q such that

(a) lim, P(B,) =0, and
(b) if w is a element of Q such that the path ¢ — X, (@) is differentiable at some #,
in [0, 1], with |X; (@)| < K, then @ belongs to B, for all large n.

Suppose we have constructed such a sequence {B,}. Let Ax be Uy, Ny>m By, the set
of points @ such that @ € B,, holds for all large n. Then P(N,>,By) <lim, P(B,) =0
holds for all m, and so P(Ax) = 0. Now suppose that we let K vary through the
positive integers, and we define A by A = Ug_;Ag. Then A has P-measure 0, and it
follows from condition (b) that A contains every @ for which the path r — X;(®) is
differentiable at one or more points; in other words, A is as described in the statement
of the theorem.

Now we turn to our remaining task, the construction of a sequence'® {B,,} of sets
satisfying conditions (a) and (b) above. We once again consider K to be fixed; we do
so through the end of the proof. For each n, where n > 3, we define sets Cp, 4, k =1,
...,nby

3K
Cog = {(D? 1Xi/n (@) = X(g—1y/n(@)] < 7},

and then we define sets Dy, k=2, ...,n—1by

Dy =Chri—1NCiNGCy g1

Finally, we define sets B, by B, = C,,1 UCy, U (UZ;%D,,J{). We will show that the
sets B, satisfy (a) and (b).

150ur sequence will start with n equal to 3, rather than equal to 0 or 1.
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We begin our verification of condition (a) by estimating the probabilities of the
sets Cy k. Since the difference X;/, — X(x_1)/, is normal with mean 0 and variance
1/n, it has the same distribution as the variable Z/ \/n, where Z is a normal variable
with mean 0 and variance 1. Thus

PCos) = P X — X1yl < ) = p (12 < 2K
nk) = k/n (k—1)/n n ) \/ﬁ

3K
! e 2 dx < wi)

- Vo J- % vn'

where K; is the constant 6K /+/27. The independence of the events Co k=1,...,
n, implies that

P(Dyz) = P(Coi1)P(Cos)P(Crri1) < Ki3 /n/2.

Since By, = Cy,1 UG, U(Uj—3 Dy ), we have P(B,,) < 2K /\/n+ (n—2)K,3 /n3/2,
and lim, P(B,) = 0 follows. Thus condition (a) holds.

We turn to condition (b). Suppose that # — X;(®) is differentiable at the point #y,
and that |X; (@) < K. Let n be large enough that

X (@) — Xy ()] < K|t —10] (1)

holds when | —fo| < 2/n. It follows that if 7o € [=1, £], then

1Xi/n (@) = X(j—1)/n(@)| < K/n,

while if 7 lies in an interval of length 1/n adjacent to the interval [%, %], then

1Xi/n (@) = X(5—1)/n(@)] < [Xp/n (@) — Xiy (@)] + [ X (@) — X(k—1)/n(@)]
<K/n+2K/n=3K/n.

Now suppose that k is such that ¢y € [%, 1;‘] The estimates we have just made show
that w € G, UGy, if kis 1 or n and that @ € D, otherwise. In any case, ® € By,
and the verification of condition (b) is complete. O

Exercises

1. Suppose that we have a stochastic process {X;} with index set [0,1]NQ that
satisfies properties (a) and (b) in the definition of Brownian motion (where the
values ¢; are restricted to lie in [0, 1]N@Q). In this exercise we prove that almost all
the paths of this process are uniformly continuous on [0, 1] N Q. In the following
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exercise we use this to give another construction of a Brownian motion process
on [0,1].

(a) Show that if a and b are rational numbers that satisfy 0 <a < b <1 andif C
is a positive constant, then

P(sup{X; — X, :t € [a,b]NQ} > C) <2P(X, — X, > C). (2)

(Hint: First suppose thata <t} <, < --- <t < b and let A; be the event that
i is the smallest value of j for which X,j — X, > C. Check that

P(A;) = P(Ain{Xy — X; = 0}) + P(Ain{X, — X;, <0})
<2P(AiN{Xy — X, > C}),

and then use this estimate to prove the analogue of (2) in which the supremum
is taken as ¢ ranges over {f1,1,...,t, }. Finally, take limits as more and more
points from [a,b] N Q are considered in the supremum.)

(b) For each positive & define v(J) by

v(8) = sup{|X; — X;| : s,¢ € [0,1]NQand |t —s| < J}.

Use part (a), together with Lemma 10.1.6, to show that there exist sequences
{&n} and {5, } of positive numbers such that lim, &, = lim,, §, = 0 and

ZP(V(5,,) > &) < oo

from this derive the almost sure uniform continuity of the paths.

2. In Exercise 10.6.4 we will construct a stochastic process {X;} with index set
[0,1]NQ that satisfies properties (a) and (b) in the definition of Brownian motion.
Given that result, use Exercise 1 to give a proof of the existence of Brownian
motion on [0, 1] that is quite different from the proof in the text.

3. Let T = [0,+e0), let (Q,7,P) be a probability space, and let {X;};cr be a
Brownian motion process on (Q,./, P). Define a filtration {.% },cr by letting
F =0({X;:5<t})hold foreachzin T.

(a) Let a be a real number. Show that the function 7: Q — [0, +oo] defined by
7(®) =inf{z : X;(®) = a} is a stopping time.
(b) Suppose 7 is a stopping time. Show that if n is a positive integer, then

(o) = inf{i/2" : 1(0) < i/2"}

defines a stopping time (of course, T,(®) = +oo if T(@) = +o0).
(c) Show that if 7 is a stopping time, then X; is .%;-measurable.

4. Let T = [0,+o0) and let {X; };cr be a Brownian motion process.
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(a) Fix a value fy such that 0 < fy < 4oo and define a process {Y; };er by ¥; =
Xi 41, — Xy, for ¢ in T. Show that {Y; };cr is a Brownian motion and that it is
independent of .%;, (in other words, the o-algebras o(Y,,t €T) and F are
independent).

(b) Suppose that 7 is a stopping time that is finite almost surely, and define a
process {Y; };er by

. Xt+‘r(w)(a)) _Xr(a))(w> if T(CO) < oo, and
Y (o) = :
0 otherwise.
Show that if the stopping time 7 has only finitely many values, then {Y; };er
is a Brownian motion that is independent of .%.
(c) Show that the assumption that T has only finitely many values can be
removed from part (b). (Hint: See Exercise 3.)

10.6 Construction of Probability Measures

This section contains two constructions of possibly infinite families of random
variables with specified distributions. The first construction gives sequences of
independent random variables, while the second gives families of not necessarily
independent random variables.

Let us recall the methods we have been using to construct sequences of
independent real-valued random variables. In simple cases, where we need only
finitely many independent random variables, say with distributions uy, o, ..., Uy,
we saw that we can take the product measure iy x --- x tg on R? and then let the
random variables be the coordinate functions on R¥. On the other hand, to construct
an infinite sequence of independent real-valued random variables, we used a perhaps
awkward-seeming ad hoc construction based on the binary expansion of numbers
in the unit interval, together with a kind of inverse for distribution functions of
probability measures (see the end of Sect. 10.1).

Here we will look at the use of product spaces to construct infinite families of
random variables. Note that the random variables we construct do not need to be
real valued—in our first construction, they can have values in arbitrary measurable
spaces, while in our second construction, they can have values in rather general, but
not arbitrary, spaces.

We begin by defining the measurable spaces on which we will construct families
of random variables. Let I be an index set, and let {(€;, o7 ) }ics be an indexed family
of measurable spaces. (In typical situations the measurable spaces (Q;, %) will be
equal to one another.) The product of these measurable spaces is the measurable
space (Q, <) defined as follows: The underlying set Q is the product [;€; of the
sets {Q;};; that is, Q is the set of all functions @: I — U;Q; such that o(i) € Q;
for each i in I. For each i we define the coordinate function X;: Q — Q; by
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Xi(@) = o(i). Finally, we let o7 be the smallest -algebra on Q that makes each X;
measurable with respect to .7 and <. Equivalently, we can let 7 be the c-algebra
on € generated by the collection of all sets that have the form

{w € Q: w(i) € A; holds for each i in Ip}

for some finite subset Iy of I and some sets A; that satisfy A; € .of; for each i in .
Let us turn to the construction of sequences of independent random variables.

Proposition 10.6.1. Let {(Q;, o7, P)}icn be a family of probability spaces indexed
by the set N of positive integers, let (Q,.2/) be the product of the measurable spaces
{(Qi, %%) }ien, and for each i in N let X; be the coordinate projection from Q to Q;.
Then there is a unique probability measure P on (Q, o/ ) such that

(a) for each i the distribution of X; is P, and
(b) the random variables {X;};cn are independent.

Proof. What we need here is a product measure with infinitely many factors. In
particular, we need a measure P on (Q, o) such that for each n and each choice of
setsA;in o/, i=1, ..., n, we have

P(A) =P (A|)Py(A2) -+~ Pu(Ay),

where A is the subset
AP X XAy Xy X - 1)

of Q—that is, where A consists of those sequences {x,}j" in Q such that x; € A; holds
fori=1,...,n.

The results in Chap.5 give us a start on the construction of such measures.
Namely for each n those results give us a product measure P; X --- X P, on the
measurable space ([T} €, TI} <%). For each n let proj, be the projection of the
infinite product Q onto [T} Q;, that is, the function that takes an infinite sequence
to the sequence of its first n components. Let <7 (1) be the collection of subsets of Q
defined'® by

O = proj; ([T ).
n 1

Since {proj, ' (IT} %) }:>_, is an increasing sequence of c-algebras on Q, it follows
that 7! is an algebra of sets. Furthermore <7 = o(.27(1)). We need to transfer our
finite-dimensional product measures to .o/ (1), For that, define a function P on «7(!)
by letting

P(proj, ' (A)) = (P x --- X P,)(A)

15Note that if X and Y are sets, if f is a function from X to Y, and if € is a family of subsets of ¥,
then f~1(¢) = {f~1(C): C € ¢}.
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hold for each n and each A in []} <7 (the reader should check that P is well defined).
Certainly P has the necessary value on each rectangular set of the form given in (1).
Furthermore P is countably additive on each proj;l (IT} <) and so is at least finitely
additive on &7 (1) If we show that P is countably additive on &/ (1), then it will have
a countably additive extension to .2/ (see Exercise 1.3.5) and the proof of existence
will be complete.

We need a bit of notation for the proof of countable additivity. For each n we
want the analogue of Q, .o (1), and P, but with the products starting with (€, .<,)
and P,, rather than with (Q;,4%) and P;. Let us use the notation QM o7 and
P for such sets,!” algebras, and finitely additive probabilities. Note that Q1) = Q,
pl) = P, and /U is the algebra discussed above. Note also thatif A is a set in 427(”),
then for each x in Q,, the section A, belongs to . (n+1), Finally, let us introduce the
following temporary notation for sections of sets. Instead of writing A, we will write
A(x), and instead of writing (Ay, )x, we will write A(x,x2). Continuing in this way
gives a reasonable way to express the result of many iterations of the operation of
taking a section of a set.

We prove the countable additivity of P by showing that if {A;} is a decreasing
sequence of sets in 27(!) such that N jAj =@, then lim; P(A;) = 0. 18 We do this by
considering the contrapositive and showing that if {4;} is a decreasing sequence
of sets in .7 (!) such that lim; P(Aj) > 0, then N;A; # @. So let us fix a decreasing
sequence {A;} and a positive number € such that P(A;) > € holds for all j. We
will show that N;A; # @ by constructing an element of M;A;. Suppose that A; is
a member of the sequence {A;}. Then there is a positive integer k and a set B; in
Hlf of; such that A; = proj,;l (B;). We have (see Theorem 5.1.4)

(P <o B)(B)) = [ (P ceee BB (x0) Pr(d),
1
which translates into

P(Aj) = Jo, P@(A;(x1)) Pi(dx1).

Since {A;}; is a decreasing sequence of sets, {P>)(4;(x1))}; is (for each choice of
x1 in Q) a decreasing sequence of numbers, and we can define a function f|: Q; —
R by fi(x1) = lim; P®)(4;(x1)). The function f; is measurable, and it follows from
the dominated convergence theorem that

/ fl X1 Pl dX1 _hm/ P Pl(dxl)—hmP(A ) E.

17Be careful to note that Q) is a product space, while €, is one of (in fact, the first of) its factors.

18See Proposition 1.2.6, whose proof can easily be modified so as to apply to finitely additive
measures on algebras.
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Since P; has total mass 1, there must be an element x; of Q; such that fi(x;) > €
and hence such that P>)(A;(x;)) > € holds for all j; fix such a value x;. We can
apply the same argument to the sequence {A (x;)};, producing an element x, of Q,
such that PG) (A j(x1,x2)) > € holds for each j. By repeating this argument over and
over, we produce a sequence {x, } such that P""D(A;(xy,...,x,)) > € holds for all
j and n.

To complete our proof that P is countably additive on /"), we need to show
that N;A; # @. We do this by verifying that the sequence {x,} constructed above
belongs to N;A;. So fix a set A; in {A;}. Then there is a positive integer k and a set
B; in TT¥ % such that A; = proj, ' (B;). Note that, because of this representation of
Aj, the section A(xy,...,x;) is equal to either QK+ or &, depending on whether
(x1,...,x¢) belongs to B; or not. However, we know that Aj(xi,...,x;) is not
empty (since P*FD(A;(xq,...,x;)) > €). Thus, Aj(xq,...,x) = Q&1 and every
continuation of the finite sequence xi, ..., x; belongs to A;; in particular {x,} €A j-
Since this argument works for every j, we have {x,} € NA j» and the construction of
our product measure is complete.

We turn to the uniqueness of P. The collection of sets of the form (1) (where
A; € o7 holds for each i) is a m-system that generates .7, and so the uniqueness of
P follows from Corollary 1.6.3. O

See Exercise 2 for an extension of Proposition 10.6.1 to the case of uncountably
many random variables.

Now we turn to the construction of families of random variables that are not
necessarily independent. For the construction of such families we will once again
build a suitable measure on an infinite product space. This time, however, the
measure we construct will not be a product measure.

As before, let I be an index set and let {(€;,9%)}icr be an indexed family of
measurable spaces. Let (Q, ) and {X;};cs be the measurable space and coordinate
functions constructed at the beginning of this section. We need to look at how to
describe the dependence between our random variables. To get an idea of what to
do, let us temporarily assume that we already have a probability P on (Q, 7). We
will get a consistency condition that the joint distributions of finite collections of the
random variables {X;} must satisfy; then we will use this consistency condition as
one of the hypotheses in our existence theorem (Theorem 10.6.2).

Let .# be the collection of all nonempty finite subsets of /. For each [ in .#
consider the finite product (IT;c;, €2, [Ticy, #%). Let us call this product (€2, .97, ).
For each I let Xj,: € — Qy, be the projection of Q onto £2;. So in set-theoretic
terms, X, (o) is the restriction of the function @ to the subset Iy of its domain. It is
easy to check that for each Iy the function Xj, is measurable with respect to &/ and
o),. Let Py, be the distribution of X}, (in other words, let Py, be the joint distribution
of the random variables X;, i € Ip); thus Py, (A) = P(X[g1 (A)) holds for each A in o7}, .

We need to look at how these distributions on finite products are related to
one another. So suppose that I; and I, belong to .# and satisfy I, C Ij, and
let projj, ;, : €4, — €2, be the projection of €2, onto €. Certainly proj;, ; is



368 10 Probability

measurable and X;, = proj, ;, 0Xj,; thus P(XIQI(A)) = P(XITI (projl;lll (A))) holds
for each A in .7,. That is, the distributions on the finite product spaces satisfy the
condition

Py, = Py, proj,, -,111 forall I, I, in .# such that I, C I;. 2)

This is the consistency condition that will be one of the hypotheses in the following
theorem.

The upcoming theorem would not hold if the spaces (Q;, «%) were allowed to
be completely arbitrary (see Exercise 5). To get around that difficulty, we will
assume that for each i there is a compact metric space K; such that (Q;,.c)
is Borel isomorphic to (K;, #(K;)); in other words, there must be a bijection
fi: Qi — K; such that f; and ffl are both measurable. Such measurable spaces are
called standard."® One can check (see Exercise 1) that (R, %(R)) is isomorphic to
([0,1],4(]0,1]) and hence that (R, %(R)) is standard; from this one can conclude
that (R4, 2(R%)) is also standard.

Theorem 10.6.2 (Kolmogorov Consistency Theorem). Let [ be a nonempty set,
let {(Qy, %) }icr be an indexed family of measurable spaces, and let ¥ be the col-
lection of all nonempty finite subsets of I. As in the discussion above, define product
measurable spaces (Q,</) and {(Qy, %, ) }iye.s, plus projections Xj,: Q — Qy
and projy,  : Qp — Qp,, where Iy, 11,1 € . and I, C Iy. Let {Pi}iye.r be an
indexed family of probability measures on the spaces {(Qu,, ) }iye.r. If

(a) the measurable spaces {(Q;, <) }icr are all standard, and
(b) the measures {Pj,}cr are consistent, in the sense that they satisfy
condition (2),

then there is a unique probability measure P on (Q,./) such that for each Iy in .9
the distribution of Xy, is Py,

Proof. The hypothesis that the spaces {(Q;, %) }ics are standard implies that for
each i there is a compact metrizable topology on Q; for which #(Q;) = <. Fix
such a topology for each i. It follows from Tychonoff’s theorem (Theorem D.20)
and Proposition 7.1.13 that the product topology on Q is compact Hausdorff and
that for each Iy the product topology on £, is compact and metrizable; furthermore,
PB(Qy,) = 7, holds for each Iy in .7 (see Proposition 7.6.2). We will construct a
suitable positive linear functional L on the space C(€) of continuous real-valued
functions on €. The Riesz representation theorem (Theorem 7.2.8) then gives a
regular Borel measure i on Q such that L(f) = [ fdu holds for each f in C(Q).
We will see that the restriction of p to 7 is the measure we need.

We turn to the definition of the linear functional L. We begin by defining it on
the algebra of functions on € generated by the functions that can be written in the
form g o X; for some i in I and some g in C(;). Let us call this algebra C,. Since the
functions % in C, are finite sums of finite products of functions of the form g o X;,

19See Chap. 8, and especially Sect. 8.6, for more information about standard spaces.
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each can be written in the form 7, o Xj, for some Iy in .# and some Ay, in C(Q2;,). We
want to define L(h) for  in C, by L(h) = fQIO hy, dPy,, where h and hy, are related
by h = hy, 0 Xj,. The potential problem is that a function 4 can in general be written
in many ways, say as hy, o Xy, and as hy, o Xj,, and so we need to check that L(h)
does not depend on how £ is written.? Suppose that I; and I, are as in the previous
sentence, and let /3 = I; U ;. The relation Ay, 0 Xj, = h = hy, o X}, implies that

hll oprojll 713 = hIZ opr0j12,13 :

From this and the consistency condition (2), we find
hy, dPy, = / hy, oprojy ;. dP,
/Q/l heth Q, hOPTn 1 "

= A hIzoproj[zJ3 dpP, = A hy, dPy,

13 I

and it follows that L is well defined on C,. The Stone—Weierstrass theorem
(Theorem D.22) implies that C, is uniformly dense in C(Q2). Thus we can extend L
from C, to C(Q). It is easy to check that the extended L is positive and linear. Thus
the Riesz representation theorem gives a regular Borel measure ¢ on Q such that
L(h) = [ hdp holds for each h in C(Q). In particular, for each Iy in .# and each
in C(Q,) we have

h[o dP[O = L(h[o OX[O) = / h[o OX[0 du = / h[o d(,LLX[gl) 3)
Q]O Q QIU

Let P be the restriction of i to .o7. It follows from Eq. (3) that P, = PX 1;1. In other
words, Py, is the distribution of X, under P. Since this is true for each I in .¥, we
have constructed the required measure on (Q, 7).

We turn to the uniqueness of P. Define &/’ by &/’ = Uloe,legl (<, ). Then <’
is a m-system on Q and o (/') = &/. Suppose that P’ and P" are probabilities on
o that satisfy Py, = P’Xlg1 =P ’Xlgl for each Iy in .#. This means that P’ and P”
agree on «7’, and it follows from Corollary 1.6.3 that P’ = P”. With this the proof is
complete. O

Exercises

1. Check that the measurable spaces (R, Z(R)) and ([0,1], %4(]0,1])) are isomor-
phic. (Hint: This is an immediate consequence of some of the results in Chap. 8.

20This is where we use the consistency condition (2).
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A more elementary proof is possible: start with a homeomorphism of R onto
the open interval (0, 1), and modify it on a countable set so as to get a suitable
bijection from R onto the closed interval [0, 1].)

2. Show that Proposition 10.6.1 also holds for uncountable families of independent
random variables (i.e., for uncountable index sets). (Hint: Suppose that the
index set / is uncountable. Combine the version of Proposition 10.6.1 for
countable products with the fact that the product ¢-algebra on [];c;€2; is the
union of the inverse images (under projection) of the product ¢-algebras on the
countable products [;cz, €2i, where [y ranges over the countable subsets of /. See
Exercise 1.1.7.)

3. Let T =[0,1]. For each ¢ in T let (&, <%) = (R,%(R)), and let (Q, o) be the
product of these spaces. Show that the subset of Q consisting of the continuous
functions from 7T to R does not belong to .7.?! (Hint: See Exercise 1.1.7.)

4. Use Theorem 10.6.2 to construct a stochastic process {X; } with index set [0, 1] N
Q that satisfies properties (a) and (b) in the definition of Brownian motion (where
the values #; are restricted to lie in [0, 1] N Q). (Given this result, Exercises 10.5.1
and 10.5.2 can be used to give a proof of Theorem 10.5.1 that is less technical
than the one given in Sect. 10.5.)

5. Show that the conclusion of the Kolmogorov consistency theorem (Theo-
rem 10.6.2) may fail if the assumption that the measurable spaces (€;,.%7) are
standard is simply omitted. (Hint: Let {A,} be a decreasing sequence of subsets
of [0,1] such that A*(A,) = 1 holds for each n, but for which N,A, = &. See
Exercise 1.4.7. For each n let Q, = A, and let <7, be the trace of Z(R) on A,.
Finally, for index sets Iy of the form {1,2,...,n} define P;, on (Q,.4%,) by
letting it be the image of the trace of Lebesgue measure on A, under the mapping
x = (x,x,...,x).)

6. Assume that we modify the statement of the Kolmogorov consistency theorem
(Theorem 10.6.2) by replacing the assumption that the spaces (€;, ) are
standard with the assumption that each €; is a universally measurable subset
of some compact metric space K; (and adding the assumption that .¢7 is the trace
of A(K;) on K;). Prove that this modified version is true. (Hint: Don’t work too
hard—derive this modified version from the original version of Theorem 10.6.2.)

Notes

Kolmogorov was at the forefront of early work on measure-theoretic probability,
as was Doob a few years later; see Kolmogorov’s book on the foundations of

2IThus one often needs to say things like “There is a set A in .o/ that has probability 1 and is such
that # — X; (@) is continuous for each @ in A.” rather than less pedantic things like “The set of all
o such that 7 — X; (o) is continuous has probability 1.”
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probability [72] and Doob’s book on stochastic processes [38]. Dudley [40] gives
detailed historical citations in his end-of-chapter notes.

See Billingsley [8], Dudley [40], Klenke [71], Lamperti [79], Walsh [124], and
Williams [128] for introductions to probability that carry the ideas in this chapter
much further and are at a level appropriate for people who have completed a course
in measure theory.

Much more on dealing with convergence of probability measures using distances
(see a remark near the start of Sect. 10.3, and see Exercise 10.3.12) can be found in
Dudley [40] and Dudley [41].



Appendix A
Notation and Set Theory

See van Dalen et al. [118], Halmos [55], Hrbacek and Jech [63], or Moschovakis
[90] for further information on the topics discussed in this appendix.

A.l. Let A and B be sets. We write x € A, x ¢ A, and A C B to indicate that x is a
member of A, that x is not a member of A, and that A is a subset of B, respectively.
We will denote the union, intersection, and difference of A and B by AUB, ANB,
and A — B, respectively (of course A —B = {x: x € A and x ¢ B}). In case we are
dealing with subsets of a fixed set X, the complement of A will be denoted by A€,
thus A“ =X — A.

The empty set will be denoted by &.

The symmetric difference of the sets A and B is defined by

AAB=(A—B)U(B—A).

It is clear that A A A = @ and that A A B = A° A B°. Furthermore, x belongs to
AN (BAC) if and only if it belongs either to exactly one, or else to all three, of A,
B, and C; since a similar remark applies to (A A B) A C, we have

AA(BAC)=(AAB)AC.

Suppose that Ay, ..., A, is a finite sequence of sets. The union and intersection
of these sets are defined by

n
UA,~ = {x:x € A; for some i in therange 1, ..., n}
i=1

and
n
ﬂA,- ={x:x€A;foreachiintherange 1,...,n}
i=1
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The union and intersection of an infinite sequence {A,-}‘l."’: | of sets, written U7 | A;
and M7, A; respectively, are defined in a similar way. (To simplify notation we will
sometimes write U;A; in place of Ui |A; or U7 | A;, and M;A; in place of N?_|A; or
N Ai)
The union and intersection of an arbitrary family .7 of subsets of a set X are
defined by
U ={xe€ X :x¢€ SforsomeSin."}

and
Ny ={xeX:xeSforeachSin.7}.

De Morgan’s laws hold: (U)¢ =N{S°: S € ¥} and (NS)* =U{S°: S € ./}.
The set of all subsets of the set X is called the power set of X ; we will denote it
by Z(X).

A.2. We will use N, Ny, Z, Q, R, and C to denote the sets of positive integers, of
nonnegative integers, of integers (positive, negative, or zero), of rational numbers,

of real numbers, and of complex numbers, respectively. The subintervals [a,b] and
(a,b) of R are defined by

[a,b]={xeR:a<x<b}

and
(a,b)={xeR:a<x<b}.

Other types of intervals, such as (a,b], (—eo,b), and (—oo,4o0), are defined
analogously.

A.3. We write f: X — Y to indicate that f is a function whose domain is X and
whose values lie in Y (Y is then sometimes called the codomain of f); thus f
associates a unique element f(x) of Y to each element x of X. We will sometimes
define a function f: X — Y by using the arrow — to show the action of f on an
element of X. For example, if we are dealing with real-valued functions on R, it is
often easier to say “the function x — x +2” than to say “the function f: R — R
defined by f(x) = x+2.” Be careful to distinguish between — and - the arrow
— is used to specify the domain and codomain of a function, while the arrow — is
used to describe the action of a function on an element of its domain.

Let X, Y, and Z be sets, and consider functions g: X — Y and f: Y — Z.
Then fog: X — Z is the function defined by (f o g)(x) = f(g(x)); it is called the
composition of f and g.

Suppose that f is a function from X to Y, that A is a subset of X, and that B is a
subset of Y. The image of A under f, written f(A), is defined by

fA)={yeY:y= f(x) for somexin A},

and the inverse image of B under f, written f~!(B), is defined by

f'(B)={xeX:f(x)eB}.
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If A is a subset of the domain of f, then the restriction of f to A is the function that
agrees with f on A and is undefined elsewhere.

A function f: X —Y is injective (or one-to-one)if f(x1) # f(x2) holds whenever
x1 and x; are distinct elements of X, and is surjective (or onto) if each element of
Y is of the form f(x) for some x in X. A function is bijective if it is both injective
and surjective. A function that is injective (or surjective, or bijective) is sometimes
called an injection (or a surjection, or a bijection).

If f: X =Y is bijective, then the inverse of f, written f —1 is the function from
Y to X that is defined by letting f~'(y) be the unique element of X whose image
under f is y; thus x = £~ !(y) holds if and only if y = f(x).

Let A be a subset of the set X. The characteristic function (or indicator function)
of A is the function y4 : X — R defined by

2 (%) 1 ifx€A,
X)) =
A 0 ifxgA.

A.4. The product (or Cartesian product) of sets X and Y, written X x Y, is the set
of all ordered pairs (x,y) for whichx € X andy € Y.

A.5. Notation such as {A;};c; or {A;} will be used for an indexed family of sets;
here I is the index set and A; is the set associated to the element i of /. An infinite
sequence of sets is, of course, an indexed family of sets for which the index set is N
(or perhaps Np). The product []; A; of the indexed family of sets {A;} ¢/ is the set of
all functions a: I — U{A; : i € I'} such that a(i) € A; holds for each i in I (here one
usually writes a; in place of a(i)). If each A; is equal to the set A, we often write A’
instead of []; A;.

A.6. Sets X and Y have the same cardinality if there is a bijection of X onto Y. A
set is finite if it is empty or has the same cardinality as {1,2,...,n} for some positive
integer n; it is countably infinite if it has the same cardinality as N. An enumeration
of a countably infinite set X is a bijection of N onto X. Thus an enumeration of X
can be viewed as an infinite sequence {x,} such that

(a) each x, belongs to X, and
(b) each element of X is of the form x,, for exactly one value of n.

A set is countable if it is finite or countably infinite.
It is easy to check that every subset of a countable set is countable. We should
also note that if X and Y are countable, then

(a) X UY is countable, and
(b) X xY is countable.

Let us check (b) in the case where X and Y are both countably infinite. Let f be an
enumeration of X, and let g be an enumeration of Y. Then (m,n) — (f(m),g(n))
is a bijection of N x N onto X x ¥, and so we need only construct an enumeration
of N x N. This, however, can be done if we define #: N — N x N by following
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N
\ \
Q( 1\2:1\(3 1)
N

Fig. A.1 Enumeration of N x N

1

the path indicated in Fig. A.1, letting A(1) = (1,1), k(2) = (1,2), h(3) = (2,1),
and so forth. (Alternatively, one can define an enumeration 4 of N x N by letting
h(n) = (r+ 1,5+ 1), where r and s are the nonnegative integers appearing in the
factorization n = 2"(2s+ 1) of n into a product of a power of 2 and an odd integer.)

A similar argument can be used to show that the set Q of rational numbers is
countable.

A.7. Suppose that A and B are sets. The Schroder—Bernstein theorem says that if
A has the same cardinality as some subset of B and if B has the same cardinality
as some subset of A, then A has the same cardinality as B; this can be proved with
a version of the arguments used in Proposition G.2 and suggested in part (c) of
Exercise 8.3.5 (alternatively, see Halmos [55, Section 22]).

A.8. The set R is not countable. To say that a set has the cardinality of the
continuum, or has cardinality c, is to say that it has the same cardinality as R. The
product sets {0, 1} and RY both have the cardinality of the continuum.

The continuum hypothesis says that if A is an infinite subset of R, then either A
is countably infinite or else A has the cardinality of the continuum. K. Gddel proved
that the continuum hypothesis is consistent with the usual axioms for set theory, and
P. J. Cohen proved that it is independent of these axioms (see [30, 50]).

A.9. A relation on a set X is a property that holds for some (perhaps none, perhaps
all) of the ordered pairs in X x X. For instance, = and < are relations on R. If ~ is
arelation on X, we write x ~ y to indicate that ~ holds for the pair (x,y). A relation
~ is usually represented by (or is considered to be) the set of ordered pairs (x,y) for
which x ~ y holds. Thus a relation on X is a subset of X x X.

A.10. An equivalence relation on X is a relation ~ that is reflexive (x ~ x holds for
each x in X), symmetric (if x ~ y, then y ~ x), and transitive (if x ~y and y ~ z, then
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x ~ 7). If ~ is an equivalence relation on X, and if x € X, then the equivalence class
of x under ~ is the set E, defined by

Ec={yeX:y~ux}.

Of course, x belongs to Ey. It is easy to check that if x,y € X, then E, and Ey, are
either equal or disjoint. Thus the equivalence classes under ~ form a partition of X
(i.e., a collection of nonempty disjoint sets whose union is X).

A.11. A partial order on a set X is a relation < that is reflexive (x < x holds for
each x in X), antisymmetric (if x <y and y < x, then x = y), and transitive (if x <y
and y < z, then x < 7). A partially ordered set is a set, together with a partial order
on it. A linear order on a set X is a partial order < on X such that if x,y € X, then
either x <y or y < x. The relation < (with its usual meaning) is a linear order on R.
If X is a set with at least two elements, and if Z?(X) is the set of all subsets of X,
then C is a partial order, but not a linear order, on & (X).

If <is a partial order on a set X, then x < y means that x and y satisfy x <y but
are not equal.

Let X be a partially ordered set, with partial order <. A chain in X is a subset C
of X such that if x,y € C, then either x <y or y < x. An element x of X is an upper
bound for a subset A of X if y < x holds for each y in A; a lower bound for A is
defined analogously. An element x of X is maximal if x <y can hold only if y = x
(in other words, x is maximal if there are no elements of X larger than x; there may
be elements y of X for which neither x <y nor y < x holds).

A linear order on a set X is a well ordering if each nonempty subset of X has a
smallest element (that is, if each nonempty subset A of X has a lower bound that
belongs to A). A set X can be well ordered if there is a well ordering on X.

The set N of positive integers (with the usual order relation on it) is well ordered,
but the set Q of rationals is not. However, one can easily define a well ordering on
Q, as follows: Let f: N — Q be a bijective function (that is, an enumeration of Q),
and let f~! be its inverse. Define a binary relation < on Q by declaring that x < y
holds if and only if f~'(x) < f~!(y) (here < is the usual less-than relation on N).
Since < is a well ordering of N, < is a well ordering of Q.

A.12. The axiom of choice says that if .7 is a set of disjoint nonempty sets, then
there is a set that has exactly one element in common with each set in .. Another
(equivalent) formulation of the axiom of choice says that if {A;};/ is an indexed
family of nonempty sets, then []; A; is nonempty.

A.13. (Theorem) The following are equivalent:

(a) The axiom of choice holds.

(b) (Zorn’s lemma) If X is a partially ordered set such that each chain in X has an
upper bound in X, then X has a maximal element.

(¢) (The well-ordering theorem) Every set can be well ordered.
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A proof of Theorem A.13 can be found in [55, 63,90, 118]. (Godel and Cohen
showed that the axiom of choice is consistent with and independent of the remaining
standard axioms for set theory; again see [30,50].)

A.14. The reader will need some experience with ordinal numbers in order to do
a few of the exercises in Chaps. 7 through 9. It is enough to know a bit about the
countable ordinals and the first uncountable ordinal and to have some facility with
transfinite recursion and induction. Once again, see [55, 63,90, 118].



Appendix B
Algebra and Basic Facts About R and C

B.1. A field is a set F, together with binary operations + and - on F such that

(@ (x+y)+z=x+(y+z) holdsforallx,y, zin F,

(b) x+y=y-+xholds forall x, yin F,

(c) there is an element O of F such that x + 0 = x holds for all x in F,

(d) for each x in F there is an element —x of F such that x + (—x) =0,

(e) (x-y)-z=x-(y-z) holds forall x, y, zin F,

(f) x-y=y-xholds forall x, yin F,

(g) there is an element 1 of F, distinct from 0, such that 1 -x = x holds for all x in
F,

(h) for each nonzero x in F there is an element x~! of F such thatx-x~! = 1, and

(1) x-(y+z)=x-y+x-zholds forall x, y, zin F.

Of course, one usually writes xy in place of x - y.

B.2. An ordered field is a field F, together with a linear order < (see A.11) on F
such that

(a) if x, y, and z belong to F and if x <y, then x4z < y+z, and
(b) if x and y belong to F and satisfy x >0 and y > 0, then x-y > 0.

Let F be an ordered field, and let A be a subset of F. An upper bound of A is
an element x of F such that a < x holds for each a in A; a least upper bound (or
supremum) of A is an upper bound of A that is smaller than all other upper bounds
of A. Lower bounds and greatest lower bounds (or infima) are defined analogously.
An ordered field F is complete if each nonempty subset of F' that has an upper bound
in F has a least upper bound in F.

B.3. The field R of real numbers is a complete ordered field; it is essentially the
only complete ordered field (see Birkhoff and MacLane [9, Chapter 4], Gleason
[49, Chapters 8 and 9], or Spivak [111, Chapters 28 and 29] for a precise statement
and proof of this assertion).
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B.4. The extended real numbers consist of the real numbers, together with +oco and
—oo, We will use R or [—oo, +oo] to denote the set of all extended real numbers. The
relations —eo < x and x < +oo are declared to hold for each real number x (of course
—oo0 < +o0). We define arithmetic operations on R by declaring that

X+ (heo) = (o) +x= oo
and
X+ (—oo) = (—oo) +Xx= —o0
hold for each real x, that
and
X- (—oo) = (—oo) X = —o0
hold for each positive real x, and that
and
X (—oo) = (—oo) X = +oo

hold for each negative real x; we also declare that

(o) o (0) = o,

and
0 (+20) = (+e0) -0 = 0+ (—e0) = (—2) -0 =0,

The sums (+o0) 4 (—oo) and (—oo) 4 (+oo) are left undefined. (The products
0 (4o0), (4e0) -0, (—e0) -0, and 0 (—eo), even though left undefined in many
other areas of mathematics, are defined to be O in the study of measure theory;
this simplifies the definition of the Lebesgue integral.)

The absolute values of +-c and of —eo are defined by

The maximum and minimum of the extended real numbers x and y are often
denoted by xVy and x Ay.
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B.5. Each subset of R has a least upper bound, or supremum, and a greatest lower
bound, or infimum, in R. The supremum and infimum of a subset A of R are often
denoted by sup(A) and inf(A). Note that the set under consideration here may be
empty: each element of R is an upper bound and a lower bound of @; hence
sup(@) = —eo and inf(&) = +eo. Note also that sup(A) is a real number (rather
than +-eo or —eo) if and only if A is nonempty and bounded above; a similar remark
applies to infima.

B.6. Let {x,} be a sequence of elements of R. The limit superior of {x,}, written
{im,, x,, or lim sup,, x,, is defined by

hmxn = infsupx,.
n>k

Likewise, the limit inferior of {x,}, written lim, x, or liminf, x,, is defined by

limx,, = supinf x,.
n k n>k
The relation lim, x, < lim,, x,, holds for each sequence {x,}. The sequence {x,} has
a limit (in R) if lim,, x, = lim,, x,,; the limit of {x,} is then defined by

limx, = limx, = limx,
n n n
(note that lim,, x;, can be +oo or —oo).

In cases where each x,, along with lim,, x;,, is finite, the definition of limit given
above is equivalent to the usual €-6 (or e-N) definition: x = lim, x, if and only
if for every & there is a positive integer N such that |x, — x| < € holds for each n
larger than N. (We need our definition of limits in R, involving lim sups and lim
infs, because we need to handle infinite limits and sums, and sums some of whose
terms may include oo or —ee.)

B.7. We will occasionally need the fact that if @ and a,, n =1, 2, ..., are real (or
complex) numbers such that a = lim, a,, then a = lim,(a; + - - - + a,) /n. To verify
this, note that if 1 < M < n, then

X
iz
If we first make M so large that |a; —a| < € if i > M and then choose N so large

that (1/n) Y™, |a; — al is less than & if n > N, then (1/n) ¥, a; is within 2¢ of a if
n > max(M,N).

B.8. Let 3", x; be an infinite series whose terms belong to R. This series has a
sum if

(a) 4eo and —eo do not both occur among the terms of 37 | x4, and
(b) the sequence {X]_, xx}_, of partial sums of Y7, x; has a limit in R.
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The sum of the series Y| xx is then defined to be lim, Y}_, x; and is denoted by
=1 %% (Note that condition (a) above is needed to guarantee that each of the partial
sums Y, x is defined.)

The reader can check that the sum of the series Y ;7| x; exists and belongs to R
if and only if

(a) each term of >, x; belongs to R, and
(b) the series Y7 xi is convergent (in the sense of elementary calculus).

Suppose that Y;” | x; is an infinite series whose terms belong to [0, 4-eo]. It is
easy to see that the sum of the series Y, x; exists and is the supremum of the set
of sums ;. x;, where F ranges over the set of finite subsets of N.

B.9. A dyadic rational is a number that can be written in the form i/2" for some
integer i and some nonnegative integer n. If x is a dyadic rational that belongs to
the interval (0, 1), then x can be written in the form i/2", where n is a positive
integer and i is an odd integer such that 0 < i < 2". Such an x has a binary expansion
0.b1b; ... by, where there are exactly n bits to the right of the binary point and where
by, the rightmost of these bits, is equal to 1. Such an x also has an unending binary
expansion, where b, = 0 and all the later bits (b,+1, bp42, ... ) are equal to 1. These
dyadic rationals are the only values in the interval (0,1) that have more than one
binary expansion; to see this, suppose that x has binary expansions 0.b1b, ... and
0.cic; ..., let ng be the smallest n such that b, # ¢, (for definiteness, suppose that
buy =0 and ¢y, = 1), and check that this can happen only if by, 1 = b2 =---=1
and Cnp+1 = Cpg42 = *++ = 0.

B.10. Roughly speaking, the complex numbers are those of the form x + iy, where x
and y are real numbers and i satisfies i> = — 1. They form a field. More precisely, the
set C of complex numbers can be represented by the set of all ordered pairs (x,y) of
real numbers; addition and multiplication are then defined on C by

(x,y) + (u,v) = (x+u,y +v)

and
(x,) - (u,v) = (xu—yv,xv+ yu).
It is not hard to check that with these operations

(a) Cis afield, and

If we return to the usual informal notation and write x + iy in place of (x,y), then
assertions (a) and (b) above provide justification for the first two sentences of this
paragraph.

If z is a complex number, then the real numbers x and y that satisfy z = x + iy are
called the real and imaginary parts of z; they are sometimes denoted by R(z) and

3(z).
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The absolute value, or modulus, of the complex number z (where z = x + iy) is

defined by
|z] = /X2 + 2.

It is easy to check that |z1z2| = |z1]|z2| and |z1 + 22| < |z1] + |22 hold for all z;, 22
in C.

Limits of sequences of complex numbers and sums of infinite series whose terms
are complex are defined in the expected way. The exponential function is defined on
C by the usual infinite series:

=Y 7"/nl.
n=0
With some elementary manipulations of this series, one can check that

(@ ¥ =1,
(b) €177 = %1 ¢ for all complex z; and z,, and
(c) €" = cost +isint for all real .

B.11. Let F be a field (in this book it will generally be R or C). A vector space
over F is a set V, together with operations (vy,v;) — vi + v, from V x V to V and
(a,v)+— o-vfrom F x V to V such that

(@ (x+y)+z=x+(y+z) holdsforallx,y, zinV,

(b) x+y=y+xholdsforallx,yinV,

(c) there is an element O of V such that x+ 0 = x holds for all xin V,
(d) for each x in V there is an element —x of V such that x + (—x) =0,
(e) 1-x=xholdsforall xinV,

(f) (aB)-x=o-(B-x)holdsforall o, B in F and all xin V,

(2) (a+P)-x=0-x+B-xholds forall &, B in F and all x in V, and
(h) a-(x+y)=0a-x+o-yholds forall in F and all x, y in V.

(We will, of course, usually write o.x in place of o - x.)

Note that R¢ is a vector space over R and that C¢ is a vector space over C (it is
also a vector space over R). Note also that if F is a field, then F is a vector space
over I

A subspace (or a linear subspace) of a vector space V over F is a subset Vj of
V that is a vector space when the operations + and - are restricted to V x Vp and
F x V().

B.12. Let V| and V; be vector spaces over the same field F. A function L: V; — V,
is linear if

L{ox+ By) = otL(x) + BL(y)

holds for all o, B in F and all x, y in V|. A bijective linear map is a linear
isomorphism. It is easy to check that the inverse of a linear isomorphism is linear.

Let V be a vector space over the field F. A linear functional on 'V is a linear map
from V to the field F.
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B.13. LetV be a vector space over R or C. For each pair x, y of elements of V, the
line segment connecting x and y is the set of points that can be written in the form
tx+ (1 —1t)y for some ¢ in the interval [0, 1]. A subset C of V is convex if for each
pair x, y of points in C the line segment connecting x and y is included in C.

B.14. (We will need this and Sect. B.15 only for the discussion of the Banach—
Tarski paradox in Appendix G.) Let V be a vector space over R, andlet 7: V —V be
a linear operator. If x is a nonzero vector and A is a real number such that 7' (x) = Ax,
then x is an eigenvector of T and A is an eigenvalue of T

Note that if A is an eigenvalue of T and if x is a corresponding eigenvector,
then (T — AI)(x) =0, and so T — Al is not invertible. If the vector space V is finite
dimensional, the converse holds: A is an eigenvalue of T if and only if the operator
T — Al is not invertible.

Let T be a linear operator on the finite-dimensional vector space V, let {e;} be
a basis for V, and let A be the matrix of T with respect to {¢;}. Define p: R - R
by p(A) = det(A — AI). Then p(1) is a polynomial in A, called the characteristic
polynomial of A (or of T). The eigenvalues of T are exactly the roots of the
polynomial p(1).

B.15. The transpose of a matrix A (with components a;;) is the matrix A" whose
components are given by afj = aj;. Note that if A is a d by d matrix, if x,y € R4,
with x and y viewed as column vectors, and if (-, -) is the usual inner product function
on RY, then (Ax,y) = (x,A'y).

B.16. A group is a set G, together with a binary operation - on G such that

(@) (x-y)-z=x-(y-z) holds forall x, y, zin G,
(b) there is an element e of G such that e- x = x- e = x holds for all x in G, and

(c) for each x in G there is an element x ' of G such thatx-x ' =x"!.x=e.

A group G is commutative (or abelian) if x-y =y -x holds for all x, y in G.
One often uses +, rather than -, to denote the operation in a commutative group.
A subgroup of the group G is a subset Gy of G that is a group when the operation -
is restricted to G x Gp.

B.17. Let G| and G, be groups. A function f: Gy — G is a homomorphism if
f(x-y) = f(x)- f(y) holds for all x, y in G;. A bijective function f: G; — G, is an
isomorphism if both f and f~! are homomorphisms.
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Calculus and Topology in R?

C.1. Recall that R? is the set of all d-tuples of real numbers; it is a vector space
over R. (The d in R4 is for dimension; we write R?, rather than R”, in order to
have n available for use as a subscript.) Let x = (x1,...,x;) and y = (y1,...,yq) be
elements of R?. The norm of x is defined by

J 1/2
ol = (zx%)
-1

and the distance between x and y is defined to be ||x —y||.

C.2. If x € R? and if r is a positive number, then the open ball B(x,r) with center x
and radius r is defined by

B(x,r)={yeR": |y—xl <r}.

A subset U of R? is open if for each x in U there is a positive number r such that
B(x,r) CU. A subset of R? is closed if its complement is open. A point x in RY is a
limit point of the subset A of RY if for each positive r the open ball B(x,r) contains
infinitely many points of A (this is equivalent to requiring that for each positive r the
ball B(x,r) contain at least one point of A distinct from x). It is easy to check that a
subset of R is closed if and only if it contains all of its limit points.

If A is a subset of R?, then the closure of A is the set A (or A™) that consists of
the points in A, together with the limit points of A; A is closed and is, in fact, the
smallest closed subset of R? that includes A.

C.3. A subset A of R is bounded if there is a real number M such that ||x|| <M
holds for each x in A.

C.4. (Proposition) Let U be an open subset of R. Then there is a countable
collection % of disjoint open intervals such that U = UZ .
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Proof. Let % consist of those open subintervals / of U that are maximal, in the
sense that the only open interval J that satisfies I C J C U is [ itself. Of course
UZ% C U. One can verify the reverse inclusion by noting that if x € U, then the
union of those open intervals that contain x and are included in U is an open interval
that contains x and belongs to %/. It is easy to check (do so) that the intervals in %
are disjoint from one another. If for each I in % we choose a rational number x;
that belongs to 1, then (since the sets in %/ are disjoint from one another) the map
I — x; is an injection; thus %/ has the same cardinality as some subset of QQ, and so
is countable (see item A.6 in Appendix A). O

C.5. A sequence {x,} of elements of RY converges to the element x of R? if
lim,, ||x, — x|| = 0; x is then called the limit of the sequence {x,} (note that here
xand xj, X, ... are elements of R?; in particular, x1, x5, ... are not the components
of x). A sequence in RY is convergent if it converges to some element of R¢.

C.6. Let A be a subset of RY, and let xo belong to A. A function f: A = R is
continuous at xq if for each positive number € there is a positive number o such
that | f(x) — f(xo)| < € holds whenever x belongs to A and satisfies ||x — x|| < J;
f is continuous if it is continuous at each point in A. The function f: A — R is
uniformly continuous if for each positive number € there is a positive number & such
that | f(x) — f(’)| < € holds whenever x and x’ belong to A and satisfy ||x —x'|| < &.
A function f: A — R is continuous on (or uniformly continuous on) the subset Ag
of A if the restriction of f to Ay is continuous (or uniformly continuous).

C.7. Let A be a subset of R?, let f be a real- or complex-valued function on
A, and let a be a limit point of A. Then f(x) has limit L as x approaches a,
written lim,_,, f(x) = L, if for every positive € there is a positive 0 such that
| £ (x) — f(a)| < € holds whenever x is a member of A that satisfies 0 < ||x—al| < 8.

One can check that lim,_, f(x) = L if and only if lim, f(x,) = L for every
sequence {x,} of elements of A, all different from a, such that lim,x, = a. (Let
us consider the more difficult half of that assertion, namely that if lim, f(x,) =L
for every sequence {x,} of elements of A, all different from a, such that lim, x,, = a,
then lim,_,, f(x) = L. We prove this by proving its contrapositive. So assume that
lim,_,, f(x) = Lis not true. Then there exists a positive € such that for every positive
0 there is a value x in A such that 0 < ||x —a|| < 6 and |f(x) — L| > €. If for each
n we let § = 1/n and choose an element x,, of A such that 0 < ||x, —al| < 1/n and
| f(xn) — L| > €, we will have a sequence {x,} of elements of A, all different from a,
that satisfy lim, x, = a but not lim,, f(x,) = L.)

C.8. Let A be a subset of R?. An open cover of A is a collection .# of open subsets
of R? such that A C U.¥. A subcover of the open cover .7 is a subfamily of . that
is itself an open cover of A.

Proofs of the following results can be found in almost any text on advanced
calculus or basic analysis (see, for example, Bartle [4], Hoffman [60], Rudin [104],
or Thomson et al. [117]).
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C.9. (Theorem) Let A be a closed bounded subset of RY. Then every open cover
of A has a finite subcover.

Theorem C.9 is often called the Heine—Borel theorem.

C.10. (Theorem) Let A be a closed bounded subset of RY. Then every sequence of
elements of A has a subsequence that converges to an element of A.

C.11. It is easy to check that the converses of Theorems C.9 and C.10 hold: if A
satisfies the conclusion of Theorem C.9 or of Theorem C.10, then A is closed and
bounded. The subsets of R? that satisfy the conclusion of Theorem C.9 (hence the
closed bounded subsets of RY) are often called compact. See also Appendix D.

C.12. (Theorem) Let C be a nonempty closed bounded subset of RY, and let
f: C— R be continuous. Then

(a) f is uniformly continuous on C, and
(b) f is bounded on C. Moreover, there are elements xy and x; of C such that
f(xo0) < f(x) < f(x1) holds at each x in C.

C.13. (The Intermediate Value Theorem) Let A be a subset of R, and let f: A —
R be continuous. If the interval [xo,x1] is included in A, then for each real number y
between f(xo) and f(x1) there is an element x of [xo,x1] such that y = f(x).

C.14. (The Mean Value Theorem) Let a and b be real numbers such that a < b.
If f: [a,b] — R is continuous on the closed interval [a,b] and differentiable at
each point in the open interval (a,b), then there is a number ¢ in (a,b) such that

f(b) = f(a) = f'(c)(b—a).
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Topological Spaces and Metric Spaces

A number of the results in this appendix are stated without proof. For additional
details, the reader should consult a text on point-set topology (for example, Kelley
[69], Munkres [91], or Simmons [109]).

D.1. Let X be a set. A fopology on X is a family & of subsets of X such that

(a) XeO,

(b) €0,

(c) if .7 is an arbitrary collection of sets that belong to &, then U.¥ € &, and
(d) if .~ is a finite collection of sets that belong to &, then N € 0.

A topological space is a pair (X, 0'), where X is a set and € is a topology on X (we
will generally abbreviate the notation and simply call X a topological space). The
open subsets of X are those that belong to &. An open neighborhood of a point x in
X is an open set that contains x.

The collection of all open subsets of R (as defined in Appendix C) is a topology
on R4; it is sometimes called the usual topology on R,

D.2. Let (X, ) be a topological space. A subset F of X is closed if F€ is open.
The union of a finite collection of closed sets is closed, as is the intersection of an
arbitrary collection of closed sets (use De Morgan’s laws and parts (c) and (d) of the
definition of a topology). It follows that if A C X, then there is a smallest closed set
that includes A, namely the intersection of all the closed subsets of X that include A;
this set is called the closure of A and is denoted by A or by A~. A point x in X is a
limit point of A if each open neighborhood of x contains at least one point of A other
than x (the point x itself may or may not belong to A). A set is closed if and only if
it contains each of its limit points. The closure of the set A consists of the points in
A, together with the limit points of A.

D.3. Let (X, 0) be a topological space, and let A be a subset of X. The interior of
A, written A°, is the union of the open subsets of X that are included in A; thus A is
the largest open subset of A. It is easy to check that A° = ((A°)™)°.
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D4. Let (X,0) be a topological space, let Y be a subset of X, and let Oy be the
collection of all subsets of Y that have the form Y NU for some U in €. Then Oy is
a topology on Y it is said to be inherited from X, or to be induced by ©. The space
(Y, Oy) (or simply Y) is called a subspace of (X, 0) (or of X).

Note that if Y is an open subset of X, then the members of Oy are exactly the
subsets of Y that are open as subsets of X. Likewise, if Y is a closed subset of X,
then the closed subsets of the topological space (Y, Oy) are exactly the subsets of ¥
that are closed as subsets of (X, O).

D.S. Let X and Y be topological spaces. A function f: X — Y is continuous if
f~Y(U) is an open subset of X whenever U is an open subset of Y. It is easy to
check that f is continuous if and only if f~!(C) is closed whenever C is a closed
subset of Y. A function f: X — Y is a homeomorphism if it is a bijection such
that f and f~! are both continuous. Equivalently, f is a homeomorphism if it is a
bijection such that f~!(U) is open exactly when U is open. The spaces X and Y are
homeomorphic if there is a homeomorphism of X onto Y.

D.6. We will on occasion need the following techniques for verifying the continuity
of a function. Let X and Y be topological spaces, and let f be a function from X to
Y. If .7 is a collection of open subsets of X such that X = U., and if for each U
in . the restriction fy of f to U is continuous (as a function from U to Y), then
f is continuous (to prove this, note that if V is an open subset of Y, then f -1 (V) is
the union of the sets f; 1 (V), and so is open). Likewise, if .7 is a finife collection
of closed sets such that X = U.¥, and if for each C in . the restriction of f to C is
continuous, then f is continuous.

D.7. If 0 and 0, are topologies on the set X, and if &) C &, then 0 is said to be
weaker than 0.

Now suppose that <7 is an arbitrary collection of subsets of the set X. There exist
topologies on X that include .o (for instance, the collection of all subsets of X). The
intersection of all such topologies on X is a topology; it is the weakest topology on
X that includes %7 and is said to be generated by <7 .

We also need to consider topologies generated by sets of functions. Suppose that
X is a set and that {f;} is a collection of functions, where for each i the function
fi maps X to some topological space ¥;. A topology on X makes all these functions
continuous if and only if ffl(U ) is open (in X) for each index i and each open
subset U of Y;. The topology generated by the family {f;} is the weakest topology
on X that makes each f; continuous, or equivalently, the topology generated by the

sets £, (U).

D.8. A subset A of a topological space X is dense in X if A = X. The space X is
separable if it has a countable dense subset.

D.9. Let (X, ) be a topological space. A collection % of open subsets of X is a
base for (X, 0) if for each V in € and each x in V there is a set U that belongs to
% and satisfies x € U C V. Equivalently, % is a base for X if the open subsets of
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X are exactly the unions of (possibly empty) collections of sets in %. A topological
space is said to be second countable, or to have a countable base, if it has a base
that contains only countably many sets.

D.10. It is easy to see that if X is second countable, then X is separable (if 7 is a
countable base for X, then we can form a countable dense subset of X by choosing
one point from each nonempty set in %/). The converse is not true. (Construct a
topological space (X, 0) by letting X = R and letting & consist of those subsets A
of X such that either A = @& or 0 € A. Then {0} is dense in X, and so X is separable;
however, X is not second countable. Exercise 7.1.8 contains a more interesting
example.)

D.11. If X is a second countable topological space, and if ¥ is a collection of open
subsets of X, then there is a countable subset % of ¥ such that U%y =UY . (Let
be a countable base for X, and let % be the collection of those elements U of %
for which there is a set in ¥ that includes U. For each U in % choose an element
of ¥ that includes U. The collection of sets chosen is the required subset of 7".)

D.12. A topological space X is Hausdorff if for each pair x,y of distinct points in
X there are open sets U,V suchthatx e U,y € V,andUNV = &.

D.13. Let A be a subset of the topological space X. An open cover of A is a
collection . of open subsets of X such that A C U.”. A subcover of the open
cover . is a subfamily of .# that is itself an open cover of A. The set A is compact
if each open cover of A has a finite subcover. A topological space X is compact if
X, when viewed as a subset of the space X, is compact.

D.14. A collection % of subsets of a set X satisfies the finite intersection property
if each finite subcollection of % has a nonempty intersection. It follows from
De Morgan’s laws that a topological space X is compactif and only if each collection
of closed subsets of X that satisfies the finite intersection property has a nonempty
intersection.

D.15. If X and Y are topological spaces, if f: X — Y is continuous, and if K is a
compact subset of X, then f(K) is a compact subset of Y.

D.16. Every closed subset of a compact set is compact. Conversely, every compact
subset of a Hausdorff space is closed (this is a consequence of Proposition 7.1.2; in
fact, the first half of the proof of that proposition is all that is needed in the current
situation).

D.17. Itfollows from D.15 and D.16 that if X is a compact space, if Y is a Hausdorff
space, and if f: X — Y is a continuous bijection, then f is a homeomorphism.

D.18. If X is a nonempty compact space, and if f: X — R is continuous, then f is
bounded and attains its supremum and infimum: there are points xo and x; in X such
that f(xp) < f(x) < f(x1) holds at each x in X.
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D.19. Let {(Xq, Oy)} be an indexed family of topological spaces, and let [T, Xq
be the product of the corresponding indexed family of sets {X} (see A.5). The
product topology on [], X, is the weakest topology on [],, X, that makes each of the
coordinate projections 75 : [, X — Xp continuous (the projection g is defined by
mg(x) = xp); see D.7. If % is the collection of sets that have the form [, Ug for
some family {Uy } for which

(a) Uy € Oy holds for each o and
(b) Uy = Xq holds for all but finitely many values of ¢,

then 7 is a base for the product topology on [],, X

D.20. (Tychonoff’s Theorem) Ler {(Xy, Oy )} be an indexed collection of topo-
logical spaces. If each (Xo, O) is compact, then [1y, X, with the product topology,
is compact.

D.21. Let X be a set. A collection .# of functions on X separates the points of
X if for each pair x, y of distinct points in X there is a function f in .% such that
f(x) # f(y). A vector space .% of real-valued functions on X is an algebra if fg
belongs to .# whenever f and g belong to .# (here fg is the product of f and g,
defined by (fg)(x) = f(x)g(x)). Now suppose that .Z is a vector space of bounded
real-valued functions on X. A subset of .F is uniformly dense in % if it is dense in .7
when .Z is given the topology induced by the uniform norm (see Example 3.2.1(f)
in Sect. 3.2).

D.22. (Stone—Weierstrass Theorem) Let X be a compact Hausdorff space. If A
is an algebra of continuous real-valued functions on X that contains the constant
functions and separates the points of X, then A is uniformly dense in the space C(X)
of continuous real-valued functions on X.

D.23. (Stone-Weierstrass Theorem) Let X be a locally compact' Hausdorff
space, and let A be a subalgebra of Cy(X) such that

(a) A separates the points of X, and
(b) for each x in X there is a function in A that does not vanish at x.

Then A is uniformly dense in Cy(X).

Theorem D.23 can be proved by applying Theorem D.22 to the one-point
compactification of X.

D.24. Suppose that X is a set and that < is a linear order on X. For each x in X
define intervals (—oo,x) and (x,40) by
(—oox) ={z€X:z2<x}

and
(x,4o0) ={z€X 1 x <z}

Locally compact spaces are defined in Sect. 7.1, and Cy(X) is defined in Sect. 7.3.
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The order topology on X is the weakest topology on X that contains all of these
intervals. The set that consists of these intervals, the intervals of the form {z € X :
x < z <y}, and the set X, is a base for the order topology on X.

D.25. Let X be a set. A metric on X is a function d: X x X — R that satisfies

(a) d(x,y) >0,

(b) d(x,y)=0if and only if x =y,
(¢) d(x,y) =d(y,x), and

(d) d(x,z) <d(x,y) +d(y,2)

for all x, y, and z in X. A metric space is a pair (X,d), where X is a set and d is a
metric on X (of course, X itself is often called a metric space).
Let (X,d) be a metric space. If x € X and if r is a positive number, then the set
B(x,r) defined by
B(x,r)={yeX:d(x,y) <r}

is called the open ball with center x and radius r; the closed ball with center x and
radius r is the set
{yeX:dx,y) <r}.

A subset U of X is open if for each x in U there is a positive number r such that
B(x,r) CU. The collection of all open subsets of X is a topology on X it is called the
topology induced or generated by d.> The open balls form a base for this topology.

D.26. A topological space (X, &) (or atopology ) is metrizable if there is a metric
d on X that generates the topology ’; the metric d is then said to metrize X (or
(X,0)).

D.27. Let X be a metric space. The diameter of the subset A of X, written diam(A),
is defined by
diam(A) = sup{d(x,y) : x,y € A}.

The set A is bounded if diam(A) is not equal to 4. The distance between the point
x and the nonempty subset A of X is defined by

d(x,A) =inf{d(x,y) : y € A}.
Note that if x; and x, are points in X, then
d(x1,A) <d(x1,x) +d(x2,A).
Since we can interchange the points x| and x; in the formula above, we find that

|d(x17A) - d(x27A)| < d(x17x2)7

2When dealing with a metric space (X,d), we will often implicitly assume that X has been given
the topology induced by d.
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from which it follows that x — d(x,A) is continuous (and, in fact, uniformly
continuous).

D.28. Each closed subset of a metric space is a G5, and each open subset is an Fg.
To check the first of these claims, note that if C is a nonempty closed subset of the
metric space X, then

C:ﬂ{xeX:d(x,C)<%}7

and so C is the intersection of a sequence of open sets. Now use De Morgan’s laws
(see Sect. A.1) to check that each open set is an Fg.

D.29. Let x and xi, xp, ... belong to the metric space X. The sequence {x,}
converges to x if lim, d(x,,x) = 0; if {x,} converges to x, we say that x is the limit
of {x,}, and we write x = lim,, x,,.

D.30. Let X be a metric space. It is easy to check that a point x in X belongs to the
closure of the subset A of X if and only if there is a sequence in A that converges
to x.

D.31. Let (X,d) and (Y,d") be metric spaces, and give X and Y the topologies
induced by d and d’ respectively. Then a function f: X — Y is continuous (in the
sense of D.5) if and only if for each xg in X and each positive number &€ there is
a positive number & such that d’(f(x), f(xo)) < € holds whenever x belongs to X
and satisfies d(x,xp) < 0. The observation at the end of C.7 generalizes to metric
spaces, and a small modification of the argument given there yields the following
characterization of continuity in terms of sequences: the function f is continuous if
and only if f(x) = lim, f(x,) holds whenever x and xj, x, ... are points in X such
that x = lim,, x;,.

D.32. We noted in D.10 that every second countable topological space is separable.
The converse holds for metrizable spaces: if d metrizes the topology of X, and if D
is a countable dense subset of X, then the collection consisting of those open balls
B(x,r) for which x € D and r is rational is a countable base for X.

D.33. If X is a second countable topological space, and if Y is a subspace of X, then
Y is second countable (if % is a countable base for X, then {UNY : U € Z } is a
countable base for Y). It follows from this, together with D.10 and D.32, that every
subspace of a separable metrizable space is separable.

D.34. Let (X,d) be a metric space. A sequence {x,} of elements of X is a Cauchy
sequence if for each positive number € there is a positive integer N such that
d(xm,xn) < € holds whenever m > N and n > N. The metric space X is complete if
every Cauchy sequence in X converges to an element of X.

D.35. (Cantor’s Nested Set Theorem) Let X be a complete metric space. If {A, }
is a decreasing sequence of nonempty closed sets of X such that lim, diam(A,) =0,
then N>_| A, contains exactly one point.
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Proof. For each positive integer n choose an element x, of A,. Then {x,} is a
Cauchy sequence whose limit belongs to N°_, A,,. Thus N>_, A, is not empty. Since
lim, diam(A,) = 0, the set M_,A, cannot contain more than one point. O

D.36. A subset A of a topological space X is nowhere dense if the interior of A is
empty.

D.37. (Baire Category Theorem) Let X be a nonempty complete metric space (or
a nonempty topological space that can be metrized with a complete metric). Then
X cannot be written as the union of a sequence of nowhere dense sets. Moreover; if
{An} is a sequence of nowhere dense subsets of X, then (U,A, )¢ is dense in X.

D.38. The metric space (X,d) is totally bounded if for each positive € there is a
finite subset S of X such that

X = J{B(x,e): xe S}.

D.39. (Theorem) Let X be a metric space. Then the conditions

(a) the space X is compact,

(b) the space X is complete and totally bounded, and

(c) each sequence of elements of X has a subsequence that converges to an
element of X

are equivalent.
D.40. (Corollary) Each compact metric space is separable.

Proof. Let X be a compact metric space. Theorem D.39 implies that X is totally
bounded, and so for each positive integer n we can choose a finite set S, such that
X =U{B(x,1/n) :x € S,}. The set U, S, is then a countable dense subset of X. O

D.41. Note, however, that a compact Hausdorff space can fail to be second
countable and can even fail to be separable (see Exercises 7.1.7,7.1.8, and 7.1.10).

D.42. Let {X,} be a sequence of nonempty metrizable spaces, and for each n let
dy, be a metric that metrizes X,,. Let x and y denote the points {x,} and {y,} of the
product space [],, X;,- Then the formula

d(x,y) = Z%min(l,dn(xn,yn))

defines a metric on [], X,, that metrizes the product topology. This fact, together
with Theorem D.39, can be used to give a fairly easy proof of Tychonoff’s theorem
for countable families of compact metrizable spaces.



Appendix E
The Bochner Integral

Let (X,<7) be a measurable space, let E be a real or complex Banach space (that
is, a Banach space over R or C), and let #(FE) be the c-algebra of Borel subsets
of E (that is, let Z(F) be the c-algebra on E generated by the open subsets of E).
We will sometimes denote the norm on E by |- |, rather than by the more customary
I - ||- This will allow us to use || - || for the norm of elements of certain spaces of
E-valued functions; see, for example, formula (7) below. A function f: X — E is
Borel measurable if it is measurable with respect to <7 and H(E), and is strongly
measurable if it is Borel measurable and has a separable range (here by the range
of f we mean the subset f(X) of E). The function f is simple if it has only finitely
many values. Of course, a simple function is strongly measurable if and only if it is
Borel measurable.

It is easy to see that if f is Borel measurable, then x — | f(x)| is <7-measurable
(use Lemma 7.2.1 and Proposition 2.6.1).

Note that if E is separable, then every E-valued Borel measurable function is
strongly measurable. On the other hand, if E is not separable and if (X,/) =
(E,#(E)), then the identity map from X to E is Borel measurable, but is not
strongly measurable.

E.1. (Proposition) Let (X,</) be a measurable space, and let E be a real or
complex Banach space. Then

(a) the collection of Borel measurable functions from X to E is closed under the
formation of pointwise limits, and

(b) the collection of strongly measurable functions from X to E is closed under the
formation of pointwise limits.

Proof. Part (a) is a special case of Proposition 8.1.10, and so we can turn to part (b).

Let {f,} be a sequence of strongly measurable functions from X to E, and
suppose that { f,,} converges pointwise to f. It follows from the separability of the
sets f,(X),n=1, 2, ..., that U, f,(X) is separable, that the closure of U, f,(X) is
separable, and finally that f(X) is separable (see D.33). Since f is Borel measurable
(part (a)), the proof is complete. O

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 397
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E.2. (Proposition) Ler (X,) be a measurable space, let E be a real or complex
Banach space, and let f: X — E be strongly measurable. Then there is a sequence
{fu} of strongly measurable simple functions such that

flx)= li’rln Ja(x)

and

()| <1/ (%)

,forn=1,2,...,
hold at each x in X.

Proof. We can certainly assume that f(X) contains at least one nonzero element of
E. Let C be a countable dense subset of f(X), let C™ be the set of rational multiples
of elements of C, and let {y, } be an enumeration of C™~. We can assume that y; = 0.
It is easy to check (do so) that

for each y in f(X) and each positive number € there is a term
ym of {yn} that satisfies |y,,| < |y| and |y, —y| < €. (1)

For each x in X and each positive integer n define a subset A, (x) of E by

An(x) ={yj:j<nand|y;| <[f(x)[}.

Since y; = 0, each A, (x) is nonempty.
We now construct the required sequence {f, } by letting f;,(x) be the element of
Ap(x) that lies closest to f(x) (in case

|f(x) —yj| =inf{|f(x) —yi| : yi € Au(x)} (2)

holds for several elements y; of A,(x), let f,(x) be yj,, where jj is the smallest
value of j for which y; belongs to A,(x) and satisfies (2)). It is clear that each f,
is a simple function and that |f;,(x)| < |f(x)| holds for each n and x. Since the sets
{x € X : fu(x) = y;} can be described by means of inequalities involving |f(x)],
lyil, i=1, ..., n,and |f(x) —yi|, i =1, ..., n, each f, is strongly measurable.
Finally, observation (1) implies that {f,} converges pointwise to f (if y,, satisfies
the inequalities |yn| < |f(x)] and |y, — f(x)] < €, then |f,(x) — f(x)| < € holds
whenever n > m). O

Let us note two consequences of Propositions E.1 and E.2. The first is immediate:
a function from X to E is strongly measurable if and only if it is the pointwise limit
of a sequence of Borel (or strongly) measurable simple functions. The second is
given by the following corollary (see, however, Exercise 2).

E.3. (Corollary) Let (X,.<7) be a measurable space, and let E be a real or complex
Banach space. Then the set of all strongly measurable functions from X to E is a
vector space.
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Proof. Suppose that f and g are strongly measurable and that a and b are real
(or complex) numbers. Choose sequences {f,} and {g,} of strongly measurable
simple functions that converge pointwise to f and g respectively (Proposition E.2).
Since {af, + bg,} converges pointwise to af + bg, and since each af, + bg, is
strongly measurable (it is simple and each of its values is attained on a measurable
set), Proposition E.1 implies that af + bg is strongly measurable. O

We turn to the integration of functions with values in a Banach space. Let
(X,47,u) be a measure space, and let E be a real or complex Banach space.
A function f: X — E is integrable (or strongly integrable, or Bochner integrable)
if it is strongly measurable and the function x — | f(x)| is integrable.

The integral of such functions is defined as follows. First suppose that f: X — E
is simple and integrable. Let a1, ..., a, be the nonzero values of f, and suppose that
these values are attained on the sets Ay, ..., A,. Then Proposition 2.3.10, applied to
the real-valued function x — | f(x)|, implies that each A; has finite measure under p.
Thus the expression Y. | a;1t(A;) makes sense; we define the integral of f, written
[ fdu, to be this sum. It is easy to see that

[ rau < [ir1an )

It is also easy to see that if f and g are simple integrable functions and a and b are
real (or complex) numbers, then af + bg is a simple integrable function, and

[tar+bg)du=a [ rau-+b [ean. 4

Now suppose that f is an arbitrary integrable function. Choose a sequence {f, }
of simple integrable functions such that f(x) = lim, f,(x) holds at each x in X
and such that the function x — sup,, | f,;(x)| is integrable (see Proposition E.2). The
dominated convergence theorem for real-valued functions (Theorem 2.4.5) implies
that lim,, [ |f, — f|du = 0, and hence that limy, , [ |fin — fu|dpt = 0. Thus (see (3)
and (4)) {/ f.du} is a Cauchy sequence in E, and so is convergent. The integral
(or Bochner integral) of f, written [ fdy, is defined to be the limit of the sequence
{[ fudu}. (tis easy to check that the value of [ fdu does not depend on the choice
of the sequence {f; }: if {g,} is another sequence having the properties required of
{fu}, then lim,, [ |f, — gn|du = 0, from which it follows that lim,, [ (f, — g»)du =0
and hence that lim,, [ f,, du = lim, [ g,du.)

Let us note a few basic properties of the Bochner integral.

E.4. (Proposition) Ler (X, , 1) be a measure space, and let E be a real or
complex Banach space. Suppose that f,g: X — E are integrable and that a and
b are real (or complex) numbers. Then af + bg is integrable, and

ISee Exercise 4 for an indication of another standard definition of Bochner integrability.



400 E The Bochner Integral

[tar+bedu=a [ rau+b [ gan. 5)

Proof. The integrability of af + bg follows from Corollary E.3 and the inequality
[(af +bg)(x)| < |a||f(x)|+ |b||g(x)]- Let {f,} and {g,} be sequences of simple
integrable functions that converge pointwise to f and g respectively and are such that
X+ sup,, | fn(x)] and x — sup,, |g,(x)| are integrable. Then the functions af;, + bg,
are simple and integrable, and they satisfy

/(afn+bgn)du:a/fndu+b/gndu ©)

(see (4)). Furthermore x — sup,, |(af, + bgn)(x)| is integrable, and so according to
the definition of the integral, we can take limits in (6), obtaining (5). O

E.5. (Proposition) Ler (X, 1) be a measure space, and let E be a real or
complex Banach space. If f: X — E is integrable, then | [ fdu| < [|f|du.

Proof. Let f be an integrable function, and let {f,} be a sequence of simple
integrable functions such that sup,, | f,(x)| < |f(x)| and f(x) = lim, f,(x) hold at
each x in X (Proposition E.2). Then

’/fndu’ < [1filu < [\flan

(see (3)); since [ fdu =lim, [ f,du, the proposition follows. O

The dominated convergence theorem can be formulated as follows for E-valued
functions.

E.6. (Theorem) Let (X, 1) be a measure space, let E be a real or complex
Banach space, and let g be a |0,+oo]-valued integrable function on X. Suppose that
f and fi, fo, ... are strongly measurable E-valued functions on X such that the
relations

Sflx)= li,lfl Ja(x)

and

Ifn(x)] < gx), forn=1,2,...,
hold at almost every x in X. Then f and fi, f2, ... are integrable, and [ fdu =
lim, [ f,du.

Proof. The integrability of f and f, f>, ... is immediate. Since |f,, — f| < 2g holds
almost everywhere, the dominated convergence theorem for real-valued functions
(Theorem 2.4.5) implies that lim,, [ |f, — f|du = 0. In view of Propositions E.4
and E.5, this implies that [ fdu = lim, [ f,du. O

Let Z!(X, ./, u,E) be the set of all E-valued integrable functions on X. Then
LY (X, o ,1u,E) is a vector space (see Proposition E.4). It is easy to check that the
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collection L' (X, .o, u, E) of equivalence classes (under almost everywhere equality)
of elements of .Z' (X, .27, i, E) can be made into a vector space in the natural way,
and that the formula

£l = [ If1dn ™

induces anormon L' (X,.«7, i, E) (and, of course, a seminorm on .2 (X,.«7, u, E)).
The proof of Theorem 3.4.1 can be modified so as to show that L! (X, o/ ,u,E) is
complete under || - ||;.

One often finds it useful to be able to deal with vector-valued functions in terms
of real- (or complex-) valued functions. For this we need to recall the Hahn—Banach
theorem.

E.7. (Hahn-Banach Theorem) Let E be a real or complex normed linear space,
let F be a linear subspace of E, and let @y be a continuous linear functional on
F. Then there is a continuous linear functional ¢ on E such that ||¢| = ||@o|| and
such that @q is the restriction of @ to F. In other words, @g can be extended to a
continuous linear functional on all of E without increasing its norm.

A proof of the Hahn—Banach theorem can be found in almost any basic text on
functional analysis (see, for example, Conway [31], Kolmogorov and Fomin [73],
Royden [102], or Simmons [109]).

We also need the following consequence of the Hahn—Banach theorem.

E.8. (Corollary) Let E be a real or complex normed linear space that does not
consist of 0 alone. Then for each y in E there is a continuous linear functional ¢ on
E such that ||@|| =1 and o(y) = ||y||-

Proof. Let y be a nonzero element of E, let F be the subspace of E consisting
of all scalar multiples of y, and let ¢y be the linear functional on F defined by
@o(ty) =t||y||- Then @y satisfies ||@p]| = 1 and @o(y) = ||y||, and we can produce the
required functional ¢ by applying Theorem E.7 to ¢p. (In case y = 0, let ¢ be an
arbitrary linear functional on E that satisfies ||| = 1.) O

Let us now apply Theorem E.7 and Corollary E.8 to the study of vector-valued
functions.

E.9. (Theorem) Let (X, /) be a measurable space, and let E be a real or complex
Banach space. A function f: X — E is strongly measurable if and only if

(a) the image f(X) of X under f is separable, and
(b) for each ¢ in E* the function @ o f is o/ -measurable.

We will use the following lemma in our proof of Theorem E.9.

E.10. (Lemma) Let E be a separable normed linear space over R or C. Then there
is a sequence { @, } of elements of E* such that

Iy =sup{[@(y)[ :n=1,2,...} ®)

holds for each y in E.
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Proof. We can assume that E does not consist of 0 alone. Choose a sequence {y, }
whose terms form a dense subset of E. According to Corollary E.8, we can choose,
for each n, an element ¢, of E* that satisfies ||@,|| = 1 and @,(y,) = ||y||- Let us
check that the sequence { ¢, } meets the requirements of the lemma. Since each ¢,
satisfies || @, || = 1, it follows that

sup{|@. (V)| :n=1,2, ...} <[y]

holds for each y in E. For an arbitrary y in E we can find terms in the sequence {y, }
that lie arbitrarily close to y, and so the calculations

On(Y) = Oy = Yn) + ©u(yn) = @u(y — yu) + |l
and |@,(y — yu)| < | @alllly = yall = ||y — ynl| imply that

Iy[l = sup{l@n(y)| :n=1,2,...}.

Relation (8) follows. O

Proof of Theorem E.9. Let us assume that we are dealing with Banach spaces over
R; the case of Banach spaces over C is similar.

If f is strongly measurable, then (a) is immediate and (b) follows from
Lemma 7.2.1 and Proposition 2.6.1.

Now suppose that f satisfies (a) and (b). In view of (a), it suffices to show that f
is Borel measurable. Let Ej be the smallest closed linear subspace of E that includes
f(X). Then Ey is separable (if C is a countable dense subset of f(X), then Ej is the
closure of the set of finite sums of rational multiples of elements of C). We can
show that f is Borel measurable (that is, measurable with respect to .7 and #A(E))
by showing that it is measurable with respect to <7 and #(E;) (Lemma 7.2.2).

Let {¢@,} be a sequence in (Ep)* such that

Il =sup{[@(y)[ :n=1,2,...} ©)

holds for each y in Ey (Lemma E.10). Since each continuous linear functional on E
is the restriction to E of an element of E* (Theorem E.7), condition (b) implies that
for each n the function @, o f is «7-measurable. If B is a closed ball in Ey, say with
center yo and radius r, then f~!(B) is equal to

(e [0a(f(x) = @u(o) < 7},

and so belongs to &7. Since each open ball in Ej is the union of a countable
collection of closed balls, and since each open subset of Ey is the union of a
countable collection of open balls (recall that Ej is separable), the collection of
closed balls generates (Ep). It now follows from Proposition 2.6.2 that f is
measurable with respect to .27 and Z(E;) and the proof is complete. a
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E.11. (Proposition) Let (X, .o/, 1) be a measure space, let E be a real or complex
Banach space, and let f: X — E be integrable. Then

/(pofdu=<p(/fdu> (10)

holds for each @ in E*.
The reader should see Exercise 3 for a strengthened form of Proposition E.11.

Proof. 1t is easy to check (do so) that the integrability of ¢ o f follows from that
of f. If f is a simple integrable function, attaining the nonzero values ay, ..., a
on the sets Ay, ..., Ay, then each side of (10) is equal to 2{»‘:1 o(a;)u(A;); hence
(10) holds for simple integrable functions. Next suppose that f is an arbitrary
integrable function and that {f,} is a sequence of simple integrable functions such
that f(x) = lim,, f,,(x) and sup,, | f»(x)| <|f(x)| hold at each x in X (Proposition E.2).
Then Theorems E.6 and 2.4.5 enable us to take limits in the relation [ @o f,du =
o([ fadp), and (10) follows for arbitrary integrable functions. O

The reader should note Exercises 5 and 7, which show some difficulties that arise
in the extension of integration theory to vector-valued functions. The issues hinted at
in these exercises have been the subject of much research over the years; see Diestel
and Uhl [37] for a summary and for further references.

Exercises

1. Show that a simpler proof of Proposition E.2 could be given if the f,’s were not
required to satisfy the inequality | f, (x)| < |f(x)]-

2. Suppose that (X,.o7) is a measurable space and that E is a Banach space. Show
by example that the set of Borel measurable functions from X to E can fail to be
a vector space. (Hint: Let E be a Banach space with cardinality greater than that
of the continuum, and let (X, o) be (E X E, #(E) x B(E)). See Exercise 5.1.8.)

3. Let (X, </, 1) be a measure space, let E be a Banach space, and let f: X — E
be Bochner integrable. Show that [ fdu is the only element x of E that satisfies
©(xo) = [ @o fdu for each ¢ in E*. (Hint: Use Corollary E.8.)

4. (This exercise hints at another, rather common, way to define strong meas-
urability and Bochner measurability.) Suppose that (X,<7,u) is a measure
space and that £ is a Banach space. Let f: X — E be a function for which
there is a sequence {f,} of strongly measurable simple functions such that
f(x) =lim, f,(x) holds at p-almost every x in X.

(a) Show by example that f need not have a separable range.
(b) Show that there is a strongly measurable function g: X — E that agrees with
f p-almost everywhere.
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(c) Show thatx+— |f(x)| is measurable with respect to the completion .27, of ./
under U.

(d) How should [ fdu be defined if [|f|dM is finite? (Of course I is the
completion of 1.)

5. Let (X,47) be a measurable space, and let E be a Banach space. An E-valued
measure on (X,2/) is a function v: o/ — E such that v(&) = 0 and such that
V(U Ai) = X2, V(A;) holds for each infinite sequence {A;} of disjoint sets in
&/ . The variation |v|: o/ — [0,4-c] of the E-valued measure Vv is defined by
letting |v|(A) be the supremum of the sums Y| |V(A;)|, where {A;}" | ranges
over all finite partitions of A into .2/ -measurable sets.

(a) Show that the variation of an E-valued measure on (X,47) is a positive
measure on (X, .<7).

(b) Show by example that the variation of an E£-valued measure may not be finite.
(Hint: Let X be N, let &7 be Z(N), let E be £2, and define v: o/ — E by
letting v(A) be the sequence

1 ifnea,
nw—
0 ifngA)

6. Let (X, <7, 1) be a measure space, let E be a Banach space, and let f: X — F be
Bochner integrable. Define v: o — E by V(A) = [ yafdu.
(a) Show that v is an E-valued measure on (X, %).
(b) Show that the variation |v| of v is finite.

7. Let A be Lebesgue measure on ([0,1],%([0,1])), and let E be the Banach
space L'([0,1],4([0,1]),4,R). Define v: %(]0,1]) — E by letting v(A) be the
element of E determined by the characteristic function y,4 of A.

(a) Show that v is an E-valued measure on ([0, 1],%([0,1])).

(b) Show that |v| is finite.

(c) Show that v is absolutely continuous with respect to A (in other words, show
that v(A) = 0 holds whenever A satisfies A(A) = 0).

(d) Show that there is no Bochner integrable function f: [0, 1] — E that satisfies
V(A) = [ xaf dA foreach A in %([0, 1]). Thus the Radon—-Nikodym theorem
fails for the Bochner integral. (Hint: Use Proposition E.11.)



Appendix F
Liftings

Let (X,o7, 1) be a measure space. Throughout this appendix we will assume that
the measure u is finite but not the zero measure (see Exercise 2). Recall that
ZL=(X, o/, u,R) is the vector space of all bounded real-valued 7-measurable
functions on X and that L (X, </, i, R) is the vector space of equivalence classes
of functions in £~ (X, 7,1, R), where two functions are considered equivalent
if they are equal p-almost everywhere.! For simplicity, we will generally write
L2(X, 4, 1), instead of £=(X, o7, u,R). We will occasionally use the norm || - ||e
on.#=(X, 4, ) defined by

[1fllee = sup{|f (x)| : x € X}.

Note that for this version of the norm || - || a function f satisfies || f||. = 0 only if
f vanishes everywhere on X; it is not enough for it to vanish almost everywhere.

It is natural to ask whether a function in £~ (X, o/, 11) can be chosen from
each equivalence class in L”(X,,1t) in such a way the choice is linear and
multiplicative. Since notation involving functions is simpler than notation involving
equivalence classes, one generally deals with functions and makes the following def-
initions. A lifting of £~(X, </, 1) is a function p: .L*(X, o/, u) - L= (X, o, 1)
such that for all f, g in £ (X,.<, ) and all real numbers a and b we have

!In the present context (i.e., in cases where the measure y is finite), it is the same to say that two
functions agree almost everywhere as to say that they agree locally almost everywhere. Thus, for
our current discussion the definition of £~ (X, <7, i, R) given here is consistent with the one in
Chap. 4. We will use the current definition since it makes the exposition that follows simpler. If we
were looking at liftings on very large measure spaces, we would speak of locally null sets and of
equality locally almost everywhere; see [65].

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 405
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 ,
© Springer Science+Business Media, LLC 2013
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(a) if f = g almost everywhere, then? p(f) = p(g),
(b) p(f) = f almost everywhere,

(©) plaf+bg)=ap(f)+bp(g).

) p(f8)=p(f)p(g). and

e p(l)=1

Conditions (a) and (b) say that p can be interpreted as providing a choice of a
function in £~ (X, <, 1) from each equivalence class in L*(X,.o7, ).

The main theorem of this appendix (Theorem E.5, the lifting theorem) says that
liftings of £ (X, o7, 1) exist, if the measure p is complete.

If f is a nonnegative function in .Z~(X, o ), then \/f also belongs to

L=(X, o, 1), and so p(f) = p(V/F)p(V/F). It follows that
(f) if £ > 0, then p(f) > 0.

A function p: (X, o, u) — L=(X, 4/, 1) is called a linear lifting if it satisfies
conditions (a), (b), (c), (e), and (f). We will encounter linear liftings while
constructing liftings.

Recall that £~ is the vector space of all bounded sequences of real numbers, with
norm given by |[{x,}||~ = sup, |xx|. Let ¢ be the subspace of £ consisting of the
sequences {x,} for which lim, x,, exists; give ¢ the norm it inherits from ¢*.

F.1. (Lemma) There is a linear functional A : ¢ — R such that

(@) A({x,}) =1lim, x, for all {x,} inc,

() |A({xn D] < |[{xn} || for all {xn} in €=, and

(c) A({xn}) is positive, in the sense that A({x,}) > 0 whenever {x,} is a sequence
in 0~ whose terms are nonnegative.

In other words, if L is the linear functional defined on the subspace ¢ of £~ by
L({x,}) = lim, x,, then L can be extended to a linear functional on all of ¢* that has
norm 1 and is positive.

Proof. As in the previous paragraph, define a linear functional L on ¢ by
L({xn}) = lim, x,. Then L satisfies |L({x,})| < ||[{xn}||- for all {x,} in ¢, and so
the Hahn—Banach theorem (Theorem E.7 in Appendix E) gives a linear functional
A on £~ that satisfies conditions (a) and (b). If {x,} is a sequence in £~ whose terms
are nonnegative, and if s = sup,, x,,, then

[A{xn}) = /2] = [A({xn = s/2D)] < [{xn = 5/2} | = 5/2,

from which it follows that A ({x,,}) > 0. O

2Note that when we say that two functions are equal, but don’t give a qualification with the words
“almost everywhere,” then we are saying that the functions are identical. For example, condition
(a) says that if f(x) = g(x) for almost every x, then p(f)(x) = p(g)(x) for every x.
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Let C be a convex subset of a vector space E. An extreme point of C is a point x
in C that cannot be written as a convex combination of points of C different from x.
In other words, we are requiring that if x =7y + (1 — )z, where y and z belong to C
and 0 <t < 1, then y = z = x. More generally, an extremal subset of C is a nonempty
subset Cy of C such that if x € Cy and x =ty + (1 — )z, where y and z belong to C
and 0 <t < 1, then y and z belong to Cy. Thus a point x in C is an extreme point of
C if and only if {x} is an extremal subset of C.

As examples let us consider some subsets of R?. If C is the disk defined by

Cr = {(x1,x) €R*: x]+x3 < 1},

then C; has infinitely many extreme points, namely the points on the circle that
forms the boundary of Cj. On the other hand, if C; is the square defined by

G ={(x1,x) eR?: =1 <x;<land —1<x; <1},

then C, has only four extreme points, namely its corner points (1,1), (1,—1),
(—1,1), and (—1,—1). The remaining boundary points of C; are not extreme points.
The four line segments that make up the boundary of C, (that is, the line segments
that join adjacent corners of () are extremal subsets of C;, as is the set that consists
of all the boundary points of C,. Finally, the open disk C; defined by

Gy = {(x1,%) €R*: x} +x3 < 1}

is convex, but it has no extreme points.

We will need to know that certain sets have extreme points. If we assumed a
substantial amount of functional analysis in the reader’s background, we would
simply appeal to the Krein—-Milman theorem, which says that if K is a nonempty
compact convex subset of a locally convex Hausdorff topological vector space, then
K has extreme points and is in fact the smallest closed convex set that contains all
the extreme points of K. However, all we need is given by the following lemma,
which we can prove without too much work.

F.2. (Lemma) Let S be a nonempty set and let E be the product space RS,
considered as a vector space and as a topological space with the product topology.
Then each nonempty compact convex subset of E has at least one extreme point.

Proof. Let K be a nonempty compact convex subset of RS, and let & be the
collection of all nonempty closed extremal subsets of K. Then & contains K, and
so is nonempty. Let us view & as a partially ordered set, with E; < Ej holding if
E; C E;. (Be careful: sets that are larger with respect to the partial order < are
smaller with respect to set inclusion.) We will use Zorn’s lemma (see A.13) to get
an element of & that is maximal with respect to < and hence minimal with respect
to C. So suppose that € is a chain of elements of &. The intersection of any finite
subcollection of ¥ belongs to € (it is a member of the subcollection), and so is
nonempty. This, together with the compactness of K, implies that the intersection
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of all the members of € is nonempty (and, of course, closed). Furthermore, since
each element of € is extremal, so is the intersection of the elements of €. Thus ¥,
which was an arbitrary chain in &, has an upper bound in &. So we can apply Zorn’s
lemma, which gives a maximal element of &, say E.

The maximality of Ey says that Ey has no subsets that belong to &. What if Ej
contains more than one point? Each point in Ey is a member of the product space
RS and so is a function from S to R. If there are two members of Ep, say e and ey,
then there must be a point s in S such that e (s) # ex(s). Let m = inf{e(s) : e € Ep}.
Then, since Ej is compact and the function e — e(s) is continuous, the set

{e € Ey: e(s) =m}

is a proper subset of Ej that is nonempty, closed, and extremal. This contradicts the
maximality of Ej, and we conclude that E can contain only one element, say e.
It follows that ¢ is an extreme point of K. a

The following two lemmas contain most of the technical details needed to prove
the existence of liftings.

F.3. (Lemma) Suppose that (X, 1) is a probability’ space, o is a sub-o-
algebra of o, and p is a lifting of £~ (X, %y, ). If Ey is a member of <f that does
not belong to <, then p can be extended to a lifting of £=(X,0(opU{Ey}), 1)

Note the abuse of notation in the statement of Lemma F.3: u first represents a
measure on <7, then the restriction of that measure to the sub-c-algebra 2%, and
finally the restriction of it to o (% U{Ep}).

Proof. Recall that (2% U{E}) consists of the sets of the form (ANEp) U (BNEY),
where A and B belong to o (see part (a) of Exercise 1.5.12), and that a function
f: X > Ris o(ehU{Ep})-measurable if and only if there are .of-measurable
real-valued functions fy and f; such that f = fyxg, + fi XES (see Exercise 2.1.9).
It follows that the functions in £~ (X, (a% U {Ey}), 1) are those that have the
form foxe, + fiXEg for some fo, fi in L7 (X, A, u).

Suppose that p; is a lifting of £ (X,0(aHU{Ep}),u) that is an extension of
p. Then there is a set £} in 0(2% U{Ep}) such that p; (x&,) = xE, (see Exercise 3),
and for each function of the form foxe, + fiXxeg, where fo and f; belong to
L2(X, %, 1), we have

pi(foxe, + fixes) = p1(fo)p1(xe,) + P1(f1)p1 (XEg)
= p(fo)xe, +p () xes-

3What we really want is for 4 to be a finite measure such that 1 (X) # 0. It’s easier, however, to say
that we assume (i to be a probability measure, and if we prove our results for probability measures,
we will also have proved them for all nonzero finite measures.
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We need to construct such a lifting p;; we’ll do that by choosing a set E; in such a
way that

p1(foxe, + fixes) = p(fo)xe, +p (1) xes (D

defines a lifting p; that is an extension of p.
Suppose that we produce a set E in 6(2/ U{Ep}) such that

(@) xe, = X, ae.,
(b) if functions f and f in £(X, %, H) agree almost everywhere on Ey, then
p(f) and p(f’) agree everywhere on E, (that is, if (f — f’)xg, = 0 a.e., then

(p(f) = p(f)xe, = 0), and
(c) if functions f and f’ in £~ (X, %, ) agree almost everywhere on Ef, then
p(f) and p(f’) agree everywhere on Ef.

Then it follows that

if fOXEo +fle(‘J' = f(;)CEO ""f{%E(‘J a.e., then
p(fo)xe +p(f)xes = p(fo) e + P (f1) 2

and
Joxey + fixes = p(fo)xe, +p(f1)xes ae.

This implies that Eq. (1) gives a well-defined function p; that is an extension of
p and satisfies the first two conditions in the definition of a lifting. The remaining
conditions (that p; is linear and multiplicative and that it satisfies p;(1) = 1) are
easy to check.

We turn to the construction of the set Ej. Choose a sequence {C,} of sets that
belong to o), satisfy y¢, < Xk, a.e. for each n, and are such that

sup(Cy,) =sup{u(C) : C € o and yc < xg, a.e.};

then define a set F; by F; = U,C,. Then F; has maximal measure among the sets in
</ that are included (except perhaps for a null set) in Ey, and each <«7-measurable
set that is included (up to a null set) in Ej is also included (up to a null set) in Fj.
A similar construction produces an analogous set F; that is included (up to a null
set) in Ej. Now let G; = p(F1) and G, = p(F3).

Claim. The sets G| and G satisfy
GiNG, =g, 2)

w(Gy —Ep) =0 (thatis, G; C Ey to within a null set), and 3)
U(G, —E5) =0 (thatis, G, C E to within a null set). 4)
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For (2), note that yr, xr, = 0 a.e., which implies that x¢, x6, = p (Xr, XF,) = 0.
Relation (3) follows from the fact that yg, = xr, a.e. and x5, < xg, a.e., and (4) has
a similar proof.

Now define E| by E; = (EgUG;)N G5. Then condition (a) above follows from
(2)—~(4). We turn to condition (b). Suppose that f and f’ belong to Z~(X, o, 1)
and agree almost everywhere on Ey. We need to show that p(f) = p(f’) on Ej. Let
D={xeX:f(x) # f'(x)}. Then xp < xr, a.e., and so p(xn) < p(xr) = XG,-
Since D was defined so that (f — f")xpe = 0, we have (p(f) —p(f"))p(xpc) = 0.
It follows that (p(f) — p(f'))xc; =0, and so p(f) and p(f’) agree everywhere
outside G, and hence on E;. This completes the proof of (b). The proof of (c) is
similar, and with that the lemma is proved. O

F4. (Lemma) Suppose that (X, </, L) is a complete probability space and that Ly
is a linear lifting of £~ (X, </, ). Then there is a lifting p of £~ (X, o/, L) such
that

XiLo(ua)=1} < P(Xa) < X{Lo(xa)>0} )
holds for each A in <.

The significance of (5) will become clear when we use Lemma F.4 to prove
Theorem E.5.

Proof. Let S be the Cartesian product £ (X, o/, ) x X. We will identify linear
liftings of £ (X, <7, ) with functions from S to R, that is, we will identify a linear
lifting L of £ (X, o7, 1) with the function L' : § — R defined by L'(f,x) = L(f)(x).
Thus we will view linear liftings as members of the product space RS. The plan for
the current proof is to define a certain subset C of RS, to show that C is nonempty,
compact, and convex, and then to show that the extreme points of C (which exist,
according to Lemma F.2) are liftings that satisfy (5). That will complete the proof
of the lemma.

Let us look at how the conditions defining liftings and linear liftings translate
into conditions on elements of RS. For example, the condition that L satisfies
L(af +bg) = aL(f) + bL(g) for all a, b, f, and g becomes the condition that the
corresponding function L’ satisfies

L'(af +bg,x) = al'(f,x)+bL'(g,x) for all a, b, f, g, and x. (6)

Note also that, since all the coordinate projections L' + L'(f,x) of RS are
continuous, those elements of RS that satisfy (6) form a closed subset of RS.

We now define the set C to be the collection of all L’ in RS that satisfy the
translations into conditions on L’ of conditions (a), (c), (e), and (f) in the definition
of a linear lifting, plus the translation of the relation

Xizo(u)=1y = L(xa) < X(ro() >0 ™
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which is to hold for all A in «. It is easy to check that C is closed and convex.
Furthermore, conditions (c), (e), and (f) imply that

IL'(f,x0)] <[ fll ®)

holds for all L' in C and all f and x; hence we can use Tychonoff’s theorem to
conclude that C is compact. Finally, the function in RS that corresponds to Lg
belongs to C, and so C is nonempty.

It now follows from Lemma F.2 that C has at least one extreme point, say L|.
Let us reverse our translation from linear liftings to elements of RS, and let L; be
the function from .= (X, .o/, i) to functions* on X that corresponds to the extreme
point L. We need to show that L; (f) is measurable and bounded, that f = L (f)
a.e., and that L; (fg) = L1 (f)L; (g); the other conditions that L; must satisfy to be a
lifting come from the conditions we placed on C.

It follows from (8) that L;(f) is bounded, and in fact that ||L;(f)]le < || f]]c-
We turn to the measurability of L;(f) and the requirement that f = L;(f) a.e. If
we use (7), plus the fact that f = Ly(f) a.e. (recall that Ly is a linear lifting),
we find that each f of the form ), satisfies f = L;(f) a.e. Since u is complete,
the measurability of L, (f) follows for such f. The measurability of L;(f) and the
almost everywhere validity of f = L;(f) now follow first for simple <7 -measurable
functions and then for arbitrary «/-measurable functions (approximate an arbitrary
function with simple functions, and use (8)).

We still need to show that L; is multiplicative,’ in the sense that L(fg) =
L (f)L1(g) holds for all f and g. It is easy to see that we only need to check the
identity Li(fg) = L1(f)L;(g) in the case where 0 < g < 1 (use the linearity of L;
and the fact that L; (1) = 1). So assume that g belongs to .2 (X, <7, it) and satisfies
0 < g < 1, and define functions Ly ,L;_: =X, o/, u) — L=(X, <, 1u) by

Li(f) = Li(f)+ (Li(fg) —L1(f)Li(g)) and

It is easy to check that L;; and L;_ are linear liftings. We want to verify that
they correspond to members of C, and for this we need to check that they satisfy
(7). The keys to this will be the fact that L; = JLi4 + 1L;_, together with the
fact that if A € o/, then (since L, and L;_ are linear liftings) the values of the
functions L (y4) and L, _()4) belong to the interval [0,1]. Since L; corresponds
to an element of C, it satisfies (7); thus if Ly(ys)(x) = 1, then we can conclude
that L (x4)(x) = 1 (use (7)) and then that L (ya)(x) = Li—(xa)(x) = 1 (use
the fact that L; = %LH + %Ll,, plus the fact that the values of L;i(x4) and

4We cannot yet say “from £ (X, o7, 1) to £=(X, o7, 1u),” because we still need to verify that the
functions x — L; (f,x) are measurable and bounded.

SHere is where we use the fact that L; corresponds to an extreme point in C.
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Li_(xa) belong to [0,1]). Likewise, if Lo()a)(x) = 0, then L;()a)(x) = 0 and
$0 Li+(xa)(x) = Li—(xa)(x) = 0. It follows that L, and L;_ satisfy (7) and so
correspond to elements of C. However, L; corresponds to an extreme point of C and
satisfies L; = %LH + %Ll,, and so we have L; = L1 = L;_. But this implies that
Li(fg)—Li(f)Li(g) =0, and the multiplicativity of L; follows. Thus L, is a lifting
that satisfies (5), and the proof is complete. O

F.5. (Theorem) If (X, <, ) is a complete probability space, then there is a lifting
of £=(X, o, ).

Proof. Let 7 be the collection of all pairs (4, p), where Z is a sub-c-algebra of
&/ that contains all the y-null sets in &/ and where p is a lifting of £ (X, %, ).
(Of course, by £ (X, %, 1) we really mean £~(X, %, ly), where Ly is the
restriction of u to the sub-c-algebra Z of 7. Such abuse of notation will occur
often in this proof.) Let us define a relation < on .7 by defining (%1, p1) < (%2,p2)
to mean that #; C %, and p; is the restriction of p, to £~ (X, %, ). Then < isa
partial order on .7 .

We’ll check that 7 is nonempty and that each chain in .7 has an upper bound in
7, and so Zorn’s lemma will provide a maximal element (%',p’) of 7. Then %'
must be equal to &7 (and the proof will be complete), since otherwise Lemma F.3
would provide an extension of p’ to (X, %", 1) for some still larger sub-o-
algebra Z" of o/, and (%', p’) would not be maximal.

We turn to the details. First let us check that .7 is nonempty. Let %, be the
collection of p-null sets in 7, together with their complements. Then % is a
o-algebra, £~ (X, %, L) consists of the bounded measurable functions that are
almost everywhere constant, and the operator that assigns to each such function f
the constant function that is almost everywhere equal to f is a lifting.

Next suppose that ¢’ is a chain in 7; we will produce an upper bound for . Let
us consider two cases.

In the first case there is an increasing sequence {(B,,p,)}_, in € that is cofinal,
in the sense that for every (%,p) in € there is an n such that (%,p) < (B, pn)-
Let us construct an upper bound (%, p-) of €. We’ll use conditional expectations
and the martingale convergence theorem (see Sect. 10.4) to do so. Define %.. by
PBo = 0(U,By). Choose a linear functional A on ¢~ as given by Lemma F.1,
and note that for each x in X the sequence {p,(E(f|%,))(x)} belongs to £ (of
course, E(f|%,) is only determined up to a null set, but then p,, as a lifting,
gives the same result whatever version of E(f|%,) is used). Thus we can define
an operator L on £*(X, B, t) by L(f)(x) = A({pn(E(f| %)) (x)}). Tt follows
from Proposition 10.4.12 that if f € (X, P, 1), then the sequence {E (f|%,)}
converges almost everywhere to f. Hence {p,(E(f]|%,))} also converges almost
everywhere to f and so L(f) = f a.e. In particular, since u is complete, L(f) is
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measurable. It is easy to check that L is a linear lifting that extends each lifting p,.
Now use Lemma F.4 to get a lifting p.. that satisfies

X(Lou)=11 < Po(XA) < X{L(xa)>0} ©)

for every A in B... If A € %, then, since L is an extension of p, and since 0 and
1 are the only possible values for the function p,()4), we have {L(ya) = 1} =
{L()a) > 0}. It now follows from (9) that pe.(¥a) = L()xa) = pn(X4), and s0 P
is an extension of p, (to check this, approximate functions in .2 (X, B.., i) with
simple functions—see the proof of Lemma F.4). Thus we have an upper bound
(P, p=) for the chain E.

Finally, we need to produce an upper bound for the chain % in the case where
% has no cofinal sequences. Suppose that € is the family {(%y,pua)}a, Where o
ranges over some index set. Then Uy %, is a 0-algebra and £~ (X,Uq PBq, L) =
Ua-Z=(X,PBa, 1) (see Exercise 5). We can define a lifting p on £ (X,UqPBq, U)
by letting p(f) be pa(f), where o is an index such that f € .£*(X, By, 1) (the
index o depends, of course, on f). With this we have an upper bound for the chain
% , and the proof is complete. a

Exercises

1. Let X = {1,2,3}, let &7 be the set of all subsets of X, and let i be the measure
on (X,</) defined by u = 18 + 36,.
(a) Find a lifting of £~ (X, <7, ).
(b) Find all liftings of £~ (X, o/, ).

2. Suppose that (X, 7, 1) is a measure space such that X is nonempty but pt(X) =0.
Show that there are no liftings of £~ (X,.o/, ).

3. Suppose that p is a lifting of .Z>(X,.«7, ). Show that if E € </, then there is a
set E’ in o/ such that p(yg) = g and W(EAE') = 0.

4. Let (X, <, 1) be a measure space. A function p’: & — & is a lifting of < if

(i) p’(A) = p’(B) whenever (A AB) =0,
(i) u(AAp'(A)) =0forall Ain o,
(iii) p'(@) =2 and p'(X) =X,
(iv) p'(AUB) =p’(A)Up’(B) for all A and B in &7, and
(v) p'(ANB)=p’(A)Np’(B) forall A and B in /.

Suppose that for each lifting p of £ (X, <7, ) we define a function p’ : &7 — o7
by Xp/(a) = P(Xa). Show that p — p’ is a bijection of the set of all liftings of
L (X, 4, 1) onto the set of all liftings of 7.

5. Let (X, 47, 1) be a measure space and let {%,} be a linearly ordered family
of sub-c-algebras of 7. Suppose that for each countable subfamily { %, }, of
{PBo}o there is an element B, of { Ay o such that B, C B, holds for every
n. Show that
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(@) 0(UgHBy) =UgPBq, and
(b) Z=(X,0(UqBa),1h) =UgZL7(X, B, IL).

6. In this exercise we look at a proof of the existence of liftings in the particular case
of Z>([0,1],47,A), where 7 is the o-algebra of Lebesgue measurable subsets
of [0,1]. The proof outlined here has the advantage that it is simpler than the one
given above and relates liftings to differentiation theory. However, it depends on
a basic but nontrivial result about Banach algebras that is quoted below but not
proved, and it only gives liftings in the case of certain measure spaces.

Let A be a commutative Banach algebra (see Sect. 9.4). We assume that A has

a multiplicative identity element 1 that satisfies ||1|| = 1. Recall that an ideal in
A is a subset I of A that is a vector subspace of A, is a proper subset of A, and
is such that xy € I whenever x € A and y € I. A maximal ideal is an ideal that is
included in no larger ideal. We will be looking at Banach algebras over the field
C, because complex-variable techniques are used in the proof of the result we
quote below. We will assume that the Banach algebras that we consider have an
involution x — x* that satisfies

(i) (x+y)" =x"+y",

(i) (xy)" =x"y",
(iii) (ox)* = ox* (where o is the complex conjugate of ), and
(iv) x* =x
forall x and y in A and all o in C. In the case where A = .£*([0,1], 47, 4,C), the

operator that takes a function f to the complex conjugate of f is an involution (in
fact, it is the only involution we will need to consider).

The result we need to quote says that if A is a Banach algebra over C that has
an involution, and if M is a maximal ideal in A, then there is a linear functional
¢ on A such that

0 [lof <1,
(i) ¢(xy) = @(x)¢(y) holds for all x, y in A,
(i) ¢(1) =1,
(iv) ¢(x*) = ¢(x) holds for all x in A, and
V) M={xeA:¢(x)=0}.
(see Simmons [109, Chapters 12 and 13], Hewitt and Ross [58, Appendix C], or
Lax [82, Chapters 18 and 19]).

(a) Let A be the Banach algebra .#> ([0, 1],27,A,C). For each ¢ in [0, 1] let I; be
the subset of A consisting of those functions f such that F’(¢) exists and is
equal to 0, where F is the function defined by F(u) = [ |f(s)|ds (note the
absolute value signs around f(s)). Show that /; is an ideal in A.

(b) Show that for each ¢ there is a maximal ideal M, in A that includes /;. (Hint:
Use Zorn’s lemma.)

(c) Suppose that for each ¢ we apply the result quoted above to the maximal
ideal M;, thereby producing a family of function {¢,},. Show that if f is a
real-valued function in .2 ([0,1], %7, A, C), then for each t the value ¢ (f) is
a real number.



F Liftings 415

(d) Define an operator p on Z([0,1],47,A,R) by p(f)(t) = ¢ (f). Show that
for each f the function p(f) is bounded and measurable, and moreover that
p is a lifting of £*([0,1], 7,4, R).

Notes

The existence of liftings was first proved by von Neumann [119] and by Maharam
[87]. In the 1960s A. and C. Ionescu Tulcea were very active in studying liftings;
see [64,65]. The paper by Strauss et al. [115] surveys much more recent work.



Appendix G
The Banach-Tarski Paradox

The usual informal statement of the Banach—Tarski paradox is as follows:

A pea can be divided into a finite number of pieces, and these pieces, after being moved by
rigid motions, can be reassembled in such a way as to produce the sun.

For a more precise statement, let us replace the pea and the sun with subsets P and
S of R3 that are bounded and have nonempty interiors. Then the Banach—Tarski
paradox says that there exist a positive integer n, disjoint subsets Ay, Ay, ..., A, of
P, and disjoint subsets By, By, ..., B, of S such that

(a) P=A1UAU---UA,,
(b) S=B;UBU---UB,, and
(c) for each i there is a rigid motion of R? that maps A; onto B;.

There are a couple of things to note here. First, this paradox depends on the axiom
of choice, and so the sets Ay, ... and By, ... are produced in a very nonconstructive
way. Second, the Banach—Tarski paradox implies that there is no way to extend
Lebesgue measure to the collection of all subsets of R in such a way that the
extension is invariant under rigid motions and is at least finitely additive.

Let us turn to the mathematical concepts that we need for a proof of the Banach—
Tarski paradox. Let G be a group and let X be a nonempty set. Suppose (for
definiteness) that the group operation on G is written multiplicatively and that e
is the identity element of G. An action of G on X is a mapping (g,x) — g-x of
G x X to X that satisfies

(a) g1-(g2-x) = (g182) - xand
(b) e-x=x
for all g1, g in G and all x in X. We often abbreviate g - x with gx. One sometimes
says that G acts on X when we are dealing with an action of G on X.

If G acts on X, if g € G, and if A is a subset of X, then gA or g-A is the set
{y€X:y=g-aforsomeainA}. Likewise, if H is a subset of G and A is a subset
of X, then H-A is the set {y € X : y = h-a for some h in H and some a in A}.

D.L. Cohn, Measure Theory: Second Edition, Birkhduser Advanced 417
Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 ,
© Springer Science+Business Media, LLC 2013
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G.1. (Examples)

(a) Let d be a positive integer and let G be a subgroup of the group of all invertible
d by d matrices. For S in G and x in R? let Sx be the usual product of the matrix
S and the vector x, where x is regarded as a column vector. Then (S,x) — Sx
gives an action of G on R?.

(b) Recall that a d by d matrix S = (s;;) is orthogonal if its columns are orthogonal
to one another and have norm 1 (with respect to the usual Euclidean norm || - ||2).
In other words, S is orthogonal if ¥, 5;;s; is 1 if j =k and is 0 if j # k. The set of
all d by d orthogonal matrices with determinant 1 is a group, which is called the
special orthogonal group and is denoted by SO(d). Such groups are, of course,
groups of the sort described in the previous example.

(c) Now let G be the set of all rigid motions 7: R? — R3 of the form 7'(x) =
Sx+ b, where S € SO(3) and b € R3. Thus G; is a group; it acts on R* by
(T,x) — T(x).

(d) Let G be an arbitrary group. Then (g,g') — g- g, where - is the group operation
of G, gives an action of G on G.

Equidecomposability

Now suppose that G acts on the set X and that A and B are subsets of X. Then A and
B are called G-equidecomposable (or simply equidecomposable), or A is said to be
G-equidecomposable with B if there exist a positive integer n, disjoint subsets A1,
..., A, of A, disjoint subsets By, ..., B, of B, and elements g, ..., g, of G such
that

(a) A=A UAU---UA,,
(b) B=B1UByU---UB,, and
(c) B; =gi-A;holds for each i.

Thus A and B are G-equidecomposable if and only if there is a bijection f: A — B
that is defined piecewise' by the action of G on X—that is, for which there are
disjoint subsets Ay, ..., A, of A that satisfy A = A UA,U---UA, and elements g1,

.., gn of G such that f is given by f(x) = g;-xif x€ A;, fori=1,...,n.

It is easy to check thatif g: A — B and f: B — C are bijections that are defined
piecewise by the action of G on X (see the preceding paragraph), then fog: A = C
is also a piecewise defined bijection. Since the identity map (from a subset A of X
to itself) is such a piecewise defined bijection, as are the inverses of such bijections,
it follows that the relation of G-equidecomposability is an equivalence relation.

Recall the Schroder—Bernstein theorem from set theory: if the set A has the same
cardinality as some subset of the set B, and if B has the same cardinality as some
subset of A, then A and B have the same cardinality. In other words, if there is a

IThis is perhaps not entirely standard terminology.
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bijection from A onto a subset of B and a bijection from B onto a subset of A, then
there is a bijection from A onto B (see A.7 in Appendix A).
The following proposition gives an analogous result for G-equidecomposability.

G.2. (Proposition) Suppose that the group G acts on the set X and that A and
B are subsets of X. If A is G-equidecomposable with a subset of B and if B is G-
equidecomposable with a subset of A, then A and B are G-equidecomposable with
one another:

Proof. Suppose that A and B are as in the statement of the proposition. Then there
are injections f: A — B and g: B — A that are defined piecewise by the action of
G on X. Let us look at how elements of A and B arise as images of elements of
B and A under the functions g and f. As is rather standard in proving versions of
the Schroder—Bernstein theorem, we express this in terms of ancestors. Consider an
element a of A. We call an element b of B a parent of a if a = g(b), and an element @’
of A a grandparent of a if a = g(f(a’)). We continue in this way, considering great-
grandparents, .... We view the parents, grandparents, ..., as ancestors. In a similar
way, we define the ancestors of the elements of B. For example, the ancestors of b are
the elements of the sequence £~ (b), g ' (f~'(b)), f~' (g~ (f ' (b)), .... Since f
and g are injective but not necessarily surjective, these sequences may be of any
length, containing O, 1, 2, ..., or even infinitely many terms. Let us define subsets
A., Ap, and Ao, of A to be the sets of elements of A for which the corresponding
sequence is of even length, of odd length, or infinitely long. We define subsets B,,
B,, and B.. of B similarly. It is not difficult to check that f maps A, onto B, and
A.. onto B.., and that g maps B, onto A,. It follows that we can define a bijection
h: A— Bby

ifxeA A, and
h(x) = fg) 1 X€A,orx e an
g '(x) ifxeA,.

Since f and g are injective and defined piecewise by the action of G, & is also defined
piecewise by the action of G, and the proof is complete. a

Finally, here is a precise version of the Banach-Tarski paradox; we prove it
below.

G.3. (Theorem—the Banach-Tarski paradox) Let A and B be subsets of R3 that
are bounded and have nonempty interiors, and let G3 be the group of rigid motions
discussed in Example G.1(c). Then A and B are G3-equidecomposable.

Note that the Banach-Tarski paradox says that if {A;} and {B;} are the sets
into which A and B are decomposed, then each A; can be mapped onto the
corresponding set B; using a rigid motion from Gj3. It does not say that the pieces
A; into which A is decomposed can be moved along continuous paths, eventually
becoming the corresponding pieces B; and never colliding with the other pieces.
It was long an open problem whether such a continuous decomposition is possible.
However, Wilson [129] has recently proved that such decompositions are possible.
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In particular, he proves that there are continuous maps  + g! from [0, 1] to G5 such
that

(a) gh-Ai=A, forall i,
(b) g’i -A; = B; for all i, and
(c) gi-Aing/-Aj =@ forallzin [0,1] and all i and j for which i # j.

Paradoxical Sets

Suppose that the group G acts on the set X. A subset A of X is G-paradoxical, or
simply paradoxical, if it is equal to A| UA, for some pair A, A, of disjoint subsets
of A, each of which is G-equidecomposable with A.

The following consequence of the Schroder—Bernstein-like theorem above makes
it slightly easier to prove that a set is paradoxical: we can show that a set A is
paradoxical by producing disjoint subsets A; and A; of A that are equidecomposable
with A; we do not need to check that A = A UA,.

G.4. (Corollary) Suppose that the group G acts on the set X. A subset A of X
is G-paradoxical if it includes disjoint subsets A; and A,, each of which is G-
equidecomposable with A.

Proof. Suppose that A, Aj, and A, are as in the statement of the corollary. Then
A — A1 is equidecomposable with a subset of A (it is a subset of A), and A is
equidecomposable with a subset of A —Aj, namely with A,. Thus Proposition G.2
implies that A and A — A are equidecomposable, and so A; and A — A; form the
required partition of A. a

It is a consequence of the Banach—Tarski paradox that
the ball {x € R?: ||x|| < 1} is G3-paradoxical (1)

(if we divide the ball into two pieces by cutting it with a plane through the origin,
then the Banach—Tarski paradox says that the ball is equidecomposable with each
of the two pieces).

Let us check that we can also derive the Banach—Tarski paradox from (1). So
suppose that (1) holds. Certainly if some closed ball is G3-paradoxical, then so are
all closed balls (two sets that are equidecomposable are still equidecomposable if
they are translated or if both are scaled by the same constant). Let A and B be the sets
in the statement of the Banach—Tarski paradox, let By be a closed ball included in A,
and let r be the radius of By. Let By, B», ... be disjoint closed balls, each with radius
r. Since By is the union of a pair of disjoint sets, each of which is equidecomposable
with By, it follows that By is equidecomposable with B; U B;. By repeating that
argument we can conclude that By is equidecomposable with By U B, U B3, and
eventually that it is equidecomposable with B UB, U --- U B,, for an arbitrary n.
Since the set B in the statement of the Banach—Tarski paradox is bounded, we can
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choose n large enough that B can be covered with n closed balls of radius r. This
implies that B is equidecomposable with a subset of By UB, U ---UB,, and hence
with a subset of By, which is itself a subset of A. A similar argument tells us that
A is equidecomposable with a subset of B, and then Proposition G.2 implies that A
and B are equidecomposable. Thus the Banach—Tarski paradox follows from (1).

We will prove the Banach-Tarski paradox by proving (1). We need to gather
some more tools.

Generators and Free Groups

Let G be a group, let S be a set of elements of G, and let S~' = {u € G :
u=v~! for some v in S}. The smallest subgroup of G that includes S is called the
subgroup generated by S. The subgroup of G generated by S has a more constructive
description; namely it consists of the elements of G that are represented” by a word
of the form

S182 " Sn,
where n is a nonnegative integer and sy, ..., s, are elements of SUS -1
Now suppose that S generates G and that SNS~! = &. Note that if s € S, then
the words ss— 1, sslss™!, sslsslss™!, ... all represent the same element of G,

namely e. Furthermore, a word can be modified by repeatedly removing substrings
of the form ss~! or s~ Ls, where s € S, without changing the element of G represented
by the word. We can continue this process until we reach a word in which no element
of § appears adjacent to its inverse. A word in which no element of S appears
adjacent to its inverse is called a reduced word.

Let us continue to assume that SN S~! = @. The group G is said to be free on
S, or to be freely generated by S, if S generates G and each element of G can be
represented in only one way by a reduced word over S. If G is free on § and if S has
n elements, then one sometimes says that G is free on n generators.

G.5. (Proposition) Let F' be a free group on two generators. Then the set F is
paradoxical under the action of the group F on it.

Proof. Suppose that F is freely generated by o and 7 and that e is the identity
element of F. Let Fy be the set of all elements of F that can be represented with
reduced words that begin with ¢, and define F;-1, F¢, and F-1 analogously. The sets
{e}, F5, F5-1, Fr, and F, then form a partition of the set F. We can check that F
and Fs UF ;-1 are F-equidecomposable by writing F = Fs U ({e} UF ;-1 UF;UF_1)
and noting that Fs = e-Fs and Fy, 1 =o' ({e}UF, 1 UF; UF, 1). A similar
argument shows that F is also F-equidecomposable with F; U F,—i. Since F is F-

2The word 515 - - -5, is the sequence {s;}}_,, and the element of G represented by the word is the
group-theoretic product of sy, s, ..., s,. The empty word, where n = 0, gives the identity element
of G.
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equidecomposable with F U F;—1 and with F; U F-1, it follows from Corollary G.4
that F is F-paradoxical. O

G.6. (Proposition) The special orthogonal group SO(3) has a subgroup that is
free on two generators.

Proof. Let us begin with the question of how we might check that suitably chosen
elements o and 7 of SO(3) freely generate a subgroup of SO(3). We need to show
that distinct reduced words wy and w; in O, o !, 7, and 77! represent distinct
elements of SO(3). So assume that w; and wy are distinct reduced words that
represent the same element of SO(3). We can assume that they do not begin (on the
left) with the same element, since otherwise we can remove elements from the left
until w; and w, no longer begin with equal elements (this does not change whether
the elements of SO(3) represented by w; and w, are equal or different). So we can
assume that either w; and w; begin with different ones of o, o !, 7,and T, or
else one of wy and w; is the empty word and the other is not. Our job is to choose
o and 7 in such a way that we can conclude that the elements of G represented by
such w; and w, are necessarily distinct.

Suppose that we can find an element u of R3, plus disjoint subsets S, S_, T,
and T_ of R? (none of which contains ), such that operating on u by the element of
G represented by a non-null reduced word w gives an element of S, S_, T, or T_,
according as the left-hand element of w is o, o', 7, or 7! If we can find such an
element u and sets S, S—, T4, and 7, and if w; and w, are distinct reduced words
as described in the preceding paragraph, then operating on u by the group elements
represented by w; and w, will give different elements of R3, and we will have a
proof that w; and w; represent different elements of SO(3).

The argument just outlined will work if we can verify that our choices of o, 7, u,
S4,S_, Ty, and T_ (with the choices still to be made) satisfy

(o2 S+UT+UT,U{M}

-1

o 57UT+UT,U{M}

S+U57UT+U{M}

N

( ) S Sy
( )ES-
7( ) C T4, and
(S uSs UT U{u})CT.

Now let us define elements 6 and 7 of SO(3) by

3/5 4/5 0 10 0
o=|-4/5 3/5 0|and =0 3/5 -4/5],
0o 0 1 0 4/5 3/5

an element u of R? by u = (0,1,0)", and subsets S, S_, T, and T_ of R? by

1
Sp = {S—k(x,y,z)’ :k>1,x=3ymod 5, x# 0 mod 5, and z =0 mod 5},
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1

S_= {S—k(x,y,z)’ :k>1,x=-3ymod 5, x# 0 mod 5, and z= 0 mod 5},
1

T, = {S—k(x,y,z)’ :k>1,z=3ymod 5, z+# 0 mod 5, and x = 0 mod 5}, and
1

T_ = {S—k(x,y,z)’ :k>1,z=—-3ymod 5, z%# 0 mod 5, and x =0 mod 5}

(in these definitions k, x, y, and z are integers; furthermore, the #’s on the vectors here
indicate transposes, and so we are dealing with column vectors, rather than with the
row vectors that are listed). It is now a routine calculation, which is left to the reader,
to show that the sets S, S_, T, and 7_ are disjoint, that they do not contain «, and
that the inclusions specified above indeed hold. With that we have shown that o and
7 freely generate a subgroup of SO(3), and the proof of the proposition is complete.

O

Details for the Banach-Tarski Paradox

The following proposition will let us use the free group on two generators that we
just constructed to get some paradoxical subsets of R3. It is here that the axiom of
choice is used.

We will be using the fact that every element of SO(3), when interpreted as an
action on R?, is a rotation about a line through the origin,? and the fact that each
such rotation is given by an element of SO(3). For proofs of these results, see the
exercises at the end of this appendix.

G.7. (Proposition) Let G be a group for which the action of G on G is paradoxical,
let (g,x) — g-x be an action of G on a set X, and suppose that this action has no
nontrivial fixed points (in other words, suppose that if g - x = x holds for some g and
x, then g = e). Then the action of G on X is paradoxical.

Proof. Letx be an element of X, and let o(x) be the orbit of x under the action of G.
That is, o(x) = {g-x: g € G}. Define a relation ~ on X by letting x ~ y hold if and
only if y = g-x for some g in G. It is easy to check that ~ is an equivalence relation
and that the equivalence classes of ~ are the orbits of the action of G on X. Use the
axiom of choice to create a set C that contains one point from each orbit. We’ll use
the set C to show that X is G-paradoxical.

Since G is G-paradoxical, there is a partition AU B of G such that G is G-
equidecomposable with A and with B. Then X = G - C, and the sets A - C and
B - C form a partition of X (to check the disjointness of A -C and B-C, use the
assumption that the action of G on X has no fixed points, together with the fact that
C contains exactly one element from each equivalence class under ~). Since G is

3The identity element of SO(3) may seem to be an exception. However, its action on R? can be
viewed as a rotation through the angle 0 about an arbitrary line through the origin.
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equidecomposable with A, we can choose a partition Gy, G, ..., G, of G, a partition
A1, Ay, ..., A, of A, and elements g1, g2, ..., g, of G such that A; = g; - G; for each
i. Then the sets G| -C, G5 -C, ..., G, - C form a partition of X, the sets A; -C, A, -C,
..., Ap-C form a partition of A -C, and A; - C = g; - (G; - C) holds for each i. In other
words, X and A - C are equidecomposable. A similar argument shows that X and B-C
are equidecomposable, and so X is G-paradoxical. O

Let S be the unit sphere {x € R : ||x|| = 1}, and let B be the unit ball {x € R?:
x|l < 1}.

G.8. (Proposition) Let F be a subgroup of SO(3) that is free on two generators.
Then there is a countable subset D of the sphere S such that S — D is F -paradoxical
and hence SO(3)-paradoxical.

Proof. The elements of F, since they belong to SO(3), are distance-preserving as
operators on R3; hence we can view them as acting on the sphere S. Each element
of F (other than the identity element) is a nontrivial rotation about a line through
the origin (see the remarks just before the statement of Proposition G.7) and so has
exactly two fixed points on S. Let D be the collection of all fixed points on S of
elements of F other than e. Since the group F is countable, D is also countable.
The elements of F have no fixed points in S — D, and S — D is closed under
the action of elements of F (forif x€ S—D, f € F, and fx € D, then fx would
be a fixed point of some nontrivial element f' of F, from which it would follow
that ' f/ fx = x and hence that f~! f'f = e, which contradicts the assumption that
1’ # e). It now follows from Proposition G.7 that S — D is F-paradoxical. Since F
is a subgroup of SO(3), S — D is also SO(3)-paradoxical. O

G.9. (Proposition) The sphere S is SO(3)-paradoxical.

Proof. Let F be a subgroup of SO(3) that is free on two generators, and let D be
a countable subset of S such that S — D is F-paradoxical (see Proposition G.8). We
begin the proof by constructing an element py of SO(3) such that the sets D, po(D),
pg (D), ... are disjoint. First we choose as axis for p a line L that passes through the
origin but through none of the points in D. We can describe the nontrivial rotations
with axis L in terms of values (i.e., angles) in the interval (0,2m). For each pair of
points x, y in § — D there is at most one rotation about L that takes x to y. Thus there
are only countably many rotations p about L for which DN p (D) is nonempty. A
similar argument shows that for each n there are at most countably many rotations
p for which DN p"(D) is nonempty. Since there are uncountably many rotations
about L, we can choose a rotation py such that for every n the sets D and p{j (D) are
disjoint. It follows that for all k and n the sets p&(D) and ps™"(D) are disjoint, and
hence that the sequence D, py(D), p2(D), ... consists of disjoint sets.

Claim. The sets S and S — D are SO(3)-equidecomposable.

Let D'~ = Uz pi(D) and let D%~ = Uz pi(D) = D U D'*. Then
S=(S—D*)uD* and S — D = (S—D**)UD"*. Since D' = py - D", it
follows that S and S — D are SO(3)-equidecomposable, and the claim is established.
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Since S and S — D are equidecomposable, while S — D is paradoxical, it follows
from Corollary G.4 that S is paradoxical. O

G.10. (Proposition) The ball B with its center removed, {x € R* : 0 < ||x|| < 1},
is SO(3)-paradoxical.

Proof. For each subset E of S let ¢(E) be the conical piece of the ball B defined by
c(E) = {x € R :x =15 for some ¢ in (0, 1] and some s in E}.

Thus, for example, ¢(S) is the ball B with its center removed. We know from
Proposition G.9 that the sphere S is SO(3)-paradoxical. If S = CUD is a partition
of S into sets that are SO(3)-equidecomposable with S, then ¢(S) = ¢(C) Uc(D) is
a partition of ¢(S) into sets that are SO(3)-equidecomposable with ¢(S); to see this,
for instance, in the case of ¢(S) and ¢(C), take a bijection f: S — C that is piecewise
defined by the group action, and note that rx — # f(x) gives a bijection from ¢(S) to
¢(C) that is piecewise defined by the group action. Since ¢(S) is the ball with its
center removed, the proof is complete. a

Now we can complete the proof of (1) and hence of the Banach—Tarski paradox:

G.11. (Theorem) The ball B is Gs-paradoxical, where G3 is the group of
isometries defined in Example G.I(c).

Proof. Let L be a line in R? that does not pass through the origin 0 but lies close
enough to it that none of the rotations about L map O to a point outside the ball B
(note that the rotations about L belong to G3 but not to SO(3)). Let py be a rotation
about L through an angle 0, where 6 /27 is irrational, in which case the points 0,
po(0), p3(0), ... are distinct. Let D = {0} U{p#(0) : n > 1} and D' = {p{(0) : n >
1}. Then B= (B—D®)UD® and B— {0} = (B—D°)UD', and we can modify the last
part of the proof of Proposition G.9 to conclude first that B is Gz-equidecomposable
with B — {0} and then, since B — {0} is SO(3)-paradoxical (Proposition G.10), that
B is G3-paradoxical. O

Exercises

Some of the linear algebra needed for this section is developed in the following
exercises. In particular, these exercises give a proof that the rotations of R? about
lines through the origin are exactly the actions on R3 induced by the elements of
SO(3).
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1. Let V be a subspace of R (possibly equal to R?), let {e;} be an orthonormal
basis* of V, and let A be the matrix of T with respect to {e;}. Show that the
conditions

(i) (Tx,Ty) = (x,y) holds for all x, y in V,
(i1) A is an orthogonal matrix, and
(iii) A'A =1
are equivalent. Thus we can call the operator T orthogonal if its matrix with
respect to some (and also every) orthonormal basis of V' is an orthogonal matrix.
2. Suppose that T is an orthogonal operator on R>.

(a) Show thatdet(7T) is 1 or —1.

(b) Show that T has at least one real eigenvalue. (Hint: The characteristic
polynomial of T is a cubic polynomial.)

(c) Show that every real eigenvalue of T has absolute value 1.

3. Let T be an orthogonal operator on R, let A be a real eigenvalue of T, and let x
be an eigenvector of T that corresponds to the eigenvalue A.

(a) Let x* be the set of all vectors y in R> that are orthogonal to x (i.e., the set
of all y such that (x,y) = 0). Show that x" is a linear subspace of R? that is
invariant under T, in the sense that T (y) € x- whenevery € x*.

(b) Let T,. be the restriction of T to x*. Show that the determinants of 7 and

T,. are related by det(7T) = A det(T,. ).

X

4.(a) Let S be an orthogonal operator on R?, or on a two-dimensional subspace of
IR3, and suppose that det(S) = —1. Show that 1 and —1 are both eigenvalues
of S. (Hint: This can be proved using elementary calculations involving the
matrix of S; no big theorems are needed.)

(b) Use part (a) to show that if 7 is an orthogonal operator on R3 that has
determinant 1 and has —1 among its eigenvalues, then the eigenvalues of T
are — 1 (with multiplicity 2) and 1 (with multiplicity 1).

(c) Conclude that if T is an orthogonal operator on R3 that has determinant 1 and
has —1 among its eigenvalues, then 7 is a rotation through an angle of 7w about
some line through the origin.

5.(a) Let S be an orthogonal operator on R?, or on a two-dimensional subspace of
IR3, and suppose that det(S) = 1. Show that for any orthonormal basis of the
two-dimensional space, there are real numbers a and b such that a> 4+ b*> = 1

and such that the matrix of S with respect to that basis is (Z _b) and hence
a

cos® —sin0

has the fi
*® eOrm(sin@ cos 0

) for some real number 0.

* An orthonormal basis for a finite-dimensional inner product space V is a basis {e;} of V' such that
(ei,ej) =0ifi# jand (e;,e;) = 1ifi=j.
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(b) Use part (a) to show that if 7 is an orthogonal operator on R3 that has
determinant 1 and has 1 among its eigenvalues, then there is an orthonormal
basis of R3 with respect to which T has matrix

1 0 0
0 cos@ —sinf |,
0 sin@ cos@

where 0 is a real number. Conclude that T is a rotation through an angle of 6
about some line through the origin.
6. The preceding exercises outline a proof that every matrix in SO(3) gives a
rotation of R about some line through the origin. Prove the converse: every
rotation of R* about a line through the origin corresponds to a matrix in SO(3).

Notes

The fundamental paper by Banach and Tarski is [2]. The book by Wagon [122] is
very thorough and rather up-to-date.



Appendix H
The Henstock—Kurzweil and McShane Integrals

In this appendix we look at the consequences of making what may seem to be a small
change to the definition of the Riemann integral. The modified definition gives what
is often called the Henstock—Kurzweil integral or the generalized Riemann integral.
It will be easy to see that the Henstock—Kurzweil integral is an extension of the
Riemann integral; we will see later that it is in fact also an extension of the Lebesgue
integral.

Near the end of this appendix we look at another modification of the definition
of the Riemann integral; this modification gives the McShane integral. We will see
that the McShane integral turns out to be equivalent to the Lebesgue integral.

Most of the results in this appendix are presented as exercises, often with hints.

Let [a,b] be a closed bounded interval. Recall (see Sect.2.5) that a partition of
[a,b] is a finite sequence {a;}*_ of real numbers such that

a=ap<ay <---<a=b,

and that a tagged partition of [a,b] is a partition of [a, b], together with a sequence
{)c,-}i-‘:1 of real numbers (called fags) such that a; ;| < x; < a; holds for each i (in
other words, such that for each i the value x; belongs to the interval [a;_1,a;]). We
will often denote a partition or a tagged partition by a letter such as 2. Recall also
that the norm or mesh of a partition or tagged partition &7, written || Z?|, is defined
by ||<@H = max,»(a,- - aifl).

Let f be a real-valued function on an interval [a,b], and let & be a tagged
partition of [a,D]. Recall that the Riemann sum Z(f, ) corresponding to f and
& is the weighted sum of values of f given by

k

R(f,P) =Y fx)(ai—ai1).

i=1

We saw in Proposition 2.5.7 that the Riemann integral of f over the interval [a, b]
is the limit of Riemann sums Z(f, ?), where the limit is taken as the mesh of &2
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approaches 0. More precisely, f is Riemann integrable, with integral L, if and only
if for every positive number € there is a positive number & such that

|Z%(f, ) — L| < € holds for every & that satisfies || Z?|| < 8.

It seems plausible that it might be worthwhile to require some of the subintervals
in a tagged partition & to be rather narrow (perhaps in regions where the function
f is varying rapidly), while allowing other subintervals to be wider. This is what the
Henstock—Kurzweil integral does; we turn to the details.

A real-valued function & whose domain includes the interval [a, b] is said to be a
gauge on [a,b] if it satisfies 6(x) > 0 at each x in [a,b]. Given a gauge 0, a tagged
partition & of [a, b] is said to be 8-fine, or subordinate to 6, if

lai—1,ai] € (xi — 8(xi),xi + 0 (x;))

holds for each i. So the subintervals in a §-fine tagged partition & must be very short
in the parts of [a,b] where all the values of § are close to 0, while the subintervals
in other parts of [a,b] can be longer.

Now consider a function f: [a,b] — R. Note that, in contrast to our discussion
of the Riemann integral, we are not assuming that f is bounded, although we are
for now still assuming that it is real-valued (and not [—eo, 4-oo]-valued). Then f is
Henstock—Kurzweil integrable on [a,b] if there is a number L such that for every
positive number € there is a gauge § on [a, b] such that

|Z(f, ) — L| < € holds for every 0-fine tagged partition & of [a,b].

The number L is called the Henstock—Kurzweil integral of f over the interval [a, D]
and is denoted by (H) [ f or by (H) [” f(x)dx. In cases where there does not seem
to be a significant chance of confusion, we may simply write ff for ff f(x)dx.

See Exercises 11 and 12 for some nontrivial examples of Henstock—Kurzweil
integrable functions.

The preceding definition would not make sense if for some function f there were
two values of L, each satisfying the definition of the integral of f. The following
exercise gives the tool needed to check (in Exercise 2) that such pathology does not
occur.

Exercises

1. Cousin’s lemma says that if & is a gauge on an interval [a,b], then there is a
O-fine partition of [a, b]. Prove Cousin’s lemma

(a) with a bisection argument (if [a,b] fails to have a -fine partition, then so
does either its left half or its right half, ...), and
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(b) by analyzing

sup{t € [a,b] : there is a 6-fine partition of [a,7]}.

. Show that the value of the Henstock—Kurzweil integral is well defined. That

is, show that if f is Henstock—Kurzweil integrable and if L; and L, are real
numbers, each of which satisfies the definition of the Henstock—Kurzweil
integral of f, then L; = L,. (Hint: Use Exercise 1.)

. Show that if f: [a,b] — R is Riemann integrable, then f is Henstock—Kurzweil

integrable and (H) | : f=® [: f- (The proof can be very short.)

. Show that the set of Henstock—Kurzweil integrable functions on [a, b] is a vector

space and that the Henstock—Kurzweil integral is a positive linear functional
on it.

. (Cauchy criterion for Henstock—Kurzweil integrability) Show that a function

f: [a,b] — R is Henstock—Kurzweil integrable if and only if for every positive
number € there is a gauge & such that |Z(f, %) — Z(f,9%;)| < € holds
whenever & and &2, are §-fine tagged partitions of [a, b].

. Suppose that § is a gauge on [a,b] and that x is a point in [a,b]. Then there is

a gauge O’ that satisfies 6’ < & and is such that each &’-fine tagged partition
contains x as one of its tags. In many situations this allows us to force specified
points to be tags in the partitions under consideration. (Hint: Use

8'(t) = min(8(7), [t —x[/2) ift # x, and
6(x) ifr=x

to define &'.)

. Suppose that § is a gauge on [a,b] and that & is a 8-fine tagged partition

of [a,b] that contains x among its tags. If x belongs to the interior of one of
the subintervals of 2, say, a;_1 < x < a;, and if we define a partition &’ to
contain the same intervals and tags as &7, except that the interval [a;_1,q;] is
replaced with the two intervals [a;_1,x] and [x,a;], with x serving as tag in
each of these new intervals, then &' is also a &-fine partition of [a,b] and

R (f, P =2%(f,2?) holds for each function f on [a,b].

. Show that if f: [a,b] — R is Henstock—-Kurzweil integrable on [a,b] and if

g: la,b] — R agrees with f everywhere in [a,b] except perhaps at a finite
number of points, then g is Henstock—Kurzweil integrable on [a,b] and [’ ¢ =

2 f.

. Show that if @ < ¢ < b and if f is Henstock—Kurzweil integrable on [a, c| and on

[c,b], then f is Henstock—Kurzweil integrable on [a,b] and [ f = [ f+ [ f.
(Hint: Use Exercises 6 and 7.)

Show that if f is Henstock—Kurzweil integrable on [a,b] and if [c,d] is a
subinterval of [a,b], then f is Henstock—Kurzweil integrable on [c,d].



432 H The Henstock—Kurzweil and McShane Integrals

11. Let f: [0,1] — R be defined by

fx) =

n ifxe€[l—5g,1—5).,n=12 .. and
0 ifx=1.

Using only the definition and basic properties of the Henstock—Kurzweil
integral (that is, without using deeper results, such as those given in Exercises 14
and 17), verify that f is Henstock—Kurzweil integrable on [0, 1] and that

1 < n
fdx= ) —.
/0 n=1 2"

12. Let f: [0,1] — R be the characteristic function of the set of rational numbers
in [0,1]. Show that f is Henstock—-Kurzweil integrable, with fol f equal to 0.
(Hint: Let {r,}7 be an enumeration of the rationals in [0, 1]. Given a positive
value &, define a gauge § by letting 8(r,) = £/2"*! for each n, while letting
6(x) =1 for all other values of x. Check that each d-fine partition & satisfies
[Z(f, Z)| < &)

13.(a) Let f: [a,b] — R be a function that vanishes almost everywhere. Show that
f is Henstock—Kurzweil integrable, with f: f equal to 0. (Hint: Suppose
that € > 0. For each positive integer n first define A, by A, = {x € [a,D] :
n—1<|f(x)| <n} and then choose an open set U, such that A, C U, and
A(U,) < g/n2". Define a gauge 8 by letting 6 (x) be the distance from x to
the complement of U, if x € A, and letting d(x) =1 if x ¢ U,A,,. Find an
upper bound for | Z(f, Z?)| that is valid for all 5-fine partitions & of [a,b].)

(b) Suppose that the functions f,g: [a,b] — R agree almost everywhere and
that f is Henstock—Kurzweil integrable. Show that g is Henstock—Kurzweil
integrable and that [* ¢ = [ 1.

We can now define the Henstock—Kurzweil integral for [—oo, +oo]-valued func-
tions: one calls a function f: [a,b] — [—co, +eo| Henstock—Kurzweil integrable if
there is a function g: [a,b] — R that is Henstock—Kurzweil integrable and agrees
with f almost everywhere. The Henstock—Kurzweil integral of f is then defined to
be that of g. Exercise 13(b) implies that the resulting concepts of integrability and
integral are well defined. One can deal in a similar way with the Henstock—Kurzweil
integral for functions that are defined only almost everywhere.

A tagged subpartition of an interval [a,b] is a finite indexed collection
{[ci,di]}%_, of nonoverlapping' subintervals of [a,b], together with tags {x;}X
such that x; € [¢;,d;] holds for each i. So a tagged subpartition is like a tagged
partition, except that the intervals involved may not cover the entire interval [a,b].
Note that with subpartitions we cannot do as we did with partitions and use a

Let {I;} be an indexed collection of intervals. These intervals are nonoverlapping if for all i and
J» the intersection /; N /; contains at most one point.
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sequence of division points {a;} to specify the subintervals, since now there may be
gaps between the subintervals.

Let 6 be a gauge on [a,b]. A tagged subpartition is said to be J-fine, or
subordinate to 6, if [c;,d;i] C (x; — 6(x;),x; + 8(x;)) holds for each i. The Riemann
sum associated to a function f and tagged subpartition & is, of course, defined by
Z(f,P) =% f(xi)(di — ci).

The following result gives some useful estimates involving Riemann sums over
subpartitions.

14. (Saks-Henstock lemma) Suppose that f: [a,b] — R is Henstock—Kurzweil
integrable, that € is a positive number, and that § is a gauge on [a,b] such that
every §-fine tagged partition 2 of [a,b] satisfies |2(f, 2) — (H) [” f| < e.
Show that if & is a 6-fine tagged subpartition of [a,b|, with subintervals
{[ci,d;]} and tags {x;}, then

(di—ci)—Y(H f‘<€ ey

i

and

Z‘f(xi)(di—ci)—(H)/:if‘§2€. (2)

(Hint: Suppose that f, €, 8, and &’ are as specified above. Let {[g;,;]} be
the closures of the maximal subintervals of [a,b] that are disjoint from all the
subintervals of &', and for each j choose a partition &; of [g;,h;] that is
subordinate to 6 and moreover is such that Z(f, 2?;) is extremely close to
(H) [, h]/ f- To prove (1), consider the partition of [a,b] formed by combining
2" and all the &2;. What happens when the partitions &?; are made finer and
finer? In order to derive (2) from (1), look at two subpartitions, one where the
differences f(x;)(di —c;) — (H) fc‘f_" S are all positive, and one where they are all
negative.)

15. Suppose that f: [a,b] — R is Henstock—Kurzweil integrable and that
F: [a,b] — R is defined by F(x) = [ f. Show that F is continuous. (Hint:
Use the Saks—Henstock lemma (Exercise 14) to show that given a positive €
and an element xq of [a,b], we have |F(x) — F(xo) — f(x0)(x — x0)| < € for all
x sufficiently close to xg.)

16.(a) Suppose that f: [a,b) — R is Henstock—Kurzweil integrable on [a,c] for
each ¢ in (a,b). Show that for each positive € there is a positive function &
on [a,b) such that for each ¢ in (a,b) and each §-fine partition & of [a,c|
we have |Z(f, ) — [, f| < e. (Hint: Let {a,}7 be a strictly increasing
sequence such that a; = a and lim,a, = b. For each n choose a gauge
O, on [an,any1] such that each §,-fine partition & of [a,,a,1] satisfies
\%(f,2) — [,*! f] < &/2". Form & by combining the gauges 0,, n = 1,
2, ..., suitably. See Exercises 6, 7, and 14.)

(b) Show thatif f: [a,b] — R is Henstock—Kurzweil integrable on [a, c] for each
cin (a,b) and if lim._,;, [ f exists, then f is Henstock—Kurzweil integrable
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on [a,b] and [’ f = Tlim,_,, [ f. Thus the improper Henstock—Kurzweil
integral is no more general than the Henstock—Kurzweil integral. (Hint: By
modifying f, if necessary, we can assume that f(b) = 0. Use the function &
from part (a) of this exercise in your proof.)
(The monotone convergence theorem) This exercise is devoted to a proof of
the monotone convergence theorem for the Henstock—Kurzweil integral, which
can be stated as follows: Suppose that f and fi, f>, ... are [—eo, 4oo]-valued
functions on [a, D] that are finite almost everywhere and satisfy

filx) < folx) <L 3)

and )

£06) = tim f,(2) @)
at almost every x in [a,b]. If each f, is Henstock—Kurzweil integrable and
if the sequence {(H) f: fn} is bounded above, then f is Henstock—Kurzweil
integrable and (H) | : f=lim, (H) ff S

(a) Check that for proving the monotone convergence theorem it is enough to
consider the case where all the functions involved are [0, +ec)-valued and
relations (3) and (4) hold at every x in [a,b].

(b) Prove the monotone convergence theorem. (Hint: Let L be the limit of the
sequence {(H) [ : fu}. Here is a strategy for showing that f is integrable,
with integral L: Let € be a positive number, and for each n let §, be a gauge
such that each 8,-fine partition & satisfies |2(f,, 2) — [* fu| < £/2". For
each x in [a, b] let n(x) be the smallest of those positive integers n that satisfy
J fu>L—¢€and f,(x) > f(x) — €. Use the §,’s to create a gauge 6 by letting
0(x) = 8,(y) (x) for each x. Let & be a §-fine partition, with division points
{ai} and tags {x;}. To bound |Z(f, ) — L|, let m and M be the smallest
and largest values of n(x;) as x; ranges over the set of tags of 2, note that

> fa)(ai—aiy) - 2/; Fas)
< ‘Zf(xi)(ai —ai1) = O ) (i) (@i — HH)‘

)

+ ‘an(xi)(xi)(ai —ai1)— Y, ! e

Jai—1

use the definition of § and the Saks—Henstock lemma to verify that the right
side of the formula displayed above is at most (b — a)e + €, and then note
that ¥, [ | fu(x;) lies between ff fm and [: fu, both of which are close to L.)

1

The goal of this exercise is to prove that the Henstock—Kurzweil integral is an
extension of the Lebesgue integral—that is, that

f is Henstock—Kurzweil integrable and (H) / f=(x / f 5)

holds for each Lebesgue integrable function f: [a,b] — R.
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(a) Show that (5) holds if f is the characteristic function of a Borel subset of
[a,b]. (Hint: Use Theorem 1.6.2.)

(b) Show that (5) also holds if f is the characteristic function of a Lebesgue
measurable subset of [a,b].

(c) Show that (5) holds if f is a nonnegative Lebesgue integrable function on
[a,b]. (Hint: Use the monotone convergence theorems for the Lebesgue and
Henstock—Kurzweil integrals.)

(d) Finally, show that (5) holds if f is an arbitrary Lebesgue integrable function.

Suppose that f: [a,b] — R is Henstock—-Kurzweil integrable, and let
F: [a,b] — R be its indefinite integral—that is, the function defined by
F(x) = [ f for each x in [a,b]. Then F is differentiable, with derivative
given by F'(x) = f(x), at almost every x in [a,b]. (Hint: Define D by

F()—F()

D" (x)=1i
(x) = limsup P

t—xt

Let o and € be positive numbers, and use the Vitali covering theorem and
the Saks—Henstock lemma to show that if the set {x: D (x) > f(x) + a} is
nonempty, then we can choose a sequence {[a;,b;]} of disjoint intervals that
cover it up to a Lebesgue null set and satisfy

e > Y (F (b))~ F(a) — f(a)(bi— ) > ad*({x: D*(x) > f(x) + a}).

Conclude that D™ < f almost everywhere. Prove analogous results for lower
limits and for limits from the left.)

Show that each Henstock—Kurzweil integrable function is Lebesgue measura-
ble. (Hint: Use Exercises 15 and 19.)

Is every Henstock—Kurzweil integrable function Borel measurable?

(a) Show that the converse to part (c) of Exercise 18 also holds. Thus a
nonnegative function is Henstock—Kurzweil integrable if and only if it
is Lebesgue integrable. (Hint: Why was this not included as a part of
Exercise 18, but delayed to this point?)

(b) Show that part (a) fails if the non-negativity condition is omitted. (Hint: Take
a function on [a, b] that has an improper Riemann integral but is not Lebesgue
integrable.)

(A version of Theorem 6.3.11 for the Henstock—Kurzweil integral) Suppose
that the function F: [a,b] — R is continuous on [a, b] and is differentiable at all
but a countable collection of points in [a,b]. Then its derivative F” is Henstock—
Kurzweil integrable on [a, b], and

(H) /abF’(x) dx = F(b) - F(a).
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(Hint: It is enough to deal with the function f that agrees with F’ where F is
differentiable and that vanishes elsewhere. Let {t;} be a sequence consisting
of the points at which F is not differentiable. Suppose that € > 0, and define
0 on the points # by choosing positive values 6(t;) that are so small that
Y. |(F(bi) — F(a;i)| < € whenever {[a;, b;]} is a finite sequence of intervals such
that #; € [a;,b;] and [a;,b;]  (t; — 8(t;),1; + 6(;)) hold for each i. Check that
0 can be extended to a gauge (also called &) on [a,b] such that each §-fine
partition & of [a, b] satisfies |Z(f, 7)) — (F(b) — F(a))| < 2¢.)

The McShane integral is another generalization of the Riemann integral; its
definition is given by a slight modification of the definition of the Henstock—
Kurzweil integral.

Let us consider a generalization of the concept of a tagged partition in which
the tags x; are no longer required to belong to the corresponding intervals [a;_1,a;].
More precisely, a freely tagged” partition of [a,b] is a partition {a;}¥_, of [a,b],
together with a sequence {x;}_, of real numbers (tags) such that x; € [a,b] for each
i; it is not required that x; € [a;_1,a;]. If § is a gauge on [a,b], then a §-fine freely
tagged partition is a freely tagged partition such that

lai—1,ai] € (xi — 8(xi),xi + 0 (x;))

holds for each i. Thus the subintervals in a d-fine freely tagged partition are required
to lie close to the corresponding tags, but are not required to contain the tags.

Note that every -fine tagged partition of [a,b] is a 6-fine freely tagged partition
of [a,b], but that the converse does not hold. Note also that the §-fine tagged
partitions of [a,b] are exactly the §-fine freely tagged partitions of [a,b] that are
in fact tagged partitions.

Riemann sums are defined for freely tagged partitions just as they are for tagged
partitions: if the freely tagged partition &2 has division points {ai}{?:o and tags
{x;}%_,, then for a function f: [a,b] — R we have Z(f, 2) = ¥X_| f(xi)(ai—ai_1).

A function f: [a,b] — R is McShane integrable on [a,b] if there is a number L
such that for every positive number € there is a gauge 6 on [a, b] such that

|2(f,2?) — L| < € holds for every 8-fine freely tagged partition & of [a, b];

the number L is then called the McShane integral of f over |a,b]. We will denote
the McShane integral of f over the interval [a,b] by (M) ff for (M) ab f(x)dx; in
cases where there does not seem to be a significant chance of confusion, we may
write simply ff for ff f(x)dx.

Arguments that show that the Henstock—Kurzweil integral is well defined (see
Exercise 2) can also be used to show that the McShane integral is well defined.

2 Another term for a freely tagged partition is a free tagged partition.
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Furthermore, it is easy to see that the Henstock—Kurzweil integral is an extension
of the McShane integral: since every J-fine tagged partition is a -fine freely tagged
partition, it follows that if L is a value such that | Z(f, %) — L| < € holds for every
J-fine freely tagged partition, then this same inequality holds for every 8-fine tagged
partition. We will soon see that the McShane integral is equivalent to the Lebesgue
integral.

24. Show that the McShane integral is an extension of the Riemann integral:
if f: [a,b] — R is Riemann integrable, then f is McShane integrable and the
McShane and Riemann integrals of f are equal. (Hint: Modify the proof of
Proposition 2.5.7.)

25. Show that the set of McShane integrable functions on [a, b] is a vector space and
that the McShane integral is a positive linear functional on it (see Exercise 4).

26. Formulate and prove a Cauchy criterion for McShane integrability (see Exer-
cise 5).

27. Show that Exercises 9 and 10, which relate integrals on an interval to integrals
on its subintervals, also hold for the McShane integral.

28. Prove a version of Exercise 13 for the McShane integral. That is, prove that sets
of Lebesgue measure zero behave as might be expected.

29. Formulate and prove the Saks—Henstock lemma (see Exercise 14) for the
McShane integral (your new version should involve freely tagged partitions and
subpartitions, and not just tagged ones).

30. Formulate and prove the monotone convergence theorem (see Exercise 17) for
the McShane integral.

31. Show that a nonnegative function f: [a,b] — R is McShane integrable if and
only if it is Lebesgue integrable, and that in that case (M) [ f = (L) [ f. (Hint:
Use ideas from Exercises 18 and 22.)

32. In this exercise, we prove that the McShane and Lebesgue integrals (for
functions on [a, b]) are equivalent.

(a) Show thatif f: [a,b] — R is McShane integrable, then |f] is also McShane
integrable. (Hint: Use the Cauchy criterion for McShane integrability.
Suppose that 7| and &2, are §-fine freely tagged partitions of [a, b], where
2 has subintervals® {I;} and tags {x;} and 2, has subintervals{J;} and
tags {y;}. We will consider freely tagged partitions %3 and & of [a,b]
whose subintervals are the nondegenerate intervals of the form I; NJ; and
whose tags (where &3 has tags {u; j} and 2 has tags {v; ;}) are such that
both u; ; and v; ; belong to the set {x;,y;}. Check that in such cases &3 and
P are both §-fine. Check also that for each i and j we can choose u; ; and
v, j such that

WF Gl = [F O < S (i j) = f(vig),

3Here we name the subintervals, rather than the division points, since we will also be considering
partitions consisting of subintervals of the form /; NJ;; we will need to relate ; NJ; to I; and J;,
and this is awkward to do in terms of division points.
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and that with this choice of &5 and £, we have
|‘%(|f|7gzl)_'@(|f|7f@2)| S‘@(fagz3)_‘%(f7f@4)

Use this inequality to derive the Cauchy condition for |f| from the Cauchy
condition for f.)

(b) Show that if f: [a,b] — R is McShane integrable, then f* and f~, the
positive and negative parts of f, are McShane integrable. (Hint: Express f
and f~ as simple algebraic expressions involving |f| and f.)

(c) Conclude that the McShane integral is equivalent to the Lebesgue integral.
In other words, an arbitrary function f: [a,b] — R is McShane integrable if
and only if it is Lebesgue integrable, and in that case (M) [: = [: f.
(See Exercise 31.)

(d) Show that part (a) of this exercise cannot be extended to the Henstock—
Kurzweil integral. That is, show by example that the Henstock—Kurzweil
integrability of a function f: [a,b] — R does not imply the Henstock—
Kurzweil integrability of | f|. (Hint: Once again, consider a function on [a, b
that has an improper Riemann integral but is not Lebesgue integrable.)

Notes

There are many books and papers on the Henstock—Kurzweil integral. Two standard
and thorough ones are by Bartle [5] and Gordon [52]. See also the paper by
Bongiorno [16] in the handbook edited by Pap [95].
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1P £, 56,68

17 f(x)dx, 56,68

1lr.67

Tat-67

('7 ')’ 89

3(z2), 382

Jr, 158

K
HC(X), 184
H(X), 184

L
Ly, 234

L(f), 234

L(f), 234
L=(X, /1), 96

Index of notation

LP(X, o/ 1), 96
Z1,56

L'(G), 300

LY X, o, u,E), 400
LY X, o ,u,R), 56
22,90

A, 18

Aa» 18

A%, 13,14

A5, 14

L., 233

L*,233

I(f, ), 67

lim, f,,, 43

liminf, f,, 43
liminf, x,, 381
lim,, x,,, 381

lim,, s,,, 86

limsup,, f, 43
limsup,, x,, 381
lim,, x,,, 381

£, 89

(L) [y f.56

(L) [} f(x)dx, 56
2P (X, 1,C),91
£P(X, 4, 1,R), 91
ZL>(X, o ,u,C

)92
Z=(X, o/, 11,R), 92

M

=, x> f(x), 374
M(G), 301
M,(G), 302
(M) [ f.436
(M) [ f(x)dx, 436
My 17,18
My, 16
M,(X,C), 201
M,(X,R), 201
ut, 117

u—, 117

M1V o, 121

Hi A o, 121
w31

Uc, 36

11, 293

e, 12,197
uxv, 145,222
u v, 130

Mi* o, 314
1*, 12,33

Wy, 33
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ux*v, 301

ux or i, 309
M(X,o,C), 119
M(X, < ,R), 119

N

n, 243

N, 243
JV(nl,...,nk),243
N(0,1),311
N(u,0?),311
Vg, 130

Vf, 204

vu, 122,125
Vs, 130

Vi*Vp, 314

o)
0(d), 284

P
P(A B), 340
B> 331

T, . 243
P(X), 374

S

sgn(z), 108
o(F#),3

o7, 309

ox, 309

o(X;,i € 1), 309
o(X1,Xs,...), 309
SO(d), 418
SoXa, 241
sup(A), 381
sup,, fn, 43
supp(f), 184
supp (i), 207

T
T, 280

U
u(f, ), 67

v

var(X), 309
V., 233

Ve, 233
Vic[a,b], 133
V*, 106

X
xVy, 380
x Ay, 380

z, 108
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A
&/ -measurable
function, 42
set, 2
a.e., 50
a.e.[u],50
a.s., 319
absolute continuity, 122
for functions from R to R, 135
for signed and complex measures, 125
uniform, 129
absolutely continuous part of a measure, 130
absolutely convergent series, 88
act, 417
action, 417
adapted, 345
algebra, 300
Banach, 300
of functions, 392
of sets, 1
algebraic dual space, 106
almost everywhere, 50
almost everywhere differentiability
of finite Borel measures, 167
of functions of finite variation, 171
of monotone functions, 171
almost surely, 319
analytic
measurable space, 270
set, 248
measurability, 262
that is not a Borel set, 254
ancestor, 419
approximate identity, 305
atom of a o-algebra, 272
axiom of choice, 27, 377
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B
Baire
category theorem, 395
measure, 197
set, 197
o-algebra, 197,226
Banach
algebra, 300
space, 87
Banach-Tarski paradox, 417,419
base
for a family of neighborhoods, 280
for a topological space, 390
basis
Hamel, 30
Beppo Levi’s theorem, 62
Bernoulli distribution, 315
bijection, bijective function, 375
binary expansion, 315-316, 382
binomial distribution, 318
Blackwell’s theorem on analytic measurable
spaces, 272
Bochner
integrable function, 399
integral, 399
Borel
function, 42
isomorphism, 259
measurability of the image of a Borel set
under an injective Borel function, 260
measurable function, 42, 189, 397
measure, 11, 189
product, regular, 222
o-algebra, 4, 189
subsets, 4, 189
Borel-Cantelli lemmas, 320

449

Texts Basler Lehrbiicher, DOI 10.1007/978-1-4614-6956-8 ,

© Springer Science+Business Media, LLC 2013



450

bound for a linear operator, 106
bounded
linear operator, 106
set, 385, 393
variation, function of, 133
Bourbaki’s treatment of integration, 215-218
Brownian motion, 357
existence, 357-363
nowhere differentiable paths, 361

C
C! function, 158
Cantor
function, 4849, 52, 130, 137, 178
set, 26-27, 47-49
singular function, 48
Cantor’s nested set theorem, 394
capacitable, 266
capacity, 266
cardinality, 375
of the continuum, 376
Cartesian product, 375
Cauchy criterion
for Henstock—Kurzweil integrability, 431
for McShane integrability, 437
Cauchy sequence, 86, 394
Cauchy—-Schwarz inequality, 90
central limit theorem, 338
chain rule, 157
change of variable, 155-162
characteristic function, 331, 375
continuity of, 331
derivatives of, 332
of binomial distribution, 338
of convolution, 333
of normal distribution, 333
of Poisson distribution, 339
of uniform distribution, 339
uniform continuity of, 339
characterization
of absolutely continuous functions, 135-137,
173
of compact metric spaces, 395
classification of Borel sets, 255-257
closed
ball, 393
set, 385, 389
closure
of a set, 385, 389
under an operation, 1
compact
group, 279

Index

set, 387, 391
topological space, 391
complete
measure or measure space, 30
metric space, 87,394
ordered field, 379
completeness
of Cla,b], 87
of LP, 99
of Co(X) and C§ (X), 199
of M(X,o/,R) and M(X,</,C), 119
completion of a o-algebra or measure, 31
complex
conjugate, 108
measure, 118
numbers, 74, 382
valued functions, 74
concentration of a measure on a set, 130
condensation point, 252
conditional expectation of X given 4, 341
basic properties, 342344
conditional expectation of X, given thatY =y;,
341
conditional probability of A given B, 340
conjugate
complex, 108
exponents, 93, 108
space, 106
construction of random variables, 316, 365
continuous
function, 386, 390
linear operator, 105
continuous measure, 11
continuum hypothesis, 376
convergence
almost everywhere, 80
almost sure, 319
almost uniform, 82
in L”-norm, 96
in p™ mean, 96
in distribution, 328
and characteristic functions, 337
in mean, 82
in measure, 79
in probability, 319
inIRY, 386
of binomial distribution to Poisson, 339
of random series, 355
weak, 140, 328
convergent
sequence in a metric space, 86, 394
sequence in R9, 386
convergent series, 88
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converse to strong law of large numbers, 324
convex
function, 98
set, 384
convolution, 153,298, 301, 314
coset, 96, 283

countability of the set of rational numbers, 376

countable
additivity, 7, 113, 118
set, 375
subadditivity, 9, 13
countably
additive, 7
measure, 7
generated o-algebra or measurable space,
102,270
separated o-algebra or measurable space,
271

subadditive, 13
counting measure, 8
Cousin’s lemma, 430
covering

Vitali, 164
cross sections, 267-270
cube

closed, 164

half open, 24

open, 166

D
d-system, 37
Daniell, P. J., 226
De Morgan’s laws, 374
decreasing sequence of sets, 5
defined piecewise, 418
dense set, 86, 390
density
of a distribution, 310
of a random variable, 310
density in L? of subspace determined by
continuous functions, 101
simple functions, 100
step functions, 101
density of ' (X) in Cp(X), 199
derivate
lower, 166
upper, 166
derivative, 157, 166
determinant
of a linear operator, 156
of a matrix, 155
determines, 100
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diameter of a set, 393
differentiable, 157, 166
Dini’s theorem, 227
directed
set, 305
upward, 209
discrete
measure, 11
topological space, 182
topology, 182
disjoint union
of sets, 241
of topological spaces, 241
distance between a point and a set, 393
distribution, 308
joint, 308
distribution function, 309
cumulative, 309
dominated convergence theorem, 63, 400
for conditional expectations, 344
Doob’s martingale convergence theorem, 348
double series, 151, 154
dual
of L!, 214,303
of L', example, 140,215
of L?, 108, 138-140
of Co(X) or of C§ (X), 201
space, 106
dyadic rational, 382
Dynkin class, 37

E
Egoroff’s theorem, 81
elementary

integral, 227

outcome, 307
empirical distribution function, 326
enumeration, 375
equidecomposable, 418
equivalence

classes of functions, 96

of McShane and Lebesgue integrals,

437-438

relation, 376
essentially bounded function, 92
event, 307
existence

of sequences of independent random

variables, 317, 365

expectation, 308
expected value, 308
experiment, 307
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extended
real numbers, 380
real-valued function, 46
extremal subset, 407
extreme point, 407

F

Fatou’s lemma, 63

field, 379
of sets, 2
ordered, 379

filtration, 345

finer, 67

finite
additivity, 7, 113
intersection property, 391
measure or measurable space, 9
signed measure, 114
variation, function of, 133

finitely additive, 7
measure, 7, 111

Fourier
inversion formula, 334
transform, 331

free group, 421

freely generated, 421

freely tagged partition, 436
S-fine, 436

Fs,5,183

Fubini’s theorem
on iterated integrals, 148, 224

on the differentiation of series, 171

function
continuous, 386, 390
lower semicontinuous, 175, 209
uniformly continuous, 386
upper semicontinuous, 175

G
G-equidecomposable, 418
G-paradoxical, 420
gambling, 347, 348
gauge, 430
Gaussian
distribution, 310
random variable, 311
Gs, 5,183
general linear group, 284
generalized Riemann integral, 429
generated, 421
freely, 421

Index

Glivenko—Cantelli theorem, 326
graph of a function, 244
group, 384
abelian, 384
commutative, 384
compact, 279
general linear, 284
locally compact, 279
orthogonal, 284
topological, 279

H
Haar measure, 285
examples, 285, 292, 297
existence, 286
left, 285
right, 285
uniqueness, 290
Hahn decomposition, 116
theorem, 116
Hahn-Banach theorem, 401
Hamel basis, 30
has
a finite expected value, 308
an expected value, 308
Hausdorft space, 391
Heine-Borel theorem, 387
Henstock—Kurzweil
integrability, 430, 432
of characteristic function of rationals,
432
integral, 429, 430, 432
extension of Lebesgue integral,
434-435
Hilbert space, 90
Holder’s inequality, 93
homeomorphic, 390
homeomorphism, 390
homogeneity, 85
homomorphism of groups, 384

I

I-capacitable, 266

iid., 320

i.0., 320

ideal, 302, 414

identically distributed, 320

identification of functions that agree (locally)
almost everywhere, 96

image of a set, 374

imaginary part, 74-75, 382



Index

increasing sequence of sets, 5
independent

events, 312

random variables, 312

and product measures, 313

o-algebras, 312
index set, 375
indicator function, 331, 375
infimum, 379
infinitely often, 320
injection, injective function, 375
inner measure, 33
inner product, 89

space, 90
inner regularity, 190
integrable

function, 56, 399

over A, 56

uniformly, 129
integral

basic properties, 53—60

Bochner, 399

convergence theorems, 61-64

definition, 53-56

improper, 71

of f over A, 56

with respect to finite signed or complex

measure, 120

integration by parts, 151, 173
interior of a set, 389
intermediate value theorem, 387
interval, d-dimensional, 14
inverse Fourier transform, 334
inverse image of a set, 374
irrational numbers, set of

as a Polish space, 243

homeomorphic to .47, 255
isometric isomorphism, 106
isometry, 106
isomorphic, 259
isomorphism

Borel, 259

isometric, 106

measurable, 259

of groups, 384

theorem for Borel sets, 259, 261
iterated integrals, 147

J
Jacobian, 158
Jensen’s inequality, 98
for conditional expectations, 354

Jordan decomposition
of complex measure, 118
of signed measure, 117
theorem, 117

K
kernel, 65
Kindler, J., 226
Kolmogorov’s
consistency theorem, 368
inequality, 322
zero—one law, 321

L
L-almost everywhere, 235
L-measurable, 235
L-negligible, 235
L-null, 235
L-summable, 234
L'-bounded set, 129
Lebesgue
density theorem, 169
integrability, 56
integral, 56
measurable function, 42
measurable set, 15
measure, 18
outer measure, 13, 14
point, 174
set, 174
Lebesgue decomposition
of a measure, 130
theorem, 130
left
uniformly continuous, 281
left Haar measure, 285
Lévy’s metric, 339
lifting
linear, 406
of £, 405
of a o-algebra, 413
limit
inferior, 381
of a sequence in R4, 386
of a sequence in R, 381
of a sequence in a metric space, 86, 394
point, 385
superior, 381
line segment, 384
linear
function, 383
functional, 106
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linear (cont.)
lifting, 406
operator, 105
order, 377
transformation, 105
locally
almost everywhere, 92
null set, 92
locally compact
group, 279
topological space, 182
lower
bound, 379
derivate, 166
integral, 67
semicontinuous, 175,209
sum, 67
Lusin space, 274
Lusin’s theorem, 208

M
martingale, 346
convergence theorem, 348
related to differentiation, 347-348,
353
relative to {.%, }, 346
reverse, 356
maximum, 43, 380
McShane
integrability, 436
integral, 436
equivalent to Lebesgue integral,
437-438
mean value theorem, 387
measurability of analytic sets, 262
measurable
function, 42, 73, 235
set, 15
space, 8
analytic, 270
standard, 270
measure, 7
absolutely continuous, 122, 125
Borel, 11
complex, 118
continuous, 11
countably additive, 7
counting, 8
discrete, 11
finitely additive, 7, 111
Haar, 285
inner, 33
on (X,<)oronX, 8

Index

outer, 33
positive, 114
product, 145
Radon, 215-218
space, 8
translation-invariant, 25, 285
mesh, 70, 429
metric, 86, 393
space, 86,393
metrizability
of second countable compact Hausdorff
spaces, 186
of second countable locally compact
Hausdorft spaces, 187
metrizable space, 393
metrize, 393
minimum, 43, 380
Minkowski’s inequality, 94
modular function, 294
monotone class, 40
theorem, 40
monotone convergence theorem, 61
for conditional expectations, 344
for Henstock—Kurzweil integral, 434
for McShane integral, 437
monotonicity, 13
u-ae., 50
u-almost everywhere, 50
on E, 50
u-integrable function, 56
H-measurable, 31
u-negligible, 30
p-null, 30
U*-measurable sets, 15,212-218

N
negative
part, 46, 117
set, 115
neighborhood, open, 389
net, 305
non-measurable set, 27-29
non-regular Borel measure, 197
norm, 84, 385
associated to an inner product, 90
of a linear operator, 106
of a partition, 70, 429
normal
distribution, 310
number, 325
random variable, 311
to base b, 325
normal topological space, 183
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normed
linear space, 85
vector space, 85
nowhere dense set, 395

(0]
one-point compactification, 185
open
ball, 385, 393
cover, 386, 391
neighborhood, 389
set, 385, 389
optional time, 345
order topology, 393
ordinal numbers
spaces of, 189
orthogonal, 91
group, 284
matrix, 284, 418
operator, 426
vectors, 426
orthonormal basis, 426
outer measure, 12, 33
outer regularity, 190

P
paradoxical, 420
parallelogram law, 90
partial order, 377
partially ordered set, 377
partition, 67, 377,429
path, 357
m-system, 37
point

of density, 169

of dispersion, 169
point at infinity, 185
point mass, 8
Poisson distribution, 319
polar coordinates, 162
Polish space, 239
positive

linear functional, 107, 181, 192,202

measure, 114
part, 46, 117
set, 115
power set, 374
probability, 307
space, 307
product
measure, 145

of Borel o-algebras, 219-220, 243
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of countably many probability measures,
365

of indexed family of sets, 375

of infinite sequence of measurable spaces,
243

of sets, 375

of uncountably many probability measures,
370

o-algebra, 143,243

topology, 392

Q

quotient space, 96

R
Radon measure, 215-218
Radon-Nikodym
derivative, 126
theorem, 123, 125, 129, 404
random variable, 308
continuous, 309
discrete, 309
real-valued, 308
real
numbers, field of, 379
part, 74-75, 382
rectangle with measurable sides, 143
reduced word, 421
refinement, 67
regular
Borel measure, 190
Borel product, 222
finite signed or complex measure, 200
measure, 23, 34, 189
regularity
of finite Borel measures on Polish spaces,
245
of finite Borel measures on RY, 34
of finite Borel measures on Souslin spaces,
275
of Lebesgue measure, 23
relation, 376
relatively compact set, 263
reverse martingale, 356
Riemann
integrability, 67, 430
integral, 68, 430
sum, 70, 429, 433
Riesz Representation Theorem, 192
Riesz, F, 164
right
uniformly continuous, 281
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right Haar measure, 285
rising sum lemma, 164

S
Saks—Henstock lemma
for Henstock—Kurzweil integral, 433
for McShane integral, 437
sample point, 307
Schroder—Bernstein theorem, 261, 376,418
second countable topological space, 391
second moment, 309
sections, 144
semimetric, 86
seminorm, 85
separability of L”, 102
separable space, 86, 390
separated o-algebra or measurable space,
270
separation
of points
by a family of functions, 392
by a family of sets, 270
of sets
by Borel sets, 257
by open sets, 182
theorem for analytic sets, 257
set
Lebesgue measurable but not Borel
measurable, 48
not Lebesgue measurable, 27-29
theory, basic concepts, 373-378
o-algebra, 2
generated by a collection of sets, 3,270
o-algebra or measurable space
countably generated, 102, 270
countably separated, 271
separated, 270
o-compact topological space, 183
o-field, 2
o-finite
measure or measurable space, 9
set, 9
o-ring, 228
signed measure, 114
simple function, 42, 397
simulation
of normal random variables, 319
of random variables, 317
singular part of a measure, 130
singularity of measures, 130
Souslin space, 274
special orthogonal group, 418
standard deviation, 309

standard measurable space, 270

step function, 101, 102
stochastic process, 345
continuous-time, 345
discrete-time, 345
Stone’s condition, 227
Stone, M. H., 226

Stone—Weierstrass theorem, 392

stopping time, 345

strong law of large numbers, 322
derived from martingale convergence

theorem, 356
strongly
integrable function, 399

measurable function, 397

subcover, 386, 391
submartingale, 347
subspace

of a topological space, 390

of a vector space, 383
summable, 234
summable function, 56
sup norm, 85
supermartingale, 347
support

of a function, 184

of a measure, 207
supremum, 379

surjection, surjective function, 375

symmetric
difference, 373
set, 280

T

tag, 70,429

tagged partition, 70, 429
S-fine, 430
subordinate to &, 430

tagged subpartition, 432
6-fine, 433
subordinate to 8, 433

tail
o-algebra, 321
event, 321

three series theorem, 327

Tietze extension theorem, 188

tightness, 335
uniform, 335
Tonelli’s theorem, 147
topological
dual space, 106
group, 279
space, 389
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topology, 389
generated by a metric, 393
generated by family of functions,
390
generated by family of sets, 390
induced by a metric, 393
induced by another topology, 390
inherited from a topological space,
390
metrizable, 393
order, 393
product, 392
usual, 389
weaker, 390
total variation
of complex measure, 119
of signed measure, 117
totally bounded space or set, 395
trace
of o« on C, 36
of uonC, 36
translate, 25
translation-invariant measure, 25, 285
triangle inequality, 85, 86
truncated random variable, 323
Tychonoft’s theorem, 392

U
unconditionally convergent series, 91
uniform convergence of distribution
functions, 326
uniform distribution, 310
uniform norm, 85
uniformly
absolutely continuous, 129
dense family of functions, 392
integrable, 129
uniformly continuous
function, 386
left, 281
right, 281
unimodular, 294
universal set, 253
universally measurable set, 264
upcrossing, 349
inequality, 350

upper
bound, 379
derivate, 166
integral, 67
semicontinuous, 175
sum, 67

Urysohn’s lemma, 184

\'%
vanishes
at —oo, function that, 133
at infinity, function that, 199
variance, 309
variation
of a complex measure, 118
of a signed measure, 117
of a vector-valued measure, 404
of F over [a,b], 133
vector
lattice, 227
space, 383
vector-valued measure, 404
version of a conditional expectation, 342
Vitali
covering, 164
covering theorem, 164
volume, 14

W
weak

convergence, 140

topology, 274
weak law of large numbers, 320
weak-* topology, 274
Weierstrass approximation theorem, 325
‘Wiener measure, 356

existence, 357-361
Wilson, Trevor, 419
word, 421

Z

Zaanen, A. C., 226
zero-dimensional space, 251
Zorn’s lemma, 377
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